1
|
Kong Y, Yang H, Nie R, Zhang X, Zuo F, Zhang H, Nian X. Obesity: pathophysiology and therapeutic interventions. MOLECULAR BIOMEDICINE 2025; 6:25. [PMID: 40278960 PMCID: PMC12031720 DOI: 10.1186/s43556-025-00264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Over the past few decades, obesity has transitioned from a localized health concern to a pressing global public health crisis affecting over 650 million adults globally, as documented by WHO epidemiological surveys. As a chronic metabolic disorder characterized by pathological adipose tissue expansion, chronic inflammation, and neuroendocrine dysregulation that disrupts systemic homeostasis and impairs physiological functions, obesity is rarely an isolated condition; rather, it is frequently complicated by severe comorbidities that collectively elevate mortality risks. Despite advances in nutritional science and public health initiatives, sustained weight management success rates and prevention in obesity remain limited, underscoring its recognition as a multifactorial disease influenced by genetic, environmental, and behavioral determinants. Notably, the escalating prevalence of obesity and its earlier onset in younger populations have intensified the urgency to develop novel therapeutic agents that simultaneously ensure efficacy and safety. This review aims to elucidate the pathophysiological mechanisms underlying obesity, analyze its major complications-including type 2 diabetes mellitus (T2DM), cardiovascular diseases (CVD), non-alcoholic fatty liver disease (NAFLD), obesity-related respiratory disorders, obesity-related nephropathy (ORN), musculoskeletal impairments, malignancies, and psychological comorbidities-and critically evaluate current anti-obesity strategies. Particular emphasis is placed on emerging pharmacological interventions, exemplified by plant-derived natural compounds such as berberine (BBR), with a focus on their molecular mechanisms, clinical efficacy, and therapeutic advantages. By integrating mechanistic insights with clinical evidence, this review seeks to provide innovative perspectives for developing safe, accessible, and effective obesity treatments.
Collapse
Affiliation(s)
- Yue Kong
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | | | - Rong Nie
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuxiang Zhang
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fan Zuo
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | | | - Xin Nian
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
Jael Teresa de Jesús QV, Gálvez-Ruíz JC, Márquez Ibarra AA, Leyva-Peralta MA. Perspectives on Berberine and the Regulation of Gut Microbiota: As an Anti-Inflammatory Agent. Pharmaceuticals (Basel) 2025; 18:193. [PMID: 40006007 PMCID: PMC11858814 DOI: 10.3390/ph18020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/26/2024] [Accepted: 11/13/2024] [Indexed: 02/27/2025] Open
Abstract
Berberine is a promising agent for modulating the intestinal microbiota, playing a crucial role in human health homeostasis. This natural compound promotes the growth of beneficial bacteria such as Bacteroides, Bifidobacterium, and Lactobacillus while reducing harmful bacteria such as Escherichia coli. Clinical and preclinical studies demonstrate that Berberine helps regulate T2D and metabolic disorders, improves blood glucose levels during T2D, and reduces lipid profile and chronic inflammation, especially when combined with probiotics. Berberine represents a promising adjuvant therapy for inflammatory diseases, particularly intestinal disorders, due to its multifaceted actions of inhibiting proinflammatory cytokines and pathways during IBS, IBD, and UC and its modulation of gut microbiota and/or enhancement of the integrity of the intestinal epithelial barrier. This review establishes the basis for future treatment protocols with berberine and fully elucidates its mechanisms.
Collapse
Affiliation(s)
| | - Juan-Carlos Gálvez-Ruíz
- Department of Chemical and Biological Sciences, University of Sonora, Hermosillo 83000, Mexico;
| | | | - Mario-Alberto Leyva-Peralta
- Department of Chemical-Biological and Agricultural Sciences, Universidad de Sonora, Unidad Regional Norte, Caborca 83621, Mexico;
| |
Collapse
|
3
|
AbouAitah K, Geioushy RA, Nour SA, Emam MTH, Zakaria MA, Fouad OA, Shaker YM, Kim BS. A Combined Phyto- and Photodynamic Delivery Nanoplatform Enhances Antimicrobial Therapy: Design, Preparation, In Vitro Evaluation, and Molecular Docking. ACS APPLIED BIO MATERIALS 2024; 7:6873-6889. [PMID: 39374427 DOI: 10.1021/acsabm.4c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Microbial combating is one of the hot research topics, and finding an alternative strategy is considerably required nowadays. Here, we report on a developed combined chemo- and photodynamic delivery system with a core of zinc oxide nanoparticles (ZnO NPs), porphyrin photosensitizer (POR) connected to alginate polymer (ALG), and berberine (alkaloid natural agent, BER) with favorable antimicrobial effects. According to the achieved main designs, the results demonstrated that the loading capacity and entrapment efficiency reached 22.2 wt % and 95.2%, respectively, for ZnO@ALG-POR/BER nanoformulation (second design) compared to 5.88 wt % and 45.1% for ZnOBER@ALG-POR design (first design). Importantly, when the intended nanoformulations were combined with laser irradiation for 10 min, they showed effective antifungal and antibacterial action against Candida albicans, Escherichia coli, and Staphylococcus aureus. Comparing these treatments to ZnO NPs and free BER, a complete (100%) suppression of bacterial and fungal growth was observed by ZnO@ALG-POR/BER nanoformulation treated E. coli, and by ZnOBER treated C. albicans. Also, after laser treatments, most data showed that E. coli was more sensitive to treatments using nanoformulations than S. aureus. The nanoformulations like ZnOBER@ALG-POR were highly comparable to traditional antibiotics against C. albicans and E. coli before laser application. The results of the cytotoxicity assessment demonstrated that the nanoformulations exhibited moderate biocompatibility on normal human immortalized retinal epithelial (RPE1) cells. Notably, the most biocompatible nanoformulation was ZnOBER@ALG-POR, which possessed ∼9% inhibition of RPE1 cells compared to others. High binding affinities were found between all three microbial strains' receptor proteins and ligands in the molecular docking interaction between the receptor proteins and the ligand molecules (mostly BER and POR). In conclusion, our findings point to the possible use of hybrid nanoplatform delivery systems that combine natural agents and photodynamic therapy into a single therapeutic agent, effectively combating microbial infections. Therapeutic efficiency correlates with nanoformulation design and microorganisms, demonstrating possible optimization for further development.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St., Dokki, Giza 12622, Egypt
| | - Ramadan A Geioushy
- Nanostructured Materials and Nanotechnology Department, Advanced Materials Institute, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, Cairo 11421, Egypt
| | - Shaimaa A Nour
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St., Dokki, Giza 12622, Egypt
| | - Maha T H Emam
- Department of Genetics and Cytology, Biotechnology Research Institute, National Research Centre, 33 El-Behouth St., Dokki, Giza 12622, Egypt
| | - Mohammed A Zakaria
- Spectroscopy Department, Physics Research Institute, National Research Centre, 33 El-Behouth St., Dokki, Giza 12622, Egypt
| | - Osama A Fouad
- Nanostructured Materials and Nanotechnology Department, Advanced Materials Institute, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, Cairo 11421, Egypt
| | - Yasser M Shaker
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St., Dokki, Giza 12622, Egypt
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
4
|
Rigillo G, Cappellucci G, Baini G, Vaccaro F, Miraldi E, Pani L, Tascedda F, Bruni R, Biagi M. Comprehensive Analysis of Berberis aristata DC. Bark Extracts: In Vitro and In Silico Evaluation of Bioaccessibility and Safety. Nutrients 2024; 16:2953. [PMID: 39275269 PMCID: PMC11397700 DOI: 10.3390/nu16172953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Berberine (BER) is an alkaloid found, together with other protoberberinoids (PROTBERs), in several species used in medicines and food supplements. While some herbal preparations containing BER and PROTBERs, such as Berberis aristata DC. bark extracts, have shown promising potential for human health, their safety has not been fully assessed. Recently, the EFSA issued a call for data to deepen the pharmacokinetic and pharmacodynamic understanding of products containing BER and PROTBERs and to comprehensively assess their safety, especially when used in food supplements. In this context, new data were collected in this work by assessing: (i) the phytochemical profile of 16 different commercial B. aristata dry extracts, which are among the most widely used preparations containing BER and PROTBERs in Europe; (ii) the In Vitro and In Silico investigation of the pharmacokinetic properties of BER and PROTBERs; (iii) the In Vitro cytotoxicity of selected extracts in different human cell lines, including tests on hepatic cells in the presence of CYP450 substrates; (iv) the effects of the extracts on cancer cell migration; and (v) the In Vitro molecular effects of extracts in non-cancer human cells. Results showed that commercial B. aristata extracts contain BER as the main constituent, with jatrorrhizine as main secondary PROTBER. BER and jatrorrhizine were found to have a good bioaccessibility rate, but they interact with P-gp. B. aristata extracts showed limited cytotoxicity and minimal interaction with CYP450 substrates. Furthermore, tested extracts demonstrated inhibition of cancer cell migration and were devoid of any pro-tumoral effects in normal cells. Overall, our work provides a valuable overview to better elucidate important concerns regarding botanicals containing BER and PROTBERs.
Collapse
Affiliation(s)
- Giovanna Rigillo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
| | - Giorgio Cappellucci
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Giulia Baini
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Federica Vaccaro
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Elisabetta Miraldi
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Luca Pani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136, USA
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), 34148 Trieste, Italy
| | - Renato Bruni
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Marco Biagi
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| |
Collapse
|
5
|
Ruan LJ, Jiao JY, Cheng C, Zhang Y, Cao ZQ, He B, Chen Z. Berberine chloride suppresses pancreatic adenocarcinoma proliferation and growth by targeting inflammation-related genes: an in silico analysis with in vitro and vivo validation. Cancer Chemother Pharmacol 2024; 94:169-181. [PMID: 38502348 PMCID: PMC11390897 DOI: 10.1007/s00280-024-04663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE Targeting inflammatory crosstalk between tumors and their microenvironment has emerged as a crucial method for suppressing pancreatic adenocarcinoma (PAAD) progression. Berberine (BBR) is a natural pentacyclic isoquinoline alkaloid known for its anti-inflammatory and antitumor pharmacological effects; however, the mechanism underlying PAAD suppression remains unclear. We aim to investigate the effects of BBR on PAAD progression and their underlying mechanisms. METHODS The prognostic value of inflammation-related genes in PAAD was assessed using bioinformatics analyses, then the pharmacological effects and potential mechanisms of BBR on PAAD will be investigated in silico, in vitro, and in vivo. RESULTS Fifty-eight prognostic inflammation-related genes were identified in PAAD, which were shown to have good sensitivity and specificity using a novel inflammation-related gene risk-prognosis prediction model. Among these, four candidate genes (CAPS3, PTGS2, ICAM1, and CXCR4) were predicted as targets of BBR in PAAD in silico. Molecular docking simulations showed that the four key targets docked well with BBR. Further BBR treatment suppressed cell proliferation, colony formation, and induced cell cycle arrest in vitro. Moreover, BBR exhibited a significant tumor-suppressive effect in murine subcutaneous xenografts without macroscopic hepatic and renal toxicities. In addition, BBR downregulated CAPS3, PTGS2, ICAM1, and CXCR4 protein expression. CONCLUSION This study not only elucidated the prognostic value of inflammation-related genes in PAAD but also demonstrated the potential of BBR to inhibit PAAD by targeting these genes.
Collapse
Affiliation(s)
- Lin-Jie Ruan
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No. 270 Dongan Rd., Xuhui district, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ju-Ying Jiao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No. 270 Dongan Rd., Xuhui district, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chienshan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No. 270 Dongan Rd., Xuhui district, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No. 270 Dongan Rd., Xuhui district, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhang-Qi Cao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No. 270 Dongan Rd., Xuhui district, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ba He
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No. 270 Dongan Rd., Xuhui district, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No. 270 Dongan Rd., Xuhui district, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Wei G, Huang N, Li M, Guan F, Chen L, Liao Y, Xie X, Li Y, Su Z, Chen J, Liu Y. Tetrahydroberberine alleviates high-fat diet-induced hyperlipidemia in mice via augmenting lipoprotein assembly-induced clearance of low-density lipoprotein and intermediate-density lipoprotein. Eur J Pharmacol 2024; 968:176433. [PMID: 38369273 DOI: 10.1016/j.ejphar.2024.176433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
The promotion of excess low-density lipoprotein (LDL) clearance stands as an effective clinical approach for treating hyperlipidemia. Tetrahydroberberine, a metabolite of berberine, exhibits superior bioavailability compared to berberine and demonstrates a pronounced hypolipidemic effect. Despite these characteristics, the impact of tetrahydroberberine on improving excessive LDL clearance in hyperlipidemia has remained unexplored. Thus, this study investigates the potential effects of tetrahydroberberine on high-fat diet-induced hyperlipidemia in mice. The findings reveal that tetrahydroberberine exerts a more potent lipid-lowering effect than berberine, particularly concerning LDL-cholesterol in hyperlipidemic mice. Notably, tetrahydroberberine significantly reduces serum levels of upstream lipoproteins, including intermediate-density lipoprotein (IDL) and very low-density lipoprotein, by promoting their conversion to LDL. This reduction is further facilitated by the upregulation of hepatic LDL receptor expression induced by tetrahydroberberine. Intriguingly, tetrahydroberberine enhances the apolipoprotein E (ApoE)/apolipoprotein B100 (ApoB100) ratio, influencing lipoprotein assembly in the serum. This effect is achieved through the activation of the efflux of ApoE-containing cholesterol in the liver. The ApoE/ApoB100 ratio exhibits a robust negative correlation with serum levels of LDL and IDL, indicating its potential as a diagnostic indicator for hyperlipidemia. Moreover, tetrahydroberberine enhances hepatic lipid clearance without inducing lipid accumulation in the liver and alleviates existing liver lipid content. Importantly, no apparent hepatorenal toxicity is observed following tetrahydroberberine treatment for hyperlipidemia. In summary, tetrahydroberberine demonstrates a positive impact against hyperlipidemia by modulating lipoprotein assembly-induced clearance of LDL and IDL. The ApoE/ApoB100 ratio emerges as a promising diagnostic indicator for hyperlipidemia, showcasing the potential clinical significance of tetrahydroberberine in lipid management.
Collapse
Affiliation(s)
- Guilan Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ning Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Mengyao Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Fengkun Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Liping Chen
- Faculty of Health Sciences, University of Macau, Macao, China
| | - Yingyi Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xingyu Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China.
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China.
| |
Collapse
|
7
|
Hidalgo-Lozada GM, Villarruel-López A, Nuño K, García-García A, Sánchez-Nuño YA, Ramos-García CO. Clinically Effective Molecules of Natural Origin for Obesity Prevention or Treatment. Int J Mol Sci 2024; 25:2671. [PMID: 38473918 DOI: 10.3390/ijms25052671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The prevalence and incidence of obesity and the comorbidities linked to it are increasing worldwide. Current therapies for obesity and associated pathologies have proven to cause a broad number of adverse effects, and often, they are overpriced or not affordable for all patients. Among the alternatives currently available, natural bioactive compounds stand out. These are frequently contained in pharmaceutical presentations, nutraceutical products, supplements, or functional foods. The clinical evidence for these molecules is increasingly solid, among which epigallocatechin-3-gallate, ellagic acid, resveratrol, berberine, anthocyanins, probiotics, carotenoids, curcumin, silymarin, hydroxy citric acid, and α-lipoic acid stand out. The molecular mechanisms and signaling pathways of these molecules have been shown to interact with the endocrine, nervous, and gastroenteric systems. They can regulate the expression of multiple genes and proteins involved in starvation-satiety processes, activate the brown adipose tissue, decrease lipogenesis and inflammation, increase lipolysis, and improve insulin sensitivity. This review provides a comprehensive view of nature-based therapeutic options to address the increasing prevalence of obesity. It offers a valuable perspective for future research and subsequent clinical practice, addressing everything from the molecular, genetic, and physiological bases to the clinical study of bioactive compounds.
Collapse
Affiliation(s)
| | - Angelica Villarruel-López
- Department of Pharmacobiology, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara 44430, Mexico
| | - Karla Nuño
- Department of Psychology, Education and Health, ITESO Jesuit University of Guadalajara, Guadalajara 45604, Mexico
| | - Abel García-García
- Institute of Science and Technology for Health Innovation, Guadalajara 44770, Mexico
- Department of Medical Clinic, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico
| | - Yaír Adonaí Sánchez-Nuño
- Department of Pharmacobiology, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara 44430, Mexico
| | | |
Collapse
|
8
|
Poulios E, Koukounari S, Psara E, Vasios GK, Sakarikou C, Giaginis C. Anti-obesity Properties of Phytochemicals: Highlighting their Molecular Mechanisms against Obesity. Curr Med Chem 2024; 31:25-61. [PMID: 37198988 DOI: 10.2174/0929867330666230517124033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/19/2023]
Abstract
Obesity is a complex, chronic and inflammatory disease that affects more than one-third of the world's population, leading to a higher incidence of diabetes, dyslipidemia, metabolic syndrome, cardiovascular diseases, and some types of cancer. Several phytochemicals are used as flavoring and aromatic compounds, also exerting many benefits for public health. This study aims to summarize and scrutinize the beneficial effects of the most important phytochemicals against obesity. Systematic research of the current international literature was carried out in the most accurate scientific databases, e.g., Pubmed, Scopus, Web of Science and Google Scholar, using a set of critical and representative keywords, such as phytochemicals, obesity, metabolism, metabolic syndrome, etc. Several studies unraveled the potential positive effects of phytochemicals such as berberine, carvacrol, curcumin, quercetin, resveratrol, thymol, etc., against obesity and metabolic disorders. Mechanisms of action include inhibition of adipocyte differentiation, browning of the white adipose tissue, inhibition of enzymes such as lipase and amylase, suppression of inflammation, improvement of the gut microbiota, and downregulation of obesity-inducing genes. In conclusion, multiple bioactive compounds-phytochemicals exert many beneficial effects against obesity. Future molecular and clinical studies must be performed to unravel the multiple molecular mechanisms and anti-obesity activities of these naturally occurring bioactive compounds.
Collapse
Affiliation(s)
- Efthymios Poulios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Stergia Koukounari
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Evmorfia Psara
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Georgios K Vasios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Christina Sakarikou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| |
Collapse
|
9
|
Wang C, Yang Y, Chen J, Dai X, Xing C, Zhang C, Cao H, Guo X, Hu G, Zhuang Y. Berberine Protects against High-Energy and Low-Protein Diet-Induced Hepatic Steatosis: Modulation of Gut Microbiota and Bile Acid Metabolism in Laying Hens. Int J Mol Sci 2023; 24:17304. [PMID: 38139133 PMCID: PMC10744296 DOI: 10.3390/ijms242417304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Berberine (BBR) is a natural alkaloid with multiple biotical effects that has potential as a treatment for fatty liver hemorrhagic syndrome (FLHS). However, the mechanism underlying the protective effect of BBR against FLHS remains unclear. The present study aimed to investigate the effect of BBR on FLHS induced by a high-energy, low-protein (HELP) diet and explore the involvement of the gut microbiota and bile acid metabolism in the protective effects. A total of 90 healthy 140-day-old Hy-line laying hens were randomly divided into three groups, including a control group (fed a basic diet), a HELP group (fed a HELP diet), and a HELP+BBR group (high-energy, high-protein diet supplemented with BBR instead of maize). Our results show that BBR supplementation alleviated liver injury and hepatic steatosis in laying hens. Moreover, BBR supplementation could significantly regulate the gut's microbial composition, increasing the abundance of Actinobacteria and Romboutsia. In addition, the BBR supplement altered the profile of bile acid. Furthermore, the gut microbiota participates in bile acid metabolism, especially taurochenodeoxycholic acid and α-muricholic acid. BBR supplementation could regulate the expression of genes and proteins related to glucose metabolism, lipid synthesis (FAS, SREBP-1c), and bile acid synthesis (FXR, CYP27a1). Collectively, our findings demonstrate that BBR might be a potential feed additive for preventing FLHS by regulating the gut microbiota and bile acid metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, China; (C.W.); (Y.Y.); (J.C.); (X.D.); (C.X.); (C.Z.); (H.C.); (X.G.)
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, China; (C.W.); (Y.Y.); (J.C.); (X.D.); (C.X.); (C.Z.); (H.C.); (X.G.)
| |
Collapse
|
10
|
Hiramoto K, Imai M, Tanaka S, Ooi K. Changes in the AGE/Macrophage/TNF-α Pathway Affect Skin Dryness during KK-Ay/Tajcl Mice Aging. Life (Basel) 2023; 13:1339. [PMID: 37374121 PMCID: PMC10304917 DOI: 10.3390/life13061339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Skin dryness associated with type 2 diabetes worsens with age; however, the underlying mechanisms remain unclear. Herein, we investigated the effects of aging on skin dryness using a type 2 diabetes mice model. Specific pathogen-free KK-Ay/TaJcl mice of different ages (10, 27, 40, and 50 weeks) were used in this study. The results confirmed that skin dryness worsens with age. Furthermore, increased levels of advanced glycation end products (AGE), prostaglandin E2 (PGE2), and tumor necrosis factor (TNF)-α, along with an increased expression of the major AGE receptor (RAGE), an increased macrophage number, and decreased collagen expression were observed in the skin of aged KK-Ay/TaJcl mice. In conclusion, dry skin conditions worsen with age in diabetic mice, and the AGE/RAGE/PGE2 and TNF-α pathways play an important role in exacerbating skin dryness during aging in these mice.
Collapse
Affiliation(s)
| | | | | | - Kazuya Ooi
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan; (K.H.)
| |
Collapse
|
11
|
Nadalin P, Kim YG, Park SU. Recent studies on berberine and its biological and pharmacological activities. EXCLI JOURNAL 2023; 22:315-328. [PMID: 37223077 PMCID: PMC10201012 DOI: 10.17179/excli2022-5898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 05/25/2023]
Affiliation(s)
- Priscilla Nadalin
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Yong-Goo Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| |
Collapse
|
12
|
Liu YF, Wang HH, Geng YH, Han L, Tu SH, Wang H. Advances of berberine against metabolic syndrome-associated kidney disease: Regarding effect and mechanism. Front Pharmacol 2023; 14:1112088. [PMID: 36814494 PMCID: PMC9939707 DOI: 10.3389/fphar.2023.1112088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
The prevalence of metabolic syndrome (MetS) is drastically growing worldwide, resulting in MetS-associated kidney disease. According to traditional theories, preventing blood pressure, lipid, glycose, and obesity and improving insulin resistance (IR), a couple of medications are required for MetS. It not only lowers patients' compliance but also elevates adverse reactions. Accordingly, we attempted to seek answers from complementary and alternative medicine. Ultimately, berberine (BBR) was chosen due to its efficacy and safety on MetS through multi-pathways and multi-targets. The effects and mechanisms of BBR on obesity, IR, diabetic nephropathy, hypertension, hyperlipidemia, and hyperuricemia were elaborated. In addition, the overall properties of BBR and interventions for various kidney diseases were also collected. However, more clinical trials are expected to further identify the beneficial effects of BBR.
Collapse
Affiliation(s)
- Ya-Fei Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan-Huan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yin-Hong Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Han
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng-Hao Tu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Nephrology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Zhu C, Li K, Peng XX, Yao TJ, Wang ZY, Hu P, Cai D, Liu HY. Berberine a traditional Chinese drug repurposing: Its actions in inflammation-associated ulcerative colitis and cancer therapy. Front Immunol 2022; 13:1083788. [PMID: 36561763 PMCID: PMC9763584 DOI: 10.3389/fimmu.2022.1083788] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid extracted from Coptidis Rhizoma, has a long history of treating dysentery in the clinic. Over the past two decades, the polytrophic, pharmacological, and biochemical properties of BBR have been intensively studied. The key functions of BBR, including anti-inflammation, antibacterial, antioxidant, anti-obesity, and even antitumor, have been discovered. However, the underlying mechanisms of BBR-mediated regulation still need to be explored. Given that BBR is also a natural nutrition supplement, the modulatory effects of BBR on nutritional immune responses have attracted more attention from investigators. In this mini-review, we summarized the latest achievements of BBR on inflammation, gut microbes, macrophage polarization, and immune responses associated with their possible tools in the pathogenesis and therapy of ulcerative colitis and cancer in recent 5 years. We also discuss the therapeutic efficacy and anti-inflammatory actions of BBR to benefit future clinical applications.
Collapse
Affiliation(s)
- Cuipeng Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiao-Xu Peng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tong-Jia Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zi-Yu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China,*Correspondence: Hao-Yu Liu, ; Demin Cai,
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China,Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China,*Correspondence: Hao-Yu Liu, ; Demin Cai,
| |
Collapse
|