1
|
Siedlecka-Kroplewska K, Kmiec Z, Zmijewski MA. The Interplay Between Autophagy and Apoptosis in the Mechanisms of Action of Stilbenes in Cancer Cells. Antioxidants (Basel) 2025; 14:339. [PMID: 40227400 PMCID: PMC11939748 DOI: 10.3390/antiox14030339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Plant-based stilbenes are low-molecular-weight polyphenolic compounds that exhibit anti-oxidant, anti-microbial, anti-fungal, anti-inflammatory, anti-diabetic, cardioprotective, neuroprotective, and anti-cancer activities. They are phytoalexins produced in diverse plant species in response to stress, such as fungal and bacterial infections or excessive UV irradiation. Plant-derived dietary products containing stilbenes are common components of the human diet. Stilbenes appear to be promising chemopreventive and chemotherapeutic agents. Accumulating evidence indicates that stilbenes are able to trigger both apoptotic and autophagic molecular pathways in many human cancer cell lines. Of note, the molecular crosstalk between autophagy and apoptosis under cellular stress conditions determines the cell fate. The autophagy and apoptosis relationship is complex and depends on the cellular context, e.g., cell type and cellular stress level. Apoptosis is a type of regulated cell death, whereas autophagy may act as a pro-survival or pro-death mechanism depending on the context. The interplay between autophagy and apoptosis may have an important impact on chemotherapy efficiency. This review focuses on the in vitro effects of stilbenes in different human cancer cell lines concerning the interplay between autophagy and apoptosis.
Collapse
Affiliation(s)
| | - Zbigniew Kmiec
- Department of Anatomy and Histology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| | | |
Collapse
|
2
|
Obaidur Rab S, Altalbawy FMA, Chandra M, Ariffin IA, Kaur P, Rathore G, Rizaev J, Aloraibi F, Najeeb MA, Abdulhussain MA, Zwamel AH. Targeting the lung tumor microenvironment by phytochemicals and their nanoformulations. Pathol Res Pract 2024; 264:155679. [PMID: 39500198 DOI: 10.1016/j.prp.2024.155679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
Lung malignancies are among the most prevalent and foremost causes of tumor-related deaths. Despite significant advancements in the understanding and management of lung cancer, resistance to traditional treatments remains a significant challenge. Understanding and targeting tumor microenvironment (TME) have attracted interest in the recent decade for eliminating various solid tumors. The lung TME has a crucial position in tumor expansion and therapy failure, driving it an engaging target for novel medicinal interventions. Plant-derived products offer a promising avenue for targeting TME due to their diverse chemical structures and biological activities. However, their clinical use is hindered by insufficient bioavailability and also possible systemic toxicity. The use of nanoparticles as delivery vehicles for natural products can overcome these challenges and enhance their therapeutic efficacy. This review article explores the potential of plant-derived products as medicinal agents for targeting lung TME. We provide an outline of the present knowledge of lung TME and explain the mechanisms by which plant-derived products can modulate key components of this microenvironment. The promising impacts and properties of nanoparticles for the delivery of these derivatives into lung tumors will also be discussed. We also review the preclinical and clinical findings for supporting the usefulness of these agents in targeting lung TME. Additionally, we highlight the challenges and forthcoming trends in the development of plant-derived products as targeted therapies for lung cancer, with a particular focus on combination therapies.
Collapse
Affiliation(s)
- Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
| | - Muktesh Chandra
- Department of Bioinformatics, Marwadi University Research Center, Faculty of Engineering and Technology, Marwadi University, Rajkot, Gujarat 360003, India
| | - I A Ariffin
- Management and Science University, Shah Alam, Selangor, Malaysia
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - Gulshan Rathore
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Jasur Rizaev
- Department of Public health and Healthcare management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Farah Aloraibi
- Department of Density, Al-Manara College for Medical Sciences, Maysan, Iraq
| | - Maryam Ali Najeeb
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | - Ahmed Hussein Zwamel
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Livraghi V, Grossi A, Scopelliti A, Senise G, Gamboa LA, Solito S, Stivala LA, Sottile V, Savio M. Stilbene Treatment Reduces Stemness Features in Human Lung Adenocarcinoma Model. Int J Mol Sci 2024; 25:10390. [PMID: 39408719 PMCID: PMC11476666 DOI: 10.3390/ijms251910390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Lung cancer is among the most clinically challenging tumors because of its aggressive proliferation, metastasis, and the presence of cancer stem cells (CSCs). Natural bioactive substances have been used for cancer prevention, and, in particular, resveratrol (RSV), a stilbene-based compound with wide biological properties, has been proposed for chemoprevention. Its lesser-known analogue 4,4'-dihydroxy-trans-stilbene (DHS) has demonstrated superior activity both in cell-based assays and in mouse and zebrafish in vivo models. The present study analyzed the effects of DHS and RSV on A549 lung cancer cells, with a particular focus on stemness features and CSCs, isolated by sorting of the side population (SP). The results show that both stilbenes, especially DHS, strongly inhibited cell cycle progression. A reduction in the S phase was induced by DHS, whereas an increase in this phase was obtained with RSV. In addition, 50% reductions in the clonogenicity and soft agar colony formation were observed with the DHS treatment only. Finally, both stilbenes, especially DHS, reduced stemness marker expression in A549 cells and their sorted SP fraction. Spheroid formation, higher in SP cells than in the main population (MP), was significantly reduced after pretreatment with DHS, which was found to decrease SOX2 levels more than RSV. These findings indicate that stilbenes, and particularly DHS, affect stemness features of A549 cells and the SP fraction, suggesting their potential utility as anticancer agents, either alone or combined with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Vittoria Livraghi
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, 27100 Pavia, Italy; (V.L.); (A.G.); (A.S.); (G.S.); (L.A.G.); (L.A.S.)
| | - Alice Grossi
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, 27100 Pavia, Italy; (V.L.); (A.G.); (A.S.); (G.S.); (L.A.G.); (L.A.S.)
| | - Anna Scopelliti
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, 27100 Pavia, Italy; (V.L.); (A.G.); (A.S.); (G.S.); (L.A.G.); (L.A.S.)
| | - Giorgia Senise
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, 27100 Pavia, Italy; (V.L.); (A.G.); (A.S.); (G.S.); (L.A.G.); (L.A.S.)
| | - Luciano Augusto Gamboa
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, 27100 Pavia, Italy; (V.L.); (A.G.); (A.S.); (G.S.); (L.A.G.); (L.A.S.)
| | - Samantha Solito
- Centro Grandi Strumenti (CGS), University of Pavia, 27100 Pavia, Italy;
| | - Lucia Anna Stivala
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, 27100 Pavia, Italy; (V.L.); (A.G.); (A.S.); (G.S.); (L.A.G.); (L.A.S.)
| | - Virginie Sottile
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, 27100 Pavia, Italy; (V.L.); (A.G.); (A.S.); (G.S.); (L.A.G.); (L.A.S.)
| | - Monica Savio
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, 27100 Pavia, Italy; (V.L.); (A.G.); (A.S.); (G.S.); (L.A.G.); (L.A.S.)
| |
Collapse
|
4
|
Livraghi V, Mazza L, Chiappori F, Cardano M, Cazzalini O, Puglisi R, Capoferri R, Pozzi A, Stivala LA, Zannini L, Savio M. A proteasome-dependent inhibition of SIRT-1 by the resveratrol analogue 4,4'-dihydroxy- trans-stilbene. J Tradit Complement Med 2024; 14:534-543. [PMID: 39262665 PMCID: PMC11384077 DOI: 10.1016/j.jtcme.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 09/13/2024] Open
Abstract
Background and aim Resveratrol (RSV), is a stilbene-based compound exerting wide biological properties. Its analogue 4,4'-dihydroxy-trans-stilbene (DHS) has shown improved bioavailability and antiproliferative activity in vitro and in vivo. One of the hypotheses on how resveratrol works is based on SIRT1 activation. Since their strict structural similarities, we have explored a potential interaction between DHS and SIRT1, in comparison with the parental molecule. Experimental procedure Timing of incubation and concentrations of DHS have been determined using MTT assay in normal human lung fibroblasts. Untreated, DHS- or RSV-treated cells were harvested and analysed by Western Blotting or RT-PCR, in order to evaluate SIRT1 levels/activity and expression, and by Cellular Thermal shift assay (CETSA) to check potential DHS or RSV-SIRT1 interaction. Transfection experiments have been performed with two SIRT1 mutants, based on the potential binding pockets identified by Molecular Docking analysis. Results and conclusion We unexpectedly found that DHS, but not RSV, exerted a time-dependent inhibitory effect on both SIRT1 protein levels and activity, the latter measured as p53 acetylation. At the mRNA level no significant changes were observed, whereas a proteasome-dependent mechanism was highlighted for the reduction of SIRT1 levels by DHS in experiments performed with the proteasome inhibitor MG132. Bioinformatics analysis suggested a higher affinity of RSV in binding all SIRT1 complexes compared to DHS, except comparable results for complex SIRT1-p53. Nevertheless, both CETSA and SIRT1 mutants transfected in cells did not confirm this interaction. In conclusion, DHS reduces SIRT1 protein level, thereby inhibiting its activity through a proteasome-mediated mechanism.
Collapse
Affiliation(s)
- Vittoria Livraghi
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, Pavia, Italy
| | - Laura Mazza
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, Pavia, Italy
| | - Federica Chiappori
- National Research Council - Institute for Biomedical Technologies (CNR - ITB), Segrate, Mi, Italy
| | - Miriana Cardano
- Institute of Molecular Genetics Luigi Luca Cavalli-Sforza - National Research Council (IGM-CNR), Pavia, Italy
| | - Ornella Cazzalini
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, Pavia, Italy
| | - Roberto Puglisi
- Italian Experimental Institute "Lazzaro Spallanzani" Rivolta D'Adda, Italy
| | - Rossana Capoferri
- Italian Experimental Institute "Lazzaro Spallanzani" Rivolta D'Adda, Italy
| | - Anna Pozzi
- Italian Experimental Institute "Lazzaro Spallanzani" Rivolta D'Adda, Italy
| | - Lucia Anna Stivala
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, Pavia, Italy
| | - Laura Zannini
- Institute of Molecular Genetics Luigi Luca Cavalli-Sforza - National Research Council (IGM-CNR), Pavia, Italy
| | - Monica Savio
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
5
|
Ferraresi A, Girone C, Maheshwari C, Vallino L, Dhanasekaran DN, Isidoro C. Ovarian Cancer Cell-Conditioning Medium Induces Cancer-Associated Fibroblast Phenoconversion through Glucose-Dependent Inhibition of Autophagy. Int J Mol Sci 2024; 25:5691. [PMID: 38891879 PMCID: PMC11171902 DOI: 10.3390/ijms25115691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
One aspect of ovarian tumorigenesis which is still poorly understood is the tumor-stroma interaction, which plays a major role in chemoresistance and tumor progression. Cancer-associated fibroblasts (CAFs), the most abundant stromal cell type in the tumor microenvironment, influence tumor growth, metabolism, metastasis, and response to therapy, making them attractive targets for anti-cancer treatment. Unraveling the mechanisms involved in CAFs activation and maintenance is therefore crucial for the improvement of therapy efficacy. Here, we report that CAFs phenoconversion relies on the glucose-dependent inhibition of autophagy. We show that ovarian cancer cell-conditioning medium induces a metabolic reprogramming towards the CAF-phenotype that requires the autophagy-dependent glycolytic shift. In fact, 2-deoxy-D-glucose (2DG) strongly hampers such phenoconversion and, most importantly, induces the phenoreversion of CAFs into quiescent fibroblasts. Moreover, pharmacological inhibition (by proline) or autophagy gene knockdown (by siBECN1 or siATG7) promotes, while autophagy induction (by either 2DG or rapamycin) counteracts, the metabolic rewiring induced by the ovarian cancer cell secretome. Notably, the nutraceutical resveratrol (RV), known to inhibit glucose metabolism and to induce autophagy, promotes the phenoreversion of CAFs into normal fibroblasts even in the presence of ovarian cancer cell-conditioning medium. Overall, our data support the view of testing autophagy inducers for targeting the tumor-promoting stroma as an adjuvant strategy to improve therapy success rates, especially for tumors with a highly desmoplastic stroma, like ovarian cancer.
Collapse
Affiliation(s)
- Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.G.); (C.M.); (L.V.)
| | - Carlo Girone
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.G.); (C.M.); (L.V.)
| | - Chinmay Maheshwari
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.G.); (C.M.); (L.V.)
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.G.); (C.M.); (L.V.)
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.G.); (C.M.); (L.V.)
| |
Collapse
|
6
|
Ferraresi A, Thongchot S, Isidoro C. Resveratrol Promotes Self-digestion to Put Cancer to Sleep. J Cancer Prev 2024; 29:1-5. [PMID: 38567110 PMCID: PMC10982519 DOI: 10.15430/jcp.24.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 04/04/2024] Open
Abstract
Resveratrol, a natural polyphenol present in a variety of food stuff, has been shown to exert preventive and curative anticancer activity in several in vitro and in vivo models. Such chemopreventive/anticancer activity has been linked to biochemical and epigenetic modifications of multiple pathways involved in carcinogenesis and metastasization. In this commentary, we focus on the recent work done in our laboratory showing that resveratrol has potential to prevent and cure cancer by promoting epigenetic-mediated autophagy-dependent tumor dormancy, an effect associated with re-education of the cancer-associated fibroblasts and reduced production of inflammatory cytokines in the tumor microenvironment. The clinical translation of the current knowledge on resveratrol anticancer activity is also discussed.
Collapse
Affiliation(s)
- Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Suyanee Thongchot
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
7
|
Thongchot S, Ferraresi A, Vidoni C, Salwa A, Vallino L, Kittirat Y, Loilome W, Namwat N, Isidoro C. Preclinical evidence for preventive and curative effects of resveratrol on xenograft cholangiocarcinogenesis. Cancer Lett 2024; 582:216589. [PMID: 38097133 DOI: 10.1016/j.canlet.2023.216589] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/11/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Cholangiocarcinoma (CCA), the malignant tumor of bile duct epithelial cells, is a relatively rare yet highly lethal cancer. In this work, we tested the ability of Resveratrol (RV) to prevent and cure CCA xenograft in nude mice and investigated molecular mechanisms underpinning such anticancer effect. Human CCA cells were xenografted in mice that were or not treated prior to or after to transplantation with RV. Tumor growth was monitored and analyzed for the markers of cell proliferation, apoptosis, and autophagy. TCGA was interrogated for the molecules possibly targeted by RV. RV could inhibit the growth of human CCA xenograft when administered after implantation and could reduce the growth or even impair the implantation of the tumors when administered prior the transplantation. RV inhibited CCA cell proliferation, induced apoptosis with autophagy, and strongly reduced the presence of CAFs and production of IL-6. Interrogation of CCA dataset in TCGA database revealed that the expression of IL-6 Receptor (IL-6R) inversely correlated with that of MAP-LC3 and BECLIN-1, and that low expression of IL-6R and of MIK67, two pathways downregulated by RV, associated with better survival of CCA patients. Our data demonstrate that RV elicits a strong preventive and curative anticancer effect in CCA by limiting the formation of CAFs and their release of IL-6, and this results in up-regulation of autophagy and apoptosis in the cancer cells. These findings support the clinical use of RV as a primary line of prevention in patients exposed at risk and as an adjuvant therapeutics in CCA patients.
Collapse
Affiliation(s)
- Suyanee Thongchot
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen, 40002, Thailand; Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy; Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand; Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Amreen Salwa
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Yingpinyapat Kittirat
- Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen, 40002, Thailand; Department of Medical Sciences, Regional Medical Sciences Center 2 Phitsanulok, Ministry of Public Health, Phitsanulok, Thailand
| | - Watcharin Loilome
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen, 40002, Thailand
| | - Nisana Namwat
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen, 40002, Thailand.
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy.
| |
Collapse
|
8
|
Zhang H, Yue X, Chen Z, Liu C, Wu W, Zhang N, Liu Z, Yang L, Jiang Q, Cheng Q, Luo P, Liu G. Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: new opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer 2023; 22:159. [PMID: 37784082 PMCID: PMC10544417 DOI: 10.1186/s12943-023-01860-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023] Open
Abstract
Despite centuries since the discovery and study of cancer, cancer is still a lethal and intractable health issue worldwide. Cancer-associated fibroblasts (CAFs) have gained much attention as a pivotal component of the tumor microenvironment. The versatility and sophisticated mechanisms of CAFs in facilitating cancer progression have been elucidated extensively, including promoting cancer angiogenesis and metastasis, inducing drug resistance, reshaping the extracellular matrix, and developing an immunosuppressive microenvironment. Owing to their robust tumor-promoting function, CAFs are considered a promising target for oncotherapy. However, CAFs are a highly heterogeneous group of cells. Some subpopulations exert an inhibitory role in tumor growth, which implies that CAF-targeting approaches must be more precise and individualized. This review comprehensively summarize the origin, phenotypical, and functional heterogeneity of CAFs. More importantly, we underscore advances in strategies and clinical trials to target CAF in various cancers, and we also summarize progressions of CAF in cancer immunotherapy.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinghai Yue
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhe Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liping Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qing Jiang
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Peng Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Cerella C, Dicato M, Diederich M. Enhancing personalized immune checkpoint therapy by immune archetyping and pharmacological targeting. Pharmacol Res 2023; 196:106914. [PMID: 37714393 DOI: 10.1016/j.phrs.2023.106914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Immune checkpoint inhibitors (ICIs) are an expanding class of immunotherapeutic agents with the potential to cure cancer. Despite the outstanding clinical response in patient subsets, most individuals become refractory or develop resistance. Patient stratification and personalized immunotherapies are limited by the absence of predictive response markers. Recent findings show that dominant patterns of immune cell composition, T-cell status and heterogeneity, and spatiotemporal distribution of immune cells within the tumor microenvironment (TME) are becoming essential determinants of prognosis and therapeutic response. In this context, ICIs also function as investigational tools and proof of concept, allowing the validation of the identified mechanisms. After reviewing the current state of ICIs, this article will explore new comprehensive predictive markers for ICIs based on recent discoveries. We will discuss the recent establishment of a classification of TMEs into immune archetypes as a tool for personalized immune profiling, allowing patient stratification before ICI treatment. We will discuss the developing comprehension of T-cell diversity and its role in shaping the immune profile of patients. We describe the potential of strategies that score the mutual spatiotemporal modulation between T-cells and other cellular components of the TME. Additionally, we will provide an overview of a range of synthetic and naturally occurring or derived small molecules. We will compare compounds that were recently identified by in silico prediction to wet lab-validated drug candidates with the potential to function as ICIs and/or modulators of the cellular components of the TME.
Collapse
Affiliation(s)
- Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), Fondation Recherche sur le Cancer et les Maladies du Sang, Pavillon 2, 6A rue Barblé, L-1210 Luxembourg, Luxembourg
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|
10
|
Vidoni C, Ferraresi A, Vallino L, Salwa A, Ha JH, Seca C, Garavaglia B, Dhanasekaran DN, Isidoro C. Glycolysis Inhibition of Autophagy Drives Malignancy in Ovarian Cancer: Exacerbation by IL-6 and Attenuation by Resveratrol. Int J Mol Sci 2023; 24:ijms24021723. [PMID: 36675246 PMCID: PMC9866176 DOI: 10.3390/ijms24021723] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Cancer cells drive the glycolytic process towards the fermentation of pyruvate into lactate even in the presence of oxygen and functioning mitochondria, a phenomenon known as the "Warburg effect". Although not energetically efficient, glycolysis allows the cancer cell to synthesize the metabolites needed for cell duplication. Autophagy, a macromolecular degradation process, limits cell mass accumulation and opposes to cell proliferation as well as to cell migration. Cancer cells corrupt cancer-associated fibroblasts to release pro-inflammatory cytokines, which in turn promote glycolysis and support the metastatic dissemination of cancer cells. In mimicking in vitro this condition, we show that IL-6 promotes ovarian cancer cell migration only in the presence of glycolysis. The nutraceutical resveratrol (RV) counteracts glucose uptake and metabolism, reduces the production of reactive oxygen species consequent to excessive glycolysis, rescues the mitochondrial functional activity, and stimulates autophagy. Consistently, the lack of glucose as well as its metabolically inert analogue 2-deoxy-D-glucose (2-DG), which inhibits hexokinase 2 (HK2), trigger autophagy through mTOR inhibition, and prevents IL-6-induced cell migration. Of clinical relevance, bioinformatic analysis of The Cancer Genome Atlas dataset revealed that ovarian cancer patients bearing mutated TP53 with low expression of glycolytic markers and IL-6 receptor, together with markers of active autophagy, display a longer overall survival and are more responsive to platinum therapy. Taken together, our findings demonstrate that RV can counteract IL-6-promoted ovarian cancer progression by rescuing glycolysis-mediated inhibition of autophagy and support the view that targeting Warburg metabolism can be an effective strategy to limit the risk for cancer metastasis.
Collapse
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Amreen Salwa
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Ji Hee Ha
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Christian Seca
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Beatrice Garavaglia
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
- Correspondence: ; Tel.: +39-0321-660-507; Fax: +39-0321-620-421
| |
Collapse
|
11
|
Zhang W, Zhang R, Chang Z, Wang X. Resveratrol activates CD8+ T cells through IL-18 bystander activation in lung adenocarcinoma. Front Pharmacol 2022; 13:1031438. [PMCID: PMC9630476 DOI: 10.3389/fphar.2022.1031438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Resveratrol, a natural product, has demonstrated anti-tumor effects in various kinds of tumor types, including colon, breast, and pancreatic cancers. Most research has focused on the inhibitory effects of resveratrol on tumor cells themselves rather than resveratrol’s effects on tumor immunology. In this study, we found that resveratrol inhibited the growth of lung adenocarcinoma in a subcutaneous tumor model by using the β-cyclodextrin-resveratrol inclusion complex. After resveratrol treatment, the proportion of M2-like tumor-associated macrophages (TAMs) was reduced and tumor-infiltrating CD8T cells showed significantly increased activation. The results of co-culture and antibody neutralization experiments suggested that macrophage-derived IL-18 may be a key cytokine in the resveratrol anti-tumor effect of CD8T cell activation. The results of this study demonstrate a novel view of the mechanisms of resveratrol tumor suppression. This natural product could reprogram TAMs and CD8T effector cells for tumor treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Emergency and Disaster Medical Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Ruohao Zhang
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zhiguang Chang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Zhiguang Chang, ; Xiaobo Wang,
| | - Xiaobo Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Zhiguang Chang, ; Xiaobo Wang,
| |
Collapse
|