1
|
Malnoë D, Bories M, Pierre‐Jean M, Marchand T, Le Corre P. Inflammation Decreases Ciclosporin Metabolism in Allogeneic Hematopoietic Stem Cell Transplantation Recipients. J Clin Pharmacol 2025; 65:328-339. [PMID: 39382849 PMCID: PMC11867918 DOI: 10.1002/jcph.6141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
Graft-versus-host disease (GVHd) remains a significant challenge following allogeneic hematopoietic stem cell transplantation (HSCT). Prevention of GVHd relies mainly on the use of calcineurin inhibitors, notably ciclosporin that exhibits complex pharmacokinetics influenced by many factors including drug-drug interactions (DDIs). Due to the downregulation of drug metabolizing enzymes and transporters, it has been postulated that inflammation may be a contributing factor to the variability observed in ciclosporin pharmacokinetics. This study aimed to assess the impact of inflammation, as indicated by C-reactive protein (CRP) levels, on the metabolism of ciclosporin in adult allogeneic HSCT recipients. A retrospective observational study was conducted at Rennes University Hospital involving 71 adult HSCT patients. The relationship between the intensity of inflammation (no-to-mild, moderate, and severe), and the metabolism of ciclosporin (estimated by the concentration/dose ratio) was assessed. Severe inflammation significantly decreased the metabolism of ciclosporin, as evidenced by higher concentration/dose ratios. Thanks to the daily dose adjustment, inflammation did not influence the blood levels of ciclosporin. Interestingly, DDIs did not emerge as a significant covariate in influencing ciclosporin metabolism. This is likely because the CYP3A4 inhibitory potential of interacting drugs may be masked in HSCT patients where metabolism is already upstream downregulated by inflammation. The study highlights the intricate relationship between inflammation and ciclosporin pharmacokinetics in HSCT patients. This underscores the necessity for therapeutic monitoring and the potential adjustment of dosage strategies based on the inflammatory status. These insights could contribute to the development of more personalized, optimized, and effective management strategies for HSCT recipients.
Collapse
Affiliation(s)
- David Malnoë
- Centre Hospitalier Universitaire de RennesPôle PharmacieSecteur Pharmacotechnie et Onco‐PharmacieRennesFrance
- Faculté de PharmacieLaboratoire de Biopharmacie et Pharmacie Clinique, Université de RennesRennesFrance
- Inserm, EHESPInstitut de recherche en santé environnement et travail (IRSET) ‐UMR_S 1085, Université RennesRennesFrance
| | - Mathilde Bories
- CHU Rennes, INSERMLTSI‐UMR 1099,Université de RennesRennesFrance
| | | | - Tony Marchand
- Service d'Hématologie CliniqueCHU de Rennes, INSERM U1236, Université de RennesRennesFrance
| | - Pascal Le Corre
- Centre Hospitalier Universitaire de RennesPôle PharmacieSecteur Pharmacotechnie et Onco‐PharmacieRennesFrance
- Faculté de PharmacieLaboratoire de Biopharmacie et Pharmacie Clinique, Université de RennesRennesFrance
- Inserm, EHESPInstitut de recherche en santé environnement et travail (IRSET) ‐UMR_S 1085, Université RennesRennesFrance
| |
Collapse
|
2
|
Belardi R, Pacifici F, Baldetti M, Velocci S, Minieri M, Pieri M, Campione E, Della-Morte D, Tisone G, Anselmo A, Novelli G, Bernardini S, Terrinoni A. Trends in Precision Medicine and Pharmacogenetics as an Adjuvant in Establishing a Correct Immunosuppressive Therapy for Kidney Transplant: An Up-to-Date Historical Overview. Int J Mol Sci 2025; 26:1960. [PMID: 40076585 PMCID: PMC11900248 DOI: 10.3390/ijms26051960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Kidney transplantation is currently the treatment of choice for patients with end-stage kidney diseases. Although significant advancements in kidney transplantation have been achieved over the past decades, the host's immune response remains the primary challenge, often leading to potential graft rejection. Effective management of the immune response is essential to ensure the long-term success of kidney transplantation. To address this issue, immunosuppressives have been developed and are now fully integrated into the clinical management of transplant recipients. However, the considerable inter- and intra-patient variability in pharmacokinetics (PK) and pharmacodynamics (PD) of these drugs represents the primary cause of graft rejection. This variability is primarily attributed to the polymorphic nature (genetic heterogeneity) of genes encoding xenobiotic-metabolizing enzymes, transport proteins, and, in some cases, drug targets. These genetic differences can influence drug metabolism and distribution, leading to either toxicity or reduced efficacy. The main objective of the present review is to report an historical overview of the pharmacogenetics of immunosuppressants, shedding light on the most recent findings and also suggesting how relevant is the research and investment in developing validated NGS-based commercial panels for pharmacogenetic profiling in kidney transplant recipients. These advancements will enable the implementation of precision medicine, optimizing immunosuppressive therapies to improve graft survival and kidney transplanted patient outcomes.
Collapse
Affiliation(s)
- Riccardo Belardi
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Francesca Pacifici
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; (F.P.); (D.D.-M.)
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Matteo Baldetti
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Silvia Velocci
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Marilena Minieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Massimo Pieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Elena Campione
- Dermatology Unit, Policlinico Tor Vergata, System Medicine Department, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - David Della-Morte
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; (F.P.); (D.D.-M.)
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Giuseppe Tisone
- Department of Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.T.)
| | - Alessandro Anselmo
- Department of Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.T.)
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| | - Alessandro Terrinoni
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.B.); (S.V.); (M.M.); (M.P.); (S.B.)
| |
Collapse
|
3
|
Manomaisantiphap S, Boon-Yasidhi P, Tanathitiphuwarat N, Thammanatsakul K, Puwanant S, Ariyachaipanich A, Sinphurmsukskul S, Pachinburavan M, Chariyavilaskul P, Siwamogsatham S, Ongcharit P. Advancement of Heart Transplantation in Thai Recipients: Survival Trends and Pharmacogenetic Insights. Clin Transplant 2025; 39:e70092. [PMID: 39876635 DOI: 10.1111/ctr.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/06/2025] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
Since 1987, King Chulalongkorn Memorial Hospital (KCMH) has performed a substantial number of heart transplants as a specific therapy for advanced-stage heart failure. This descriptive study aimed to analyze post-transplant survival in the recent era compared to earlier periods and examine the pharmacogenetics of related immunosuppressants. Data from all recipients who underwent heart transplants from 1987 to 2021 were retrospectively retrieved from the electronic medical record. The genotypes of relevant pharmacogenes were analyzed in recipients who were alive during the enrollment period. Kaplan-Meier analysis revealed improved overall survival rates in the recent era compared to the past. Dilated cardiomyopathy was identified as the most common pretransplant diagnosis, while infection remained the leading cause of mortality. In conclusion, the findings demonstrate significant advancements in the quality of heart transplantation in Thailand. Future studies are warranted to explore the correlation between pharmacogenetic variations identified in this study and subsequent clinical outcomes, with a focus on genetic-guided treatment to optimize patient care.
Collapse
Affiliation(s)
| | - Pasawat Boon-Yasidhi
- Faculty of Medicine, Department of Pharmacology, Chulalongkorn University, Bangkok, Thailand
| | - Napatsanan Tanathitiphuwarat
- Center of Excellence in Clinical Pharmacokinetics and Pharmacogenomics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kanokwan Thammanatsakul
- Excellence Center for Organ Transplantation, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Sarinya Puwanant
- Excellence Center for Organ Transplantation, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Faculty of Medicine, Division of Cardiovascular Medicine, Department of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cardiac Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Akekarach Ariyachaipanich
- Excellence Center for Organ Transplantation, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Faculty of Medicine, Division of Cardiovascular Medicine, Department of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cardiac Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Supanee Sinphurmsukskul
- Excellence Center for Organ Transplantation, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Cardiac Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Monvasi Pachinburavan
- Faculty of Medicine, Division of Critical Care Medicine, Department of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pajaree Chariyavilaskul
- Faculty of Medicine, Department of Pharmacology, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Clinical Pharmacokinetics and Pharmacogenomics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sarawut Siwamogsatham
- Cardiac Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Maha Chakri Sirindhorn Clinical Research Center (Chula CRC), Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pat Ongcharit
- Excellence Center for Organ Transplantation, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Faculty of Medicine, Division of Cardiothoracic Surgery, Department of Surgery, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Ji Q, Hu Y, Liu M, Liu L, Zheng J, Du Z, Gao L, Xiao P, Ling J, Fan L, Bian X, Lou F, Cao S, Li J, Tian Y, Lu J, Qin J, Hu S. Post-transplant complications revealed by mycophenolate mofetil related transporters and metabolic enzymes gene polymorphisms in pediatric patients with hematological disorders. BMC Cancer 2024; 24:1516. [PMID: 39696070 DOI: 10.1186/s12885-024-13227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Haploidentical hematopoietic stem cell transplantation (Haplo-HSCT) serves as an important option for patients without an HLA matched donor in treating hematological disorders, while patients may experience various complications after transplantation. Mycophenolate mofetil (MMF), a cornerstone drug for graft-versus-host disease (GvHD) prophylaxis, effectively reduces the incidence of acute GvHD, and the efficacy of MMF varies among individuals associated with MMF-related transporters and metabolic enzymes single nucleotide polymorphisms (SNPs). However, limited studies have systematically reported the correlations between the MMF-related SNPs and post-transplant complications. METHODS Here, we conducted a retrospective study involving 90 pediatric patients with hematological disorders who underwent haplo-HSCT at a single center. All patients were subjected to MMF-related SNP testing, combined with common clinical characteristics, to be correlated with post-transplant complications. RESULTS We observed that all 15 MMF-related SNPs were in Hardy-Weinberg equilibrium. Based on multivariate Cox regression analysis of post-transplant complications, we discovered that SLCO1B1 (521T > C) variant genotype was an independent protective factor for chronic GvHD (HR = 0.25, 95% confidence interval (CI) (0.08-0.84)). For viral infection, CYP2C8 (1291 + 106T > C) variant genotype was an independent risk factor for cytomegalovirus infection (HR = 2.98, 95% CI (1.18-7.53)). As to hemorrhagic cystitis, SLCO1B1 (1865 + 4846T > C) variant genotype was an independent protective factor, while older age was considered as an independent risk factor (HR = 0.41, 95% CI (0.19-0.85); HR = 2.52, 95% CI (1.14-5.54), respectively). No statistical significance was discovered between common clinical characteristics and MMF-related SNPs with other complications, including grade II-IV/III-IV acute GvHD, Epstein-Barr virus infection, peri-engraftment syndrome, and capillary leak syndrome. We also discovered SLCO1B1 (597 C > T) and SLC29A1 (-162 + 228 A > C) variant genotypes are both independent factors for cumulative incidence of relapse after haplo-HSCT (HR = 4.02, 95% CI (1.42-11.44); HR = 0.18, 95% CI (0.07-0.43), respectively). CONCLUSIONS Our findings highlight the significance of MMF-related transporters and metabolic enzymes SNPs in the development of post-transplant complications, contributing to facilitating personalized risk assessment and improving the clinical management in haplo-HSCT patients.
Collapse
Affiliation(s)
- Qi Ji
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215002, China
| | - Yixin Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215002, China
| | - Minyuan Liu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215002, China
| | - Lixia Liu
- Department of Medical Affairs, Acornmed Biotechnology Co., Ltd, Floor 18, Block 5, Yard 18, Kechuang 13 RD, Beijing, 100176, China
| | - Jiajia Zheng
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215002, China
| | - Zhizhuo Du
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215002, China
| | - Li Gao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215002, China
| | - Peifang Xiao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215002, China
| | - Jing Ling
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215002, China
| | - Liyan Fan
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215002, China
| | - Xinni Bian
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215002, China
| | - Feng Lou
- Department of Medical Affairs, Acornmed Biotechnology Co., Ltd, Floor 18, Block 5, Yard 18, Kechuang 13 RD, Beijing, 100176, China
| | - Shanbo Cao
- Department of Medical Affairs, Acornmed Biotechnology Co., Ltd, Floor 18, Block 5, Yard 18, Kechuang 13 RD, Beijing, 100176, China
| | - Jie Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215002, China
| | - Yuanyuan Tian
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215002, China
| | - Jun Lu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215002, China.
| | - Jiayue Qin
- Department of Medical Affairs, Acornmed Biotechnology Co., Ltd, Floor 18, Block 5, Yard 18, Kechuang 13 RD, Beijing, 100176, China.
| | - Shaoyan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215002, China.
| |
Collapse
|
5
|
Laaraj S, Tikent A, Chebaibi M, Bouaouda K, Bouhrim M, Sweilam SH, Herqash RN, Shahat AA, Addi M, Elfazazi K. A Study of the Bioactive Compounds, Antioxidant Capabilities, Antibacterial Effectiveness, and Cytotoxic Effects on Breast Cancer Cell Lines Using an Ethanolic Extract from the Aerial Parts of the Indigenous Plant Anabasis aretioïdes Coss. & Moq. Curr Issues Mol Biol 2024; 46:12375-12396. [PMID: 39590329 PMCID: PMC11592469 DOI: 10.3390/cimb46110735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Anabasis aretioïdes contain numerous bioactive compounds that provide several advantages, including antioxidant, antibacterial, anticancer, neuroprotective, anti-inflammatory, and antidiabetic characteristics. This study aimed to make a hydroethanolic extract from the aerial part of the plant, analyze its biochemical compounds, and test its biological activities. From HPLC-DAD analysis, cinnamic acid, sinapic acid, and vanillin bioactives were found to be the main compounds in the extract. The spectrometric tests revealed that the extract was rich in flavonoids (8.52 ± 0.32 mg RE/100 g DW), polyphenols (159.32 ± 0.63 mg GAE/100 g DW), and condensed tannins (8.73 ± 0.23 mg CE/100 g DW). The extract showed significant antioxidant activity. There were strong correlations between the amount of flavonoid or polyphenol and the antioxidant assays, including ABTS, DPPH, β-carotene, and TAC. The extract also showed highly effective results against Gram-positive bacteria Staphylococcus aureus and Enterococcus faecalis as well as against Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and showed promising cytotoxicity against breast cancer cell lines MCF-7 and MDA-MB-231. The in silico modeling of the bioactive compounds contained in the extract illustrated their interaction mode with the active sites of particular target proteins, and it showed that rutin had the strongest effect on stopping NADPH oxidase enzyme, with a glide score of -6.889 Kcal/mol. Sinapic acid inhibited E. coli beta-ketoacyl-[acyl carrier protein] synthase (-7.517 kcal/mol), and apigenin showed high binding affinity to S. aureus nucleoside di-phosphate kinase, with -8.656 kcal/mol. Succinic acid has the strongest anticancer effect for caspase-3, with a glide score of -8.102 kcal/mol. These bioactive components may be beneficial as antioxidant and antibacterial applications in medicine, foods, natural cosmetics, and breast cancer prevention in the future. As a result, the use of this indigenous plant must be considered to maximize its value and preservation.
Collapse
Affiliation(s)
- Salah Laaraj
- Agri-food Technology and Quality Laboratory, Regional Centre of Agricultural Research of Tadla, National Institute of Agricultural Research (INRA), Avenue Ennasr, Bp 415 Rabat Principal, Rabat 10090, Morocco;
- Environmental, Ecological, and Agro-Industrial Engineering Laboratory, LGEEAI, Faculty of Science and Technology (FST), Sultan Moulay Slimane University (USMS), Beni Mellal 23000, Morocco
| | - Aziz Tikent
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie & Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Bp 717, Oujda 60000, Morocco;
| | - Mohamed Chebaibi
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez 30000, Morocco;
| | - Khawla Bouaouda
- Faculty of Science Ben M’sik, Laboratory of Biology and Health, University Hassan II of Casablanca, Casablanca 20650, Morocco;
| | - Mohamed Bouhrim
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco;
- Laboratoires TBC, Laboratory of Pharmacology, Pharmacokinetics, and Clinical Pharmacy, Faculty of Pharmaceutical and Biological Sciences, University of Lille, 3, rue du Professeur Laguesse, B.P. 83, F-59000 Lille, France
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Cairo 11829, Egypt;
| | - Rashed N. Herqash
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.N.H.); (A.A.S.)
| | - Abdelaaty A. Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.N.H.); (A.A.S.)
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie & Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Bp 717, Oujda 60000, Morocco;
| | - Kaoutar Elfazazi
- Agri-food Technology and Quality Laboratory, Regional Centre of Agricultural Research of Tadla, National Institute of Agricultural Research (INRA), Avenue Ennasr, Bp 415 Rabat Principal, Rabat 10090, Morocco;
| |
Collapse
|
6
|
Assaggaf H, El Hachlafi N, Elbouzidi A, Taibi M, Alnasser SM, Bendaif H, Aalilou Y, Qasem A, Attar A, Bouyahya A, Ardianto C, Ming LC, Goh KW, Fikri-Benbrahim K, Mrabti HN. Exploring the antidiabetic and anti-inflammatory potential of Lavandula officinalis essential oil: In vitro and in silico insights. Heliyon 2024; 10:e34135. [PMID: 39170293 PMCID: PMC11336354 DOI: 10.1016/j.heliyon.2024.e34135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/29/2024] [Accepted: 07/03/2024] [Indexed: 08/23/2024] Open
Abstract
Medicinal plants have been utilized for centuries in traditional medicine systems worldwide, providing a rich source of bioactive compounds with diverse biological activities. Lavandula officinalis, a member of the Lamiaceae family, has been recognized for its multifaceted pharmacological activities. In this current investigation, our primary objective was to scrutinize the in vitro inhibitory potential of L. officinalis essential oil (LOEO) against alpha-amylase and alpha-glucosidase, with the aim of understanding its antidiabetic effects. Additionally, the assay encompassed tyrosinase and lipoxygenase (LOX) to assess its anti-inflammatory attributes. Unraveling the underlying molecular mechanisms of these activities prompted an in-silico study. The purpose was to establish correlations between in-vitro observations and computational insights derived from molecular docking, which forecasts the interaction of LOEO molecules with their respective targets, alongside ADMET prediction. The Gas Chromatography-Mass Spectrometry (GC-MS) analysis allow to identify eighteen compounds, with the dominance of L-camphor (43.12 %), 1,8-cineole (34.27 %) and borneol (8.60 %) in LOEO. The antidiabetic evaluation revealed that LOEO exhibited noteworthy inhibitory activity against both α-amylase and α-glucosidase, displaying IC50 values of 3.14 ± 0.05 mg/mL and 2.07 ± 0.03 mg/mL, respectively. The subsequent in-silico study highlighted the particularly strong binding affinity of (E)-Farnesene, with a binding score of -7.4 kcal/mol for alpha-glucosidase, while Germacrene D displayed the highest affinity among the ligands (-7.9 kcal/mol) for the alpha-amylase target. Furthermore, the investigation into in vitro anti-inflammatory activity unveiled LOEO efficacy against tyrosinase (IC50 = 42.74 μg/mL) and LOX (IC50 = 11.58 ± 0.07 μg/mL). The in-silico analysis echoed these findings, indicating α-Cadinene's notable binding affinity of 6 kcal/mol with tyrosinase and α-Cedrene's binding score of -6.5 kcal/mol for LOX. Impressively, for both COX-1 and COX-2, α-Cedrene exhibited significant binding affinities of -7.6 and -7.3 kcal/mol, respectively. The convergence between the in vitro and in silico outcomes underscores the potential of LOEO and its constituent compounds as potent inhibitors targeting both diabetes and the inflammatory processes.
Collapse
Affiliation(s)
- Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Naoufal El Hachlafi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
- Laboratories of Pharmacology and Toxicology, Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Morocco des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
| | - Mohamed Taibi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Morocco des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda, 60000, Morocco
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Hajar Bendaif
- Laboratoire des Ressources Naturelles et Environnement, Faculté Polydisciplinaire de Taza, Morocco
| | - Youssra Aalilou
- Laboratories of Pharmacology and Toxicology, Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Ahmed Qasem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ammar Attar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
- School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, BE1410, Brunei Darussalam
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Kawtar Fikri-Benbrahim
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Hanae Naceiri Mrabti
- High Institute of Nursing Professions and Health Techniques Casablanca, Casablanca, 20250, Morocco
- Euromed Research Center, Euromed Faculty of Pharmacy, School of Engineering and Biotechnology, Euromed University of Fes (UEMF), Meknes Road, Fez, 30000, Morocco
| |
Collapse
|
7
|
Assaggaf H, El Hachlafi N, Elbouzidi A, Taibi M, Benkhaira N, El Kamari F, Alnasseri SM, Laaboudi W, Bouyahya A, Ardianto C, Goh KW, Ming LC, Mrabti HN. Unlocking the combined action of Mentha pulegium L. essential oil and Thym honey: In vitro pharmacological activities, molecular docking, and in vivo anti-inflammatory effect. Heliyon 2024; 10:e31922. [PMID: 38947443 PMCID: PMC11214453 DOI: 10.1016/j.heliyon.2024.e31922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Mentha pulegium L., a plant widely embraced for its therapeutic properties by populations worldwide, including Morocco, has long been recognized for its potential in treating various ailments. This study aims to comprehensively evaluate the antioxidant, anti-inflammatory, and dermatoprotective properties of essential oil derived from M. pulegium, and thyme honey as well as their combined effects. To unravel the chemical composition, a rigorous GC-MS analysis was conducted. Subsequently, we examined their antioxidant potential through three distinct assays: DPPH●, hydrogen peroxide assay, and xanthine oxidase assay. The anti-inflammatory properties were scrutinized through both in vitro and in vivo experiments. Simultaneously, the dermatoprotective efficacy was investigated in vitro by evaluating tyrosinase inhibition. Our findings revealed that pulegone constitutes the predominant compound in M. pulegium essential oil (MPEO), constituting a remarkable 74.82 % of the composition. Significantly, when the essential oil was combined with thym honey, it exhibited superior anti-inflammatory and dermatoprotective effects across all in vivo and in vitro tests. Moreover, our in silico molecular docking analysis hinted at the potential role of cyclohexanone, 3-methyl, an element found in the MPEO, in contributing to the observed outcomes. While this study has unveiled promising results regarding the combined in vitro, in vivo and in silico biological activities of the essential oil and honey, it is imperative to delve further into the underlying mechanisms through additional experimentation and alternative experimental methods. Understanding these mechanisms in greater detail will not only enhance our comprehension of the therapeutic potential but also pave the way for the development of innovative treatments and applications rooted in the synergy of these natural compounds. Furthermore, it would be advantageous to test different possible combinations using experimental design model. Moreover, it would be better to test the effect of single compounds of MPEO to clearly elucidate their efficiency. MPEO alone or combined with thyme honey may be a useful for the development of novel biopharmaceuticals.
Collapse
Affiliation(s)
- Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Naoufal El Hachlafi
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat BP 6203, Morocco
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Oujda, 60000, Morocco des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
| | - Mohamed Taibi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Oujda, 60000, Morocco des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda, 60000, Morocco
| | - Nesrine Benkhaira
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Fatima El Kamari
- Laboratoire d’Ingénierie des Matériaux Organométalliques, Moléculaires et Environnement, Sidi Mohamed Ben Abdellah University, Fez, B.P. 1796, Morocco
| | - Sulaiman Mohammed Alnasseri
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Wafa Laaboudi
- High Institute of Nursing Professions and Health Techniques Fez, Fez, 30050, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115, Surabaya, Indonesia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115, Surabaya, Indonesia
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Hanae Naceiri Mrabti
- High Institute of Nursing Professions and Health Techniques Casablanca, Casablanca, 20250, Morocco
- Euromed Research Center, Euromed Faculty of Pharmacy and School of Engineering and Biotechnology, Euromed University of Fes(UEMF), Meknes Road, 30000, Fez, Morocco
| |
Collapse
|
8
|
Yow HY, Ikawati M, Siswanto S, Hermawan A, Rahmat AK, Tan JSL, Tee YC, Ng KP, Ikawati Z. Influence of genetic polymorphisms on pharmacokinetics and treatment response of mycophenolic acid: a scoping review. Pharmacogenomics 2024; 25:259-288. [PMID: 38884938 PMCID: PMC11388138 DOI: 10.1080/14622416.2024.2344430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
This scoping review explores the impact of genetic polymorphisms on the pharmacokinetics and treatment responses of mycophenolic acid (MPA), an immunosuppressant. The study includes 83 articles from 1226 original studies, focusing on transplantation (n = 80) and autoimmune disorders (n = 3). Genetic variants in uridine 5'-diphospho-glucuronosyltransferase (UGT1A9, UGT1A8 and UGT2B7) and transmembrane transporters (ABCC2, SLCO1B1, SLCO1B3 and ABCB1) significantly affected MPA's pharmacokinetics and susceptibility to its adverse effect. Whereas variants in several genes including UGT1A9, UGT2B7, IMPDH1 and IMPDH2 have been associated with a higher risk of transplant rejection. However, there is a lack of studies on MPA's impact on autoimmune disorders and limited research on the Asian population. The findings underscore the need for further research on MPA's impact across different populations and diseases, particularly among other Asian ethnic groups, to advance personalized medicine in MPA therapy.
Collapse
Affiliation(s)
- Hui-Yin Yow
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Muthi Ikawati
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Soni Siswanto
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Adam Hermawan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
- Advanced Pharmaceutical Sciences Laboratory, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Alim Khodimul Rahmat
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Janet Sui-Ling Tan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Ying-Chew Tee
- Rheumatology Unit, Department of Medicine, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kok-Peng Ng
- Nephrology Unit, Department of Medicine, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Zullies Ikawati
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| |
Collapse
|
9
|
Yuan J, Fei S, Gui Z, Wang Z, Chen H, Sun L, Tao J, Han Z, Ju X, Tan R, Gu M, Huang Z. Association of UGT1A Gene Polymorphisms with BKV Infection in Renal Transplantation Recipients. Curr Drug Metab 2024; 25:188-196. [PMID: 38509677 DOI: 10.2174/0113892002282727240307072255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND BK virus (BKV) infection is an opportunistic infectious complication and constitutes a risk factor for premature graft failure in kidney transplantation. Our research aimed to identify associations and assess the impact of single-nucleotide polymorphisms (SNPs) on metabolism-related genes in patients who have undergone kidney transplantation with BKV infection. MATERIAL/METHODS The DNA samples of 200 eligible kidney transplant recipients from our center, meeting the inclusion criteria, have been collected and extracted. Next-generation sequencing was used to genotype SNPs on metabolism-associated genes (CYP3A4/5/7, UGT1A4/7/8/9, UGT2B7). A general linear model (GLM) was used to identify and eliminate confounding factors that may influence the outcome events. Multiple inheritance models and haplotype analyses were utilized to identify variation loci associated with infection caused by BKV and ascertain haplotypes, respectively. RESULTS A total of 141 SNPs located on metabolism-related genes were identified. After Hardy-Weinberg equilibrium (HWE) and minor allele frequency (MAF) analysis, 21 tagger SNPs were selected for further association analysis. Based on GLM results, no confounding factor was significant in predicting the incidence of BK polyomavirus-associated infection. Then, multiple inheritance model analyses revealed that the risk of BKV infection was significantly associated with rs3732218 and rs4556969. Finally, we detect significant associations between haplotype T-A-C of block 2 (rs4556969, rs3732218, rs12468274) and infection caused by BKV (P = 0.0004). CONCLUSION We found that genetic variants in the UGT1A gene confer BKV infection susceptibility after kidney transplantation.
Collapse
Affiliation(s)
- Jingwen Yuan
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Shuang Fei
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Zeping Gui
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Hao Chen
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Li Sun
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Jun Tao
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Zhijian Han
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Xiaobing Ju
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Min Gu
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
- Department of Urology, The Second Affiliated Hospital with Nanjing Medical University, Nanjing, 210011, China
| | - Zhengkai Huang
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
10
|
Hammouti Y, Elbouzidi A, Taibi M, Bellaouchi R, Loukili EH, Bouhrim M, Noman OM, Mothana RA, Ibrahim MN, Asehraou A, El Guerrouj B, Addi M. Screening of Phytochemical, Antimicrobial, and Antioxidant Properties of Juncus acutus from Northeastern Morocco. Life (Basel) 2023; 13:2135. [PMID: 38004275 PMCID: PMC10672446 DOI: 10.3390/life13112135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Juncus acutus, acknowledged through its indigenous nomenclature "samar", is part of the Juncaceae taxonomic lineage, bearing considerable import as a botanical reservoir harboring conceivable therapeutic attributes. Its historical precedence in traditional curative methodologies for the alleviation of infections and inflammatory conditions is notable. In the purview of Eastern traditional medicine, Juncus species seeds find application for their remedial efficacy in addressing diarrhea, while the botanical fruits are subjected to infusion processes targeting the attenuation of symptoms associated with cold manifestations. The primary objective of this study was to unravel the phytochemical composition of distinct constituents within J. acutus, specifically leaves (JALE) and roots (JARE), originating from the indigenous expanse of the Nador region in northeastern Morocco. The extraction of plant constituents was executed utilizing an ethanol-based extraction protocol. The subsequent elucidation of chemical constituents embedded within the extracts was accomplished employing analytical techniques based on high-performance liquid chromatography (HPLC). For the purpose of in vitro antioxidant evaluation, a dual approach was adopted, encompassing the radical scavenging technique employing 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the total antioxidant capacity (TAC) assay. The acquired empirical data showcase substantial radical scavenging efficacy and pronounced relative antioxidant activity. Specifically, the DPPH and TAC methods yielded values of 483.45 ± 4.07 µg/mL and 54.59 ± 2.44 µg of ascorbic acid (AA)/mL, respectively, for the leaf extracts. Correspondingly, the root extracts demonstrated values of 297.03 ± 43.3 µg/mL and 65.615 ± 0.54 µg of AA/mL for the DPPH and TAC methods. In the realm of antimicrobial evaluation, the assessment of effects was undertaken through the agar well diffusion technique. The minimum inhibitory concentration, minimum bactericidal concentration, and minimum fungicidal concentration were determined for each extract. The inhibitory influence of the ethanol extracts was observed across bacterial strains including Staphylococcus aureus, Micrococcus luteus, and Pseudomonas aeruginosa, with the notable exception of Escherichia coli. However, fungal strains such as Candida glabrata and Rhodotorula glutinis exhibited comparatively lower resistance, whereas Aspergillus niger and Penicillium digitatum exhibited heightened resistance, evincing negligible antifungal activity. An anticipatory computational assessment of pharmacokinetic parameters was conducted, complemented by the application of the Pro-tox II web tool to delineate the potential toxicity profile of compounds intrinsic to the studied extracts. The culmination of these endeavors underpins the conceivable prospects of the investigated extracts as promising candidates for oral medicinal applications.
Collapse
Affiliation(s)
- Yousra Hammouti
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (Y.H.); (A.E.); (M.T.); (B.E.G.)
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (Y.H.); (A.E.); (M.T.); (B.E.G.)
| | - Mohamed Taibi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (Y.H.); (A.E.); (M.T.); (B.E.G.)
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco;
| | - Reda Bellaouchi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco; (R.B.); (A.A.)
| | - El Hassania Loukili
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco;
| | - Mohamed Bouhrim
- Laboratories TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, 59000 Lille, France;
- Laboratory of Biological Engineering, Team of Functional and Pathological Biology, Faculty of Sciences and Technology, University Sultan Moulay Slimane, Beni Mellal 23000, Morocco
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (O.M.N.); (R.A.M.)
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (O.M.N.); (R.A.M.)
| | - Mansour N. Ibrahim
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco; (R.B.); (A.A.)
| | - Bouchra El Guerrouj
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (Y.H.); (A.E.); (M.T.); (B.E.G.)
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco;
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (Y.H.); (A.E.); (M.T.); (B.E.G.)
| |
Collapse
|
11
|
Gambari R, Zuccato C, Cosenza LC, Zurlo M, Gasparello J, Finotti A, Gamberini MR, Prosdocimi M. The Long Scientific Journey of Sirolimus (Rapamycin): From the Soil of Easter Island (Rapa Nui) to Applied Research and Clinical Trials on β-Thalassemia and Other Hemoglobinopathies. BIOLOGY 2023; 12:1202. [PMID: 37759601 PMCID: PMC10525103 DOI: 10.3390/biology12091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
In this review article, we present the fascinating story of rapamycin (sirolimus), a drug able to induce γ-globin gene expression and increased production of fetal hemoglobin (HbF) in erythroid cells, including primary erythroid precursor cells (ErPCs) isolated from β-thalassemia patients. For this reason, rapamycin is considered of great interest for the treatment of β-thalassemia. In fact, high levels of HbF are known to be highly beneficial for β-thalassemia patients. The story of rapamycin discovery began in 1964, with METEI, the Medical Expedition to Easter Island (Rapa Nui). During this expedition, samples of the soil from different parts of the island were collected and, from this material, an antibiotic-producing microorganism (Streptomyces hygroscopicus) was identified. Rapamycin was extracted from the mycelium with organic solvents, isolated, and demonstrated to be very active as an anti-bacterial and anti-fungal agent. Later, rapamycin was demonstrated to inhibit the in vitro cell growth of tumor cell lines. More importantly, rapamycin was found to be an immunosuppressive agent applicable to prevent kidney rejection after transplantation. More recently, rapamycin was found to be a potent inducer of HbF both in vitro using ErPCs isolated from β-thalassemia patients, in vivo using experimental mice, and in patients treated with this compound. These studies were the basis for proposing clinical trials on β-thalassemia patients.
Collapse
Affiliation(s)
- Roberto Gambari
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.Z.); (M.R.G.)
| | - Cristina Zuccato
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.Z.); (M.R.G.)
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (L.C.C.); (M.Z.); (J.G.)
| | - Matteo Zurlo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (L.C.C.); (M.Z.); (J.G.)
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (L.C.C.); (M.Z.); (J.G.)
| | - Alessia Finotti
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.Z.); (M.R.G.)
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (L.C.C.); (M.Z.); (J.G.)
| | - Maria Rita Gamberini
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.Z.); (M.R.G.)
| | | |
Collapse
|
12
|
Turolo S, Edefonti A, Syren ML, Montini G. Pharmacogenomics of Old and New Immunosuppressive Drugs for Precision Medicine in Kidney Transplantation. J Clin Med 2023; 12:4454. [PMID: 37445489 DOI: 10.3390/jcm12134454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Kidney transplantation is the preferred therapeutic option for end-stage kidney disease, but, despite major therapeutic advancements, allograft rejection continues to endanger graft survival. Every patient is unique due to his or her clinical history, drug metabolism, genetic background, and epigenetics. For this reason, examples of "personalized medicine" and "precision medicine" have steadily increased in recent decades. The final target of precision medicine is to maximize drug efficacy and minimize toxicity for each individual patient. Immunosuppressive drugs, in the setting of kidney transplantation, require a precise dosage to avoid either adverse events (overdosage) or a lack of efficacy (underdosage). In this review, we will explore the knowledge regarding the pharmacogenomics of the main immunosuppressive medications currently utilized in kidney transplantation. We will focus on clinically relevant pharmacogenomic data, that is, the polymorphisms of the genes that metabolize immunosuppressive drugs.
Collapse
Affiliation(s)
- Stefano Turolo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, 20122 Milan, Italy
| | - Alberto Edefonti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, 20122 Milan, Italy
| | - Marie Luise Syren
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Giovanni Montini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
13
|
Elbouzidi A, Taibi M, Ouassou H, Ouahhoud S, Ou-Yahia D, Loukili EH, Aherkou M, Mansouri F, Bencheikh N, Laaraj S, Bellaouchi R, Saalaoui E, Elfazazi K, Berrichi A, Abid M, Addi M. Exploring the Multi-Faceted Potential of Carob ( Ceratonia siliqua var. Rahma) Leaves from Morocco: A Comprehensive Analysis of Polyphenols Profile, Antimicrobial Activity, Cytotoxicity against Breast Cancer Cell Lines, and Genotoxicity. Pharmaceuticals (Basel) 2023; 16:840. [PMID: 37375787 DOI: 10.3390/ph16060840] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The botanical species Ceratonia siliqua L., commonly referred to as the Carob tree, and locally as "L'Kharrûb", holds significance as an agro-sylvo-pastoral species, and is traditionally utilized in Morocco for treating a variety of ailments. This current investigation aims to ascertain the antioxidant, antimicrobial, and cytotoxic properties of the ethanolic extract of C. siliqua leaves (CSEE). Initially, we analyzed the chemical composition of CSEE through high-performance liquid chromatography with Diode-Array Detection (HPLC-DAD). Subsequently, we conducted various assessments, including DPPH scavenging capacity, β-carotene bleaching assay, ABTS scavenging, and total antioxidant capacity assays to evaluate the antioxidant activity of the extract. In this study, we investigated the antimicrobial properties of CSEE against five bacterial strains (two gram-positive, Staphylococcus aureus, and Enterococcus faecalis; and three gram-negative bacteria, Escherichia coli, Escherichia vekanda, and Pseudomonas aeruginosa) and two fungi (Candida albicans, and Geotrichum candidum). Additionally, we evaluated the cytotoxicity of CSEE on three human breast cancer cell lines (MCF-7, MDA-MB-231, and MDA-MB-436) and assessed the potential genotoxicity of the extract using the comet assay. Through HPLC-DAD analysis, we determined that phenolic acids and flavonoids were the primary constituents of the CSEE extract. The results of the DPPH test indicated a potent scavenging capacity of the extract with an IC50 of 302.78 ± 7.55 µg/mL, which was comparable to that of ascorbic acid with an IC50 of 260.24 ± 6.45 µg/mL. Similarly, the β-carotene test demonstrated an IC50 of 352.06 ± 12.16 µg/mL, signifying the extract's potential to inhibit oxidative damage. The ABTS assay revealed IC50 values of 48.13 ± 3.66 TE µmol/mL, indicating a strong ability of CSEE to scavenge ABTS radicals, and the TAC assay demonstrated an IC50 value of 165 ± 7.66 µg AAE/mg. The results suggest that the CSEE extract had potent antioxidant activity. Regarding its antimicrobial activity, the CSEE extract was effective against all five tested bacterial strains, indicating its broad-spectrum antibacterial properties. However, it only showed moderate activity against the two tested fungal strains, suggesting it may not be as effective against fungi. The CSEE exhibited a noteworthy dose-dependent inhibitory activity against all the tested tumor cell lines in vitro. The extract did not induce DNA damage at the concentrations of 6.25, 12.5, 25, and 50 µg/mL, as assessed by the comet assay. However, the 100 µg/mL concentration of CSEE resulted in a significant genotoxic effect compared to the negative control. A computational analysis was conducted to determine the physicochemical and pharmacokinetic characteristics of the constituent molecules present in the extract. The Prediction of Activity Spectra of Substances (PASS) test was employed to forecast the potential biological activities of these molecules. Additionally, the toxicity of the molecules was evaluated using the Protox II webserver.
Collapse
Affiliation(s)
- Amine Elbouzidi
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| | - Mohamed Taibi
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
- Centre de l'Oriental des Sciences et Technologies de l'Eau et de l'Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco
| | - Hayat Ouassou
- Higher Institute of Nursing Professions and Health Techniques, Oujda 60000, Morocco
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, Oujda 60000, Morocco
| | - Sabir Ouahhoud
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, Oujda 60000, Morocco
| | - Douâae Ou-Yahia
- Centre de l'Oriental des Sciences et Technologies de l'Eau et de l'Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco
| | - El Hassania Loukili
- Centre de l'Oriental des Sciences et Technologies de l'Eau et de l'Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco
| | - Marouane Aherkou
- Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical and Pharmacy School, Mohammed Vth University, N.U, Rabat B.P 8007, Morocco
- Centre Mohammed VI For Research and Innovation (CM6), Madinat Al Irfane, Rabat B.P 6212, Morocco
| | - Farid Mansouri
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| | - Noureddine Bencheikh
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, Oujda 60000, Morocco
| | - Salah Laaraj
- Regional Center of Agricultural Research of Tadla, National Institute of Agricultural Research (INRA), Avenue Ennasr, Rabat Principal, Rabat 10090, Morocco
| | - Reda Bellaouchi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, Oujda 60000, Morocco
| | - Ennouamane Saalaoui
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, Oujda 60000, Morocco
| | - Kaoutar Elfazazi
- Regional Center of Agricultural Research of Tadla, National Institute of Agricultural Research (INRA), Avenue Ennasr, Rabat Principal, Rabat 10090, Morocco
| | - Abdelbasset Berrichi
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| | - Malika Abid
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| | - Mohamed Addi
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| |
Collapse
|
14
|
Figueroa SM, Bertocchio JP, Nakamura T, El-Moghrabi S, Jaisser F, Amador CA. The Mineralocorticoid Receptor on Smooth Muscle Cells Promotes Tacrolimus-Induced Renal Injury in Mice. Pharmaceutics 2023; 15:pharmaceutics15051373. [PMID: 37242615 DOI: 10.3390/pharmaceutics15051373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Tacrolimus (Tac) is a calcineurin inhibitor commonly used as an immunosuppressor after solid organ transplantation. However, Tac may induce hypertension, nephrotoxicity, and an increase in aldosterone levels. The activation of the mineralocorticoid receptor (MR) is related to the proinflammatory status at the renal level. It modulates the vasoactive response as they are expressed on vascular smooth muscle cells (SMC). In this study, we investigated whether MR is involved in the renal damage generated by Tac and if the MR expressed in SMC is involved. Littermate control mice and mice with targeted deletion of the MR in SMC (SMC-MR-KO) were administered Tac (10 mg/Kg/d) for 10 days. Tac increased the blood pressure, plasma creatinine, expression of the renal induction of the interleukin (IL)-6 mRNA, and expression of neutrophil gelatinase-associated lipocalin (NGAL) protein, a marker of tubular damage (p < 0.05). Our study revealed that co-administration of spironolactone, an MR antagonist, or the absence of MR in SMC-MR-KO mice mitigated most of the unwanted effects of Tac. These results enhance our understanding of the involvement of MR in SMC during the adverse reactions of Tac treatment. Our findings provided an opportunity to design future studies considering the MR antagonism in transplanted subjects.
Collapse
Affiliation(s)
- Stefanny M Figueroa
- Institute of Biomedical Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Jean-Philippe Bertocchio
- INSERM UMRS1138, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Toshifumi Nakamura
- INSERM UMRS1138, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Soumaya El-Moghrabi
- INSERM UMRS1138, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Frédéric Jaisser
- INSERM UMRS1138, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Cristián A Amador
- Faculty of Medicine and Science, Universidad San Sebastián, Santiago 7510156, Chile
| |
Collapse
|
15
|
Devanathan R, Alladi CG, Ravichandran M, Ramasamy K, Uppugunduri CRS. Impact of pharmacogenomics in achieving personalized/precision medicine in the clinical setting: a symposium report. Pharmacogenomics 2023; 24:123-129. [PMID: 36786192 DOI: 10.2217/pgs-2022-0194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
The Indo-Swiss symposium on pharmacogenomic strategies for the implementation of personalized medicine was conducted as part of the Jawaharlal Institute of Postgraduate Medical Education and Research Integrated Pharmacogenomics Program in Puducherry, India, on 19 November 2022. The symposium was conducted in hybrid mode. The theme of symposium was the impact of pharmacogenomics on the achievement of personalized medicine/precision medicine in the clinical setting. The symposium sought to promote interaction among the participants to initiate future collaborative research projects. The symposium also served as a platform for young researchers to present their research findings as posters to the audience.
Collapse
Affiliation(s)
- Reka Devanathan
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, 605006, India
| | - Charanraj Goud Alladi
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, 605006, India
| | - Mirunalini Ravichandran
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, 605006, India
| | - Kesavan Ramasamy
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, 605006, India
| | - Chakradhara Rao S Uppugunduri
- CANSEARCH Research Platform in Pediatric Oncology & Hematology, Department of Pediatrics, Gynecology & Obstetrics, Faculty of Medicine, University of Geneva, Geneva 4, Switzerland
| |
Collapse
|
16
|
LC-MS/MS Phytochemical Profiling, Antioxidant Activity, and Cytotoxicity of the Ethanolic Extract of Atriplex halimus L. against Breast Cancer Cell Lines: Computational Studies and Experimental Validation. Pharmaceuticals (Basel) 2022; 15:ph15091156. [PMID: 36145377 PMCID: PMC9503641 DOI: 10.3390/ph15091156] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Atriplex halimus L., also known as Mediterranean saltbush, and locally as "Lgtef", an halophytic shrub, is used extensively to treat a wide variety of ailments in Morocco. The present study was undertaken to determine the antioxidant activity and cytotoxicity of the ethanolic extract of A. halimus leaves (AHEE). We first determined the phytochemical composition of AHEE using a liquid chromatography (LC)-tandem mass spectrometry (MS/MS) technique. The antioxidant activity was evaluated using different methods including DPPH scavenging capacity, β-carotene bleaching assay, ABTS scavenging, iron chelation, and the total antioxidant capacity assays. Cytotoxicity was investigated against human cancer breast cells lines MCF-7 and MDA-MB-231. The results showed that the components of the extract are composed of phenolic acids and flavonoids. The DPPH test showed strong scavenging capacity for the leaf extract (IC50 of 0.36 ± 0.05 mg/mL) in comparison to ascorbic acid (IC50 of 0.19 ± 0.02 mg/mL). The β-carotene test determined an IC50 of 2.91 ± 0.14 mg/mL. The IC50 values of ABTS, iron chelation, and TAC tests were 44.10 ± 2.92 TE µmol/mL, 27.40 ± 1.46 mg/mL, and 124 ± 1.27 µg AAE/mg, respectively. In vitro, the AHE extract showed significant inhibitory activity in all tested tumor cell lines, and the inhibition activity was found in a dose-dependent manner. Furthermore, computational techniques such as molecular docking and ADMET analysis were used in this work. Moreover, the physicochemical parameters related to the compounds' pharmacokinetic indicators were evaluated, including absorption, distribution, metabolism, excretion, and toxicity prediction (Pro-Tox II).
Collapse
|