1
|
Zhang H, Shi L, Tian N, Zhu M, Liu C, Hou T, Du Y. Association of the atherogenic index of plasma with cognitive function and oxidative stress: A population-based study. J Alzheimers Dis 2025:13872877251334826. [PMID: 40336259 DOI: 10.1177/13872877251334826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
BackgroundAtherosclerosis contributes to cognitive dysfunction and Alzheimer's disease-related pathologies. Atherogenic index of plasma (AIP) is a novel and composite biomarker can predict atherosclerosis.ObjectiveThis study aims to (1) examine the association between the AIP and cognitive performance, and (2) explore the mediating role of oxidative stress biomarkers in this relationship.Methods1466 participants over the age of 60 were included from 2011-2014 NHANES. AIP was calculated through log-transformed triglyceride to high-density lipoprotein cholesterol ratios. The assessment of cognition was conducted using the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) test. Weighted linear regression model and restricted cubic spline were carried out to determine the associations between AIP and CERAD scores. The mediation analyses were conducted to assess whether oxidative stress mediates the association.ResultsHigher AIP levels were associated with lower CERAD learning scores. The highest quartile of AIP showed a 0.67-fold decrease (95%CI: -1.30, -0.03; p = 0.041) on the CERAD total score than that in the lowest quartile. Each 1-unit increase in AIP corresponded to reductions in CERAD total and delayed recall scores of approximately 1.09 and 0.54 points, respectively, in the sub-population under 70 years. Moreover, 25(OH)D, an oxidative stress indicator, partially mediated 24% of the association between AIP and the CERAD total score.ConclusionsAIP has the potential to indicate the risk of cognitive aging, especially that for young-old or female older adults. The supplementation of 25(OH)D may reduce atherosclerosis-related cognitive decline, which could provide some strategies for the prevention of dementia.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Shandong Provincial Clinical Research Centre for Neurological Diseases, Jinan, Shandong, P.R. China
| | - Lin Shi
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Na Tian
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Shandong Provincial Clinical Research Centre for Neurological Diseases, Jinan, Shandong, P.R. China
| | - Min Zhu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Shandong Provincial Clinical Research Centre for Neurological Diseases, Jinan, Shandong, P.R. China
| | - Cuicui Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Shandong Provincial Clinical Research Centre for Neurological Diseases, Jinan, Shandong, P.R. China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Shandong Provincial Clinical Research Centre for Neurological Diseases, Jinan, Shandong, P.R. China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Shandong Provincial Clinical Research Centre for Neurological Diseases, Jinan, Shandong, P.R. China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China
- Institute of Brain Science and Brain-Inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| |
Collapse
|
2
|
Mason S. Say hello to my little friend… micronutraceuticals in neuroenergetics, neuronal health, and neurodegenerative diseases. Front Neurosci 2025; 19:1498655. [PMID: 40336537 PMCID: PMC12055844 DOI: 10.3389/fnins.2025.1498655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/01/2025] [Indexed: 05/09/2025] Open
Abstract
Vitamins and minerals (micronutraceuticals) maintain good health. However, the specific effects of these micronutraceuticals on brain health are often overlooked, or not even known. In this review, an overview of the direct and indirect effects of micronutraceuticals on brain energy metabolism (neuroenergetics) and neuronal health is provided. Thereafter, a holistic summary of the existing studies that have shown the impact of micronutraceuticals on neurodegenerative diseases. Lastly, this review concludes by identifying several research gaps that remain and provides suggestions for future research on these hot topics.
Collapse
Affiliation(s)
- Shayne Mason
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
3
|
Firoozi A, Shadi M, Rezagholizadeh A. The role of low-level laser therapy in Alzheimer's disease: a review of the potential benefits of vitamin D enhancement. Lasers Med Sci 2025; 40:159. [PMID: 40131549 DOI: 10.1007/s10103-025-04407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 03/12/2025] [Indexed: 03/27/2025]
Abstract
As the global population ages, neurodegenerative diseases, particularly Alzheimer's disease (AD), have become a major public health concern. AD is the most prevalent neurodegenerative disorder, accounting for 60-80% of cases, and is characterized by progressive cognitive and memory decline due to neuronal loss. Current pharmacological treatments primarily offer symptomatic relief rather than a cure. Recent research has highlighted the role of vitamin D in neuroprotection, owing to its antioxidant, anti-inflammatory, and neuroprotective properties, as well as its ability to maintain blood-brain barrier integrity and regulate amyloid-beta (Aβ) clearance. Another emerging noninvasive therapeutic approach is Low-Level Laser Therapy (LLLT), a form of photobiomodulation (PBM) that has been shown to enhance neuronal function, reduce oxidative stress, inflammation, and Aβ deposition, and potentially increase vitamin D levels. This review examines the interplay between LLLT, vitamin D, and oxidative stress in AD pathophysiology. Findings suggest that LLLT can stimulate mitochondrial function, enhance synaptic plasticity, and improve cognitive performance in preclinical and clinical studies. Furthermore, LLLT has been reported to modulate immune responses, promote neurogenesis, and facilitate vitamin D synthesis by activating cytochrome c oxidase (CCO), which plays a crucial role in mitochondrial energy production. However, while promising, further in vivo and clinical trials are required to optimize treatment protocols and establish standardized guidelines for LLLT application, particularly in enhancing vitamin D levels, in AD patients. CLINICAL TRIAL NUMBER: Not applicable.
Collapse
Affiliation(s)
- Amin Firoozi
- Larestan University of Medical Sciences, Larestan, Iran, Islamic Republic of
| | - Mehri Shadi
- Birjand University of Medical Sciences, Birjand, Iran, Islamic Republic of
| | | |
Collapse
|
4
|
Akinrinde AS, Adeoye BO, Samuel ES, Mustapha OA. Protective effect of cholecalciferol against cobalt-induced neurotoxicity in rats: ZO-1/iFABP, ChAT/AchE and antioxidant pathways as potential therapeutic targets. Biol Trace Elem Res 2025; 203:1555-1570. [PMID: 38836989 DOI: 10.1007/s12011-024-04258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Cobalt (Co) toxicity has been reported to produce central nervous system and gastrointestinal abnormalities. This study assessed the therapeutic effect of cholecalciferol (Cho) supplementation against damages caused by sub-acute (14-day) cobalt chloride (CoCl2) exposure in the brain and intestines. Thirty-five male Wistar rats were divided equally into five groups: Group I (control) received no treatment; Group II received oral CoCl2 (100 mg/kg) only; Groups III, IV, and V received 1000, 3000 and 6000 IU/kg of cholecalciferol, respectively by oral gavage, and concurrently with CoCl2. Cobalt-treated rats showed neuronal vacuolation and presence of pyknotic nuclei in the cerebral cortex and hippocampus, depletion of Purkinje cells in the cerebellum, as well as inflammation and congestion in the intestinal mucosa. Cobalt also increased brain and intestinal hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentrations, while simultaneously reducing glutathione (GSH) content, superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione S-transferase (GST) activities. Further, CoCl2 induced increases in brain acetylcholinesterase (AchE) activity and serum zonulin (ZO-1) levels. Conversely, Cho administration suppressed CoCl2-induced damages in the brain and intestines by reducing lipid peroxidation and increasing the activities of antioxidant enzymes. Remarkably, Cho produced stimulation of brain choline acetyltransferase (ChAT) and suppression of AchE activity, along with dose-dependent reduction in serum levels of ZO-1, intestinal fatty acid-binding protein (iFABP) and nitric oxide. In conclusion, the protective role of cholecalciferol against cobalt-induced toxicity occurred via modulation of cholinergic, intestinal permeability and antioxidant pathways. The results may prove significant in the context of the role of gut-brain connections in neuroprotection.
Collapse
Affiliation(s)
- A S Akinrinde
- Gastrointestinal and Environmental Toxicology Laboratory, Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| | - B O Adeoye
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - E S Samuel
- Gastrointestinal and Environmental Toxicology Laboratory, Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - O A Mustapha
- Neuroscience Unit, Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun state, Nigeria
| |
Collapse
|
5
|
Clemente-Suárez VJ, Martín-Rodríguez A, Curiel-Regueros A, Rubio-Zarapuz A, Tornero-Aguilera JF. Neuro-Nutrition and Exercise Synergy: Exploring the Bioengineering of Cognitive Enhancement and Mental Health Optimization. Bioengineering (Basel) 2025; 12:208. [PMID: 40001727 PMCID: PMC11851474 DOI: 10.3390/bioengineering12020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The interplay between nutrition, physical activity, and mental health has emerged as a frontier in bioengineering research, offering innovative pathways for enhancing cognitive function and psychological resilience. This review explores the neurobiological mechanisms underlying the synergistic effects of tailored nutritional strategies and exercise interventions on brain health and mental well-being. Key topics include the role of micronutrients and macronutrients in modulating neurogenesis and synaptic plasticity, the impact of exercise-induced myokines and neurotrophins on cognitive enhancement, and the integration of wearable bioelectronics for personalized monitoring and optimization. By bridging the disciplines of nutrition, psychology, and sports science with cutting-edge bioengineering, this review highlights translational opportunities for developing targeted interventions that advance mental health outcomes. These insights are particularly relevant for addressing global challenges such as stress, anxiety, and neurodegenerative diseases. The article concludes with a roadmap for future research, emphasizing the potential of bioengineered solutions to revolutionize preventive and therapeutic strategies in mental health care.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (V.J.C.-S.); (A.M.-R.); (A.C.-R.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Alexandra Martín-Rodríguez
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (V.J.C.-S.); (A.M.-R.); (A.C.-R.)
- Faculty of Applied Social Sciences and Communications, UNIE, 28015 Madrid, Spain
| | - Agustín Curiel-Regueros
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (V.J.C.-S.); (A.M.-R.); (A.C.-R.)
| | - Alejandro Rubio-Zarapuz
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (V.J.C.-S.); (A.M.-R.); (A.C.-R.)
| | | |
Collapse
|
6
|
Whitbread AL, Mittelmeier L, Rao RP, Mittelmeier W, Osmanski-Zenk K. Menstrual Blood as a Non-Invasive Alternative for Monitoring Vitamin Levels. J Clin Med 2024; 13:7212. [PMID: 39685671 DOI: 10.3390/jcm13237212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Menstrual blood has recently emerged as a novel specimen for diagnostics, offering a non-invasive alternative to traditional blood testing methods. Despite the importance of vitamins and monitoring their levels in preventative healthcare measures, the feasibility of measuring them in menstrual blood has yet to be explored. In this study, we aimed to assess the potential of using menstrual blood for determining vitamin levels by comparing their levels in menstrual blood to those in matched capillary blood samples. Methods: A prospective, monocentric, observational study was conducted with healthy, reproductive-aged voluntary participants. Menstrual blood was collected from 30 participants using a menstrual cup, and the corresponding capillary blood samples were obtained using a finger prick. The samples were transferred to dried blood spot (DBS) cards and analyzed using mass spectrometry to determine vitamin levels. Statistical analyses were performed to compare menstrual blood vitamin A and D levels, and hemoglobin, to those in capillary blood. Results: The vitamin levels could be ascertained from the menstrual blood, and were observed to significantly correlate with those from the capillary blood for both vitamin A (r = 0.77, p < 0.001) and vitamin D (r = 0.66, p < 0.001), despite being statistically different. Conclusions: The results of this pilot study demonstrate the potential utility of menstrual blood in estimating vitamin A and D levels, illustrating the prospect of a non-invasive menstrual blood-based vitamin test following larger clinical and analytical validation studies.
Collapse
Affiliation(s)
| | - Lucas Mittelmeier
- Orthopedic Clinic and Policlinic, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Rajnish P Rao
- The smart period blood GmbH, D-10119 Berlin, Germany
| | - Wolfram Mittelmeier
- Orthopedic Clinic and Policlinic, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Katrin Osmanski-Zenk
- Orthopedic Clinic and Policlinic, Rostock University Medical Center, D-18057 Rostock, Germany
| |
Collapse
|
7
|
Kang J, Lee M, Park M, Lee J, Lee S, Park J, Koyanagi A, Smith L, Nehs CJ, Yon DK, Kim T. Slow gut transit increases the risk of Alzheimer's disease: An integrated study of the bi-national cohort in South Korea and Japan and Alzheimer's disease model mice. J Adv Res 2024; 65:283-295. [PMID: 38097171 PMCID: PMC11518944 DOI: 10.1016/j.jare.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/20/2023] [Accepted: 12/12/2023] [Indexed: 01/02/2024] Open
Abstract
INTRODUCTION Although the association between Alzheimer's disease (AD) and constipation is controversial, its causality and underlying mechanisms remain unknown. OBJECTIVES To investigate the potential association between slow gut transit and AD using epidemiological data and a murine model. METHODS We conducted a bi-national cohort study in South Korea (discovery cohort, N=3,130,193) and Japan (validation cohort, N=4,379,285) during the pre-observation period to determine the previous diagnostic history (2009-2010) and the follow-up period (2011-2021). To evaluate the causality, we induced slow gut transit using loperamide in 5xFAD transgenic mice. Changes in amyloid-beta (Aβ) and other markers were examined using ELISA, qRT-PCR, RNA-seq, and behavioral tests. RESULTS Constipation was associated with an increased risk of AD in the discovery cohort (hazard ratio, 2.04; 95% confidence interval [CI], 2.01-2.07) and the validation cohort (hazard ratio; 2.82; 95% CI, 2.61-3.05). We found that loperamide induced slower gut transit in 5xFAD mice, increased Aβ and microglia levels in the brain, increased transcription of genes related to norepinephrine secretion and immune responses, and decreased the transcription of defense against bacteria in the colonic tissue. CONCLUSION Impaired gut transit may contribute to AD pathogenesis via the gut-brain axis, thus suggesting a cyclical relationship between intestinal barrier disruption and Aβ accumulation in the brain. We propose that gut transit or motility may be a modifiable lifestyle factor in the prevention of AD, and further clinical investigations are warranted.
Collapse
Affiliation(s)
- Jiseung Kang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States; Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Myeongcheol Lee
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Republic of Korea; Department of Regulatory Science, Kyung Hee University, Seoul, Republic of Korea
| | - Mincheol Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jibeom Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jaeyu Park
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Republic of Korea; Department of Regulatory Science, Kyung Hee University, Seoul, Republic of Korea
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Deu, Barcelona, Spain
| | - Lee Smith
- Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge, UK
| | - Christa J Nehs
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States; Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Republic of Korea; Department of Regulatory Science, Kyung Hee University, Seoul, Republic of Korea; Department of Pediatrics, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Republic of Korea.
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
| |
Collapse
|
8
|
Li Z, Lei Z, Liu X, Zhang F, Yang X, Wu Y, Li C, Zhao J, Zhang Y, Hua Y, Lu B, Cao B. Disruption of mgrB gene by ISkpn14 sourced from a bla KPC-2 carrying plasmid mediating polymyxin resistance against carbapenem-resistant Klebsiella pneumoniae during treatment: study on the underlying mechanisms. BMC Microbiol 2024; 24:422. [PMID: 39438834 PMCID: PMC11494788 DOI: 10.1186/s12866-024-03572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections poses global challenges, with limited options available for targeted therapy. Polymyxin was been regarded as one of the most important last-resort antimicrobial agents. Many factors could accelerate the resistance evolution of polymyxin. Insertion sequence (IS) inserted into mgrB is the main polymyxin resistance mechanism in K. pneumoniae. In this study, two CRKPs (KP31157 and KP31311) were isolated from the urine of a patient, shifting from susceptible to resistant as the mgrB inserted by ISkpn14. We intended to explore the origin of the IS and underlying mechanisms resulting in polymyxin resistance. METHODS The within-host evolution relationship and molecular features of both CRKPs were determined by pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing (WGS). pKP31311_KPC-2 plasmid genome structures contained in the above two CRKPs were aligned with the homologic plasmids, retrieved from the NCBI genome database via comparative genomic analysis. The plasmids encoding ISkpn14 elements flanked by direct repeat (DR) or not were analyzed. The mRNA expression, plasmid curing and in vitro antibiotics inducing experiment were employed to understand the potential mechanism of polymyxin resistance. RESULTS Both strains, sharing homology, exhibited polymyxin resistance due to the insertion of ISkpn14 into the mgrB gene, influenced by minocycline exposure. Minocycline and tigecycline could accelerate polymyxin resistance (P < 0.05), validated by an in vitro induction experiment. The ISkpn14 without DR flanked expressed about 4 times higher than that with DR. The frequency of the mgrB insertion induced by polymyxin was significantly reduced (0 strain detected) after the blaKPC-2-carrying plasmid was eliminated. CONCLUSIONS This study provides direct experimental evidence that the ISkpn14 element causing mgrB inactivation and polymyxin resistance in K. pneumoniae originates from blaKPC-2-carrying plasmids. Minocycline exposure will accelerate the evolution of polymyxin resistance. Understanding the dynamics of IS transposition and its association with antibiotic exposure is crucial for developing effective strategies to reduce the emergence of polymyxin resistance in CRKP.
Collapse
Affiliation(s)
- Ziyao Li
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, No. 2 East Yinghua Street, Beijing, Chaoyang, 100029, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China
- Changping Laboratory, Beijing, China
| | - Zichen Lei
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, No. 2 East Yinghua Street, Beijing, Chaoyang, 100029, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China
| | - Xinmeng Liu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, No. 2 East Yinghua Street, Beijing, Chaoyang, 100029, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Feilong Zhang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, No. 2 East Yinghua Street, Beijing, Chaoyang, 100029, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xinrui Yang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, No. 2 East Yinghua Street, Beijing, Chaoyang, 100029, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yongli Wu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, No. 2 East Yinghua Street, Beijing, Chaoyang, 100029, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Li
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, No. 2 East Yinghua Street, Beijing, Chaoyang, 100029, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Liuyang Traditional Chinese Medicine Hospital, Changsha, Hunan, China
| | - Jiankang Zhao
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, No. 2 East Yinghua Street, Beijing, Chaoyang, 100029, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yulin Zhang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, No. 2 East Yinghua Street, Beijing, Chaoyang, 100029, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanning Hua
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, No. 2 East Yinghua Street, Beijing, Chaoyang, 100029, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Binghuai Lu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, No. 2 East Yinghua Street, Beijing, Chaoyang, 100029, China.
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
- China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China.
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.
| | - Bin Cao
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, No. 2 East Yinghua Street, Beijing, Chaoyang, 100029, China.
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
- China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China.
- Changping Laboratory, Beijing, China.
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China.
- Department of Respiratory Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Rezagholizadeh A, Firoozi A, Tavassoli Z, Shojaei A, Hosseinmardi N, Mirnajafi-Zadeh J, Kohlmeier KA, Fathollahi Y. Vitamin D injection into the dorsal-CA1 hippocampus improves short-term sleep deprivation induced cognitive impairment in male rats. Heliyon 2024; 10:e34853. [PMID: 39959779 PMCID: PMC11829095 DOI: 10.1016/j.heliyon.2024.e34853] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/29/2024] [Accepted: 07/17/2024] [Indexed: 02/18/2025] Open
Abstract
This study was conducted with aim of investigating the consequences of sleep deprivation (SD) on cognitive functions. For this purpose, adult male rats were subjected to SD protocol for 5 h. The SD and the control rats were trained in the Morris water maze (MWM) to assess spatial behavioral deficits due to the SD protocol. To determine the role of astrocytes in spatial navigation deficits associated with SD, an inhibitor of astrocyte activation, fluorocitrate (FC), or a suppressor of astrocyte activation, vitamin D, was injected into the dorsal-CA1 hippocampus before subjecting rats to the SD protocol and the effects of these compounds on spatial navigation deficits associated with SD in the MWM were assessed. As expected, 5 h of SD impaired the Morris water navigation task in rats. FC injection into the dorsal-CA1 hippocampus before the SD protocol did not prevent the SD-induced cognitive deficits. Interestingly, injection of vitamin D into the dorsal-CA1 hippocampus prior to the SD protocol alleviated the SD-induced severe spatial navigation deficit in the MWM. Sequential injection of FC and vitamin D prior to the SD protocol did not reduce the SD-induced spatial memory impairment, suggesting a role for astrocytes. In sum, vitamin D can improve cognitive dysfunction associated with sleep deprivation, possibly dependent on astrocyte function. The results show that maintaining adequate levels of vitamin D offers a promising avenue to improve cognitive function in sleep-deprived conditions.
Collapse
Affiliation(s)
- Amir Rezagholizadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Amin Firoozi
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohreh Tavassoli
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Narges Hosseinmardi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Kristi Anne Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| |
Collapse
|
10
|
Sailike B, Onzhanova Z, Akbay B, Tokay T, Molnár F. Vitamin D in Central Nervous System: Implications for Neurological Disorders. Int J Mol Sci 2024; 25:7809. [PMID: 39063051 PMCID: PMC11277055 DOI: 10.3390/ijms25147809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Vitamin D, obtained from diet or synthesized internally as cholecalciferol and ergocalciferol, influences bodily functions through its most active metabolite and the vitamin D receptor. Recent research has uncovered multiple roles for vitamin D in the central nervous system, impacting neural development and maturation, regulating the dopaminergic system, and controlling the synthesis of neural growth factors. This review thoroughly examines these connections and investigates the consequences of vitamin D deficiency in neurological disorders, particularly neurodegenerative diseases. The potential benefits of vitamin D supplementation in alleviating symptoms of these diseases are evaluated alongside a discussion of the controversial findings from previous intervention studies. The importance of interpreting these results cautiously is emphasised. Furthermore, the article proposes that additional randomised and well-designed trials are essential for gaining a deeper understanding of the potential therapeutic advantages of vitamin D supplementation for neurological disorders. Ultimately, this review highlights the critical role of vitamin D in neurological well-being and highlights the need for further research to enhance our understanding of its function in the brain.
Collapse
Affiliation(s)
| | | | | | | | - Ferdinand Molnár
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr 53, Astana 010000, Kazakhstan; (B.S.); (Z.O.); (B.A.); (T.T.)
| |
Collapse
|
11
|
Zhang F, Zhang W. Research progress in Alzheimer's disease and bone-brain axis. Ageing Res Rev 2024; 98:102341. [PMID: 38759893 DOI: 10.1016/j.arr.2024.102341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Alzheimer's disease (AD) is the most common type of cognitive impairment. AD is closely related to orthopedic diseases, such as osteoporosis and osteoarthritis, in terms of epidemiology and pathogenesis. Brain and bone tissues can regulate each other in different manners through bone-brain axis. This article reviews the research progress of the relationship between AD and orthopedic diseases, bone-brain axis mechanisms of AD, and AD therapy by targeting bone-brain axis, in order to deepen the understanding of bone-brain communication, promote early diagnosis and explore new therapy for AD patients.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| |
Collapse
|
12
|
Jeong SP, Sharma N, An SSA. Role of Calcitriol and Vitamin D Receptor ( VDR) Gene Polymorphisms in Alzheimer's Disease. Int J Mol Sci 2024; 25:4806. [PMID: 38732025 PMCID: PMC11084202 DOI: 10.3390/ijms25094806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/21/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by amyloid beta (Aβ) buildup and neuronal degeneration. An association between low serum vitamin D levels and an increased risk of AD has been reported in several epidemiological studies. Calcitriol (1,25-dihydroxycholecalciferol) is the active form of vitamin D, and is generated in the kidney and many other tissues/organs, including the brain. It is a steroid hormone that regulates important functions like calcium/phosphorous levels, bone mineralization, and immunomodulation, indicating its broader systemic significance. In addition, calcitriol confers neuroprotection by mitigating oxidative stress and neuroinflammation, promoting the clearance of Aβ, myelin formation, neurogenesis, neurotransmission, and autophagy. The receptors to which calcitriol binds (vitamin D receptors; VDRs) to exert its effects are distributed over many organs and tissues, representing other significant roles of calcitriol beyond sustaining bone health. The biological effects of calcitriol are manifested through genomic (classical) and non-genomic actions through different pathways. The first is a slow genomic effect involving nuclear VDR directly affecting gene transcription. The association of AD with VDR gene polymorphisms relies on the changes in vitamin D consumption, which lowers VDR expression, protein stability, and binding affinity. It leads to the altered expression of genes involved in the neuroprotective effects of calcitriol. This review summarizes the neuroprotective mechanism of calcitriol and the role of VDR polymorphisms in AD, and might help develop potential therapeutic strategies and markers for AD in the future.
Collapse
Affiliation(s)
| | - Niti Sharma
- Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Republic of Korea
| | - Seong Soo A. An
- Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Republic of Korea
| |
Collapse
|
13
|
Wong D, Bellyou M, Li A, Prado MAM, Beauchet O, Annweiler C, Montero-Odasso M, Bartha R. Magnetic resonance spectroscopy in the hippocampus of adult APP/PS1 mice following chronic vitamin D deficiency. Behav Brain Res 2024; 457:114713. [PMID: 37838248 DOI: 10.1016/j.bbr.2023.114713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Vitamin D (VitD) deficiency can exacerbate AD progression and may cause changes in brain metabolite levels that can be detected by magnetic resonance spectroscopy (MRS). The purpose of this study was to determine whether chronic VitD deficiency in an AD mouse model caused persistent metabolite levels changes in the hippocampus associated with memory performance. Six-month-old APPSwe/PS1ΔE9 (APP/PS1) mice (N = 14 mice/group) were fed either a VitD deficient (VitD-) diet or a control diet. Metabolite level changes in the hippocampus were evaluated by 1H MRS using a 9.4 T MRI. Ventricle volume was assessed by imaging and spatial memory was evaluated using the Barnes maze. All measurements were made at 6, 9, 12, and 15 months of age. At 15 months of age, amyloid plaque load and astrocyte number were evaluated histologically (N = 4 mice/group). Levels of N-acetyl aspartate and creatine were lower in VitD- mice compared to control diet mice at 12 months of age. VitD deficiency did not change ventricle volume. Lactate levels increased over time in VitD- mice and increases from 12 to 15 months were negatively correlated with changes in primary latency to the target hole in the Barns Maze. VitD- mice showed improved spatial memory performance compared to control diet mice. VitD- mice also had more astrocytes in the cortex and hippocampus at 15 months than control diet mice. This study suggests that severe VitD deficiency in APP/PS1 mice may lead to compensatory changes in metabolite and astrocyte levels that contribute to improved performance on spatial memory tasks.
Collapse
Affiliation(s)
- Dickson Wong
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Miranda Bellyou
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Alex Li
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Marco A M Prado
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada; Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | | | - Cédric Annweiler
- Department of Geriatric Medicine and Memory Clinic, Research Center on Autonomy and Longevity, University Hospital, Angers, France
| | - Manuel Montero-Odasso
- Department of Medicine, Division of Geriatric Medicine, Parkwood Hospital, Western University, London, ON, Canada; Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Lawson Health Research Institute, London, ON, Canada
| | - Robert Bartha
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
14
|
Shea MK, Xuan AY, Booth SL. Vitamin D, Alzheimer's disease and related dementia. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 109:185-219. [PMID: 38777413 DOI: 10.1016/bs.afnr.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Vitamin D has been proposed as a potential strategy to mitigate age-related cognitive decline and dementia, including Alzheimer's dementia, the predominant type of dementia. Rodent studies have provided insight into the potential mechanisms underlying the role of vitamin D in Alzheimer's disease and dementia. However, inconsistencies with respect to age, sex, and genetic background of the rodent models used poses some limitations regarding scientific rigor and translation. Several human observational studies have evaluated the association of vitamin D status with cognitive decline and dementia, and the results are conflicting. Randomized clinical trials of vitamin D supplementation have included cognitive outcomes. However, most of the available trials have not been designed specifically to test the effect of vitamin D on age-related cognitive decline and dementia, so it remains questionable how much additional vitamin D will improve cognitive performance. Here we evaluate the strengths and limitations of the available evidence regarding the role of vitamin D in AD, cognitive decline, dementia.
Collapse
Affiliation(s)
- M Kyla Shea
- Tufts University USDA Human Nutrition Research Center on Aging.
| | - Andrew Y Xuan
- Tufts University USDA Human Nutrition Research Center on Aging
| | - Sarah L Booth
- Tufts University USDA Human Nutrition Research Center on Aging
| |
Collapse
|
15
|
Kang J, Park M, Kim T. Vitamin D Reduces GABA-Positive Astrocytes in the 5xFAD Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2024; 97:1939-1950. [PMID: 38339931 PMCID: PMC10894571 DOI: 10.3233/jad-231033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/12/2024]
Abstract
Background Vitamin D has neuroprotective and immunomodulating functions that may impact glial cell function in the brain. Previously, we reported molecular and behavioral changes caused by deficiency and supplementation of vitamin D in an Alzheimer's disease (AD) mouse model. Recent studies have highlighted reactive astrocytes as a new therapeutic target for AD treatment. However, the mechanisms underlying the therapeutic effects of vitamin D on the glial cells of AD remain unclear. Objective To investigate the potential association between vitamin D deficiency/supplementation and the pathological progression of AD, including amyloid-β (Aβ) pathology and reactive astrogliosis. Methods Transgenic hemizygous 5XFAD male mice were subjected to different dietary interventions and intraperitoneal vitamin D injections to examine the effects of vitamin D deficiency and supplementation on AD. Brain tissue was then analyzed using immunohistochemistry for Aβ plaques, microglia, and astrocytes, with quantifications performed via ImageJ software. Results Our results demonstrated that vitamin D deficiency exacerbated Aβ plaque formation and increased GABA-positive reactive astrocytes in AD model mice, while vitamin D supplementation ameliorated these effects, leading to a reduction in Aβ plaques and GABA-positive astrocytes. Conclusions Our findings highlight the significant impact of vitamin D status on Aβ pathology and reactive astrogliosis, underscoring its potential role in the prevention and treatment of AD. This study provides the first in vivo evidence of the association between vitamin D and reactive astrogliosis in AD model mice, indicating the potential for targeting vitamin D levels as a novel therapeutic approach for AD.
Collapse
Affiliation(s)
- Jiseung Kang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Mincheol Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| |
Collapse
|
16
|
Lahoda Brodska H, Klempir J, Zavora J, Kohout P. The Role of Micronutrients in Neurological Disorders. Nutrients 2023; 15:4129. [PMID: 37836413 PMCID: PMC10574090 DOI: 10.3390/nu15194129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023] Open
Abstract
Trace elements and vitamins, collectively known as micronutrients, are essential for basic metabolic reactions in the human body. Their deficiency or, on the contrary, an increased amount can lead to serious disorders. Research in recent years has shown that long-term abnormal levels of micronutrients may be involved in the etiopathogenesis of some neurological diseases. Acute and chronic alterations in micronutrient levels may cause other serious complications in neurological diseases. Our aim was to summarize the knowledge about micronutrients in relation to selected neurological diseases and comment on their importance and the possibilities of therapeutic intervention in clinical practice.
Collapse
Affiliation(s)
- Helena Lahoda Brodska
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 499/2, 128 08 Prague, Czech Republic; (H.L.B.); (J.Z.)
| | - Jiri Klempir
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Katerinska 30, 120 00 Prague, Czech Republic
| | - Jan Zavora
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 499/2, 128 08 Prague, Czech Republic; (H.L.B.); (J.Z.)
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Pavel Kohout
- Clinic of Internal Medicine, 3rd Faculty Medicine, Charles University and Thomayer University Hospital, Videnska 800, 140 59 Prague, Czech Republic;
| |
Collapse
|
17
|
Kang J, Park M, Oh CM, Kim T. High-fat diet-induced dopaminergic dysregulation induces REM sleep fragmentation and ADHD-like behaviors. Psychiatry Res 2023; 327:115412. [PMID: 37607442 DOI: 10.1016/j.psychres.2023.115412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/27/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
Consumption of a high-fat diet (HFD) has been associated with reduced wakefulness and various behavioral deficits, including anxiety, depression, and anhedonia. The dopaminergic system, which plays a crucial role in sleep and ADHD, is known to be vulnerable to chronic HFD. However, the association between HFD-induced behavioral and molecular changes remains unclear. Therefore, we investigated the effects of a HFD on the dopaminergic system and its association with behavioral deficits in male mice. The mice were divided into normal diet and HFD groups and were analyzed for sleep patterns, behavior tests, and transcription levels of dopamine-related genes in the brain. The HFD group showed decreased wakefulness, increased REM sleep with fragmented patterns, decreased time spent in the center zone of the open field test, shorter immobile time in the tail suspension test, impaired visuospatial memory, and reduced sucrose preference. Additionally, the HFD group had decreased mRNA levels of D1R, COMT, and DAT in the nucleus accumbens, which negatively correlated with REM sleep proportion and REM sleep bout count. The results suggest that HFD-induced behavioral deficits were resemblance to ADHD-like behavioral phenotypes and disturbs REM sleep by dysregulating the dopaminergic system.
Collapse
Affiliation(s)
- Jiseung Kang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Mincheol Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
18
|
Minich DM, Henning M, Darley C, Fahoum M, Schuler CB, Frame J. Reply to Pluta, R. Comment on "Minich et al. Is Melatonin the "Next Vitamin D"?: A Review of Emerging Science, Clinical Uses, Safety, and Dietary Supplements. Nutrients 2022, 14, 3934". Nutrients 2023; 15:1507. [PMID: 36986237 PMCID: PMC10053200 DOI: 10.3390/nu15061507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
We would like to thank Dr. Pluta for his thoughtful comments [...].
Collapse
Affiliation(s)
- Deanna M. Minich
- Department of Human Nutrition and Functional Medicine, University of Western States, Portland, OR 97213, USA
| | - Melanie Henning
- Department of Sports and Performance Psychology, University of the Rockies, Denver, CO 80202, USA
| | - Catherine Darley
- College of Naturopathic Medicine, National University of Natural Medicine, Portland, OR 97201, USA
| | - Mona Fahoum
- School of Naturopathic Medicine, Bastyr University, Kenmore, WA 98028, USA
| | - Corey B. Schuler
- School of Nutrition, Sonoran University of Health Sciences, Tempe, AZ 85282, USA
- Department of Online Education, Northeast College of Health Sciences, Seneca Falls, NY 13148, USA
| | - James Frame
- Natural Health International Pty., Ltd., Sydney, NSW 2000, Australia
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA
| |
Collapse
|
19
|
The Vitamin D Receptor as a Potential Target for the Treatment of Age-Related Neurodegenerative Diseases Such as Alzheimer's and Parkinson's Diseases: A Narrative Review. Cells 2023; 12:cells12040660. [PMID: 36831327 PMCID: PMC9954016 DOI: 10.3390/cells12040660] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The vitamin D receptor (VDR) belongs to the nuclear receptor superfamily of transcription factors. The VDR is expressed in diverse brain regions and has been implicated in the neuroprotective, antiaging, prosurvival, and anti-inflammatory action of vitamin D. Accordingly, a relationship between vitamin D insufficiency and susceptibility to neurodegenerative diseases has been suggested. However, due to the multitargeted mechanisms of vitamin D and its often overlapping genomic and nongenomic effects, the role of the VDR in brain pathologies remains obscure. In this narrative review, we present progress in deciphering the molecular mechanism of nuclear VDR-mediated vitamin D effects on prosurvival and anti-inflammatory signaling pathway activity within the central nervous system. In line with the concept of the neurovascular unit in pathomechanisms of neurodegenerative diseases, a discussion of the role of the VDR in regulating the immune and vascular brain systems is also included. Next, we discuss the results of preclinical and clinical studies evaluating the significance of vitamin D status and the efficacy of vitamin D supplementation in the treatment of Parkinson's and Alzheimer's diseases, emphasizing the possible role of the VDR in these phenomena. Finally, the associations of some VDR polymorphisms with higher risks and severity of these neurodegenerative disorders are briefly summarized.
Collapse
|
20
|
Role of Vitamin D Deficiency in the Pathogenesis of Cardiovascular and Cerebrovascular Diseases. Nutrients 2023; 15:nu15020334. [PMID: 36678205 PMCID: PMC9864832 DOI: 10.3390/nu15020334] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
Deficiency in vitamin D (VitD), a lipid-soluble vitamin and steroid hormone, affects approximately 24% to 40% of the population of the Western world. In addition to its well-documented effects on the musculoskeletal system, VitD also contributes importantly to the promotion and preservation of cardiovascular health via modulating the immune and inflammatory functions and regulating cell proliferation and migration, endothelial function, renin expression, and extracellular matrix homeostasis. This brief overview focuses on the cardiovascular and cerebrovascular effects of VitD and the cellular, molecular, and functional changes that occur in the circulatory system in VitD deficiency (VDD). It explores the links among VDD and adverse vascular remodeling, endothelial dysfunction, vascular inflammation, and increased risk for cardiovascular and cerebrovascular diseases. Improved understanding of the complex role of VDD in the pathogenesis of atherosclerotic cardiovascular diseases, stroke, and vascular cognitive impairment is crucial for all cardiologists, dietitians, and geriatricians, as VDD presents an easy target for intervention.
Collapse
|
21
|
Gezen-Ak D, Dursun E. Vitamin D, a Secosteroid Hormone and Its Multifunctional Receptor, Vitamin D Receptor, in Alzheimer's Type Neurodegeneration. J Alzheimers Dis 2023; 95:1273-1299. [PMID: 37661883 DOI: 10.3233/jad-230214] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Vitamin D is a secosteroid hormone exerting neurosteroid-like properties. Its well-known nuclear hormone receptor, and recently proposed as a mitochondrial transcription factor, vitamin D receptor, acts for its primary functions. The second receptor is an endoplasmic reticulum protein, protein disulfide isomerase A3 (PDIA3), suggested to act as a rapid response. Vitamin D has effects on various systems, particularly through calcium metabolism. Among them, the nervous system has an important place in the context of our subject. Recent studies have shown that vitamin D and its receptors have numerous effects on the nervous system. Neurodegeneration is a long-term process. Throughout a human life span, so is vitamin D deficiency. Our previous studies and others have suggested that the out-come of long-term vitamin D deficiency (hypovitaminosis D or inefficient utilization of vitamin D), may lead neurons to be vulnerable to aging and neurodegeneration. We suggest that keeping vitamin D levels at adequate levels at all stages of life, considering new approaches such as agonists that can activate vitamin D receptors, and utilizing other derivatives produced in the synthesis process with UVB are crucial when considering vitamin D-based intervention studies. Given most aspects of vitamin D, this review outlines how vitamin D and its receptors work and are involved in neurodegeneration, emphasizing Alzheimer's disease.
Collapse
Affiliation(s)
- Duygu Gezen-Ak
- Department of Neuroscience, Brain and Neurodegenerative Disorders Research Laboratories, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Erdinc Dursun
- Department of Neuroscience, Brain and Neurodegenerative Disorders Research Laboratories, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
22
|
Li T, Chen C, Yuan J, Zhang K, Zhang M, Zhao H, Wu X, Zhu L, Huang G, Ma F. The Association between Vitamin D Deficiency and Changes in Cognitive Functions in Chinese Older Adults: A Prospective Cohort Study. Curr Alzheimer Res 2023; 20:506-514. [PMID: 37957919 DOI: 10.2174/0115672050266769231025060359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Along with the problem of population aging, the prevalence of dementia is gradually increasing. Associations between vitamin D deficiency (VDD) and cognitive functions remain unclear. OBJECTIVES We aimed to determine the relationship between VDD and changes in cognitive performance in community-dwelling older adults. METHODS In this longitudinal cohort study, participants aged ≥65 years were enrolled in March, 2016. The serum level of 25-hydroxy-vitamin D was analyzed by liquid-chromatography-tandem-- mass-spectrometry at baseline. VDD was defined as less than 20 ng/mL. All participants completed a health status questionnaire. Cognitive functions were evaluated by the Wechsler Adult Intelligence Scale-Revised in China at baseline and each visit. The linear mixed-effects model was utilized to examine the association between baseline VDD and changes in cognitive functions. RESULTS In total, 866 participants were included in our study, with a mean duration of 3 years. VDD was markedly associated with lower full intelligence quotient (FIQ) (β: -3.355, 95% confidence interval [CI]:-4.165,-2.545), verbal intelligence quotient (VIQ) (β: -3.420, 95%CI: -4.193,-2.647), performance intelligence quotient (PIQ) (β: -2.610, 95%CI: -3.683,-1.537), comprehension (β: -0.630, 95%CI: -1.022,-0.238), information (β: -0.354, 95%CI: -0.699,-0.008), arithmetic (β: -1.065, 95%CI: -1.228,-0.902), digit span (β: -0.370, 95%CI: -0.547,-0.192), vocabulary (β: -0.789, 95%CI: -1.084,-0.493), picture completion (β: -0.391, 95%CI: -0.761,-0.022), block design (β: -0.412, 95%CI: -0.697,-0.127), picture arrangement (β: -0.542, 95%CI: -0.909,-0.174), and object assembly (β: -0.492, 95%CI: -0.818,-0.165) than those with adequacy. CONCLUSION A higher frequency of VDD was associated with lower scores of FIQ, VIQ, PIQ and subtests on memory and executive function. Future randomized controlled trials are warranted to further verify the conclusions.
Collapse
Affiliation(s)
- Tongtong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Chong Chen
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, National Human Genetic Resources Sharing Service Platform, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Jing Yuan
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Keming Zhang
- Department of Nutrition, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300073, China
| | - Meilin Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Huichao Zhao
- Department of Medicine and Humanities, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaomin Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Liping Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Fei Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|