1
|
Das S, Behera A, Habibullah S, Pattnaik G, Mohanty B. Moxifloxacin-loaded PVA-chitosan composite films as potential ocular drug delivery systems: A comprehensive characterization and efficacy assessment. Int J Biol Macromol 2025; 296:139726. [PMID: 39800015 DOI: 10.1016/j.ijbiomac.2025.139726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
To overcome the barriers often met by traditional ophthalmic formulations, polymeric films can be utilized as an alternative to enhance drug retention duration while managing medication release. In the current investigation, polymeric films made of poly (vinyl) alcohol (PVA) and chitosan (CS) loaded with Moxifloxacin Hydrochloride (M-HCl) and plasticized with Glutaraldehyde were formulated as potential ophthalmic delivery for the treatment of conjunctivitis. The thickness, surface pH, opacity, folding endurance, and % hemolysis were measured, followed by the transparency, microscopy, electrical conductivity, mechanical strength, swelling index, and invitro drug release studies. FTIR spectroscopy further accessed the interactions between the polymers and drug molecules. The thermal behaviour and diffraction pattern of the films were evaluated using DSC and XRD studies. Lastly, the antimicrobial effectiveness of the M-HCl-loaded films was studied against P. aeruginosa and S. aureus. The rabbit eye irritation study conducted in vivo confirmed that the film was comfortable for use in ocular applications. Upon integrating the findings, it was determined that the optimal film formulation was PC3 (PVA: CS = 7:3), exhibiting superior transparency, heightened intermolecular hydrogen bonding, elevated mechanical strength, increased crystallinity, larger crystal size, optimal swelling index, a high percentage of controlled drug release (%CPDR), and the highest antimicrobial activity.
Collapse
Affiliation(s)
- Swagatika Das
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India
| | - Amulyaratna Behera
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India.
| | - Sk Habibullah
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O'Anusandhan (deemed to be) University, BBSR, Odisha 751003, India
| | - Gurudutta Pattnaik
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India
| | - Biswaranjan Mohanty
- Department of Pharmaceutics, School of Pharmacy, DRIEMS University, Tangi, Cuttack, Odisha, India.
| |
Collapse
|
2
|
Taghe S, Mirzaeei S, Pakdaman N, Kazemi A, Nokhodchi A. Macrolide-loaded nanofibrous inserts with polycaprolactone and cellulose acetate base for sustained ocular delivery: Pharmacokinetic study in Rabbit's eye. Int J Pharm 2024; 665:124699. [PMID: 39270760 DOI: 10.1016/j.ijpharm.2024.124699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/25/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
The present study aimed to prepare nanofibrous inserts for sustained ocular drug delivery of Azithromycin (AZM) toward conquering the obstacles of conventional topical drug delivery. Nanofibers were fabricated by electrospinning using polycaprolactone (PCL) and cellulose acetate (CA) which are biocompatible and biodegradable polymers. Prepared nanofibers were evaluated in terms of physicochemical, morphological properties, pharmacokinetic study and ocular irritation. SEM images revealed average diameters of about 160 nm and 190 nm for CA and PCL nanofibers, respectively. These ocular drug delivery systems were strong, flexible, and stable under humid and dry conditions. Quantification was performed using microbiological assay by M. luteus as a microorganism. While PCL-based nanofibrous inserts released AZM in a two-step manner initiated by a burst release via Peppas kinetical model, CA-based inserts showed a gradual release profile without any burst release which followed the first-order model. Results showed that these inserts were non-cytotoxic and non-irritating. The nanofibers showed antibacterial efficacy against Escherichia coli and Staphylococcus aureus. In addition, according to a pharmacokinetic study in Rabbit's Eye, a higher Cmax and lower Tmax were achieved by PCL nanofibers compared to CA-based ones. The pharmacokinetic study of nanofibers in rabbit eyes showed that all formulations were able to maintain the effective concentration of AZM for about 6 days. In conclusion, the prepared nanofibers can be effectively utilized for prolonged ocular delivery of AZM in the treatment of conjunctival infections.
Collapse
Affiliation(s)
- Shiva Taghe
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahla Mirzaeei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Negin Pakdaman
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aliakbar Kazemi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
3
|
Baig MS, Karade SK, Ahmad A, Khan MA, Haque A, Webster TJ, Faiyazuddin M, Al-Qahtani NH. Lipid-based nanoparticles: innovations in ocular drug delivery. Front Mol Biosci 2024; 11:1421959. [PMID: 39355534 PMCID: PMC11442363 DOI: 10.3389/fmolb.2024.1421959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/21/2024] [Indexed: 10/03/2024] Open
Abstract
Ocular drug delivery presents significant challenges due to intricate anatomy and the various barriers (corneal, tear, conjunctival, blood-aqueous, blood-retinal, and degradative enzymes) within the eye. Lipid-based nanoparticles (LNPs) have emerged as promising carriers for ocular drug delivery due to their ability to enhance drug solubility, improve bioavailability, and provide sustained release. LNPs, particularly solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), and cationic nanostructured lipid carriers (CNLCs), have emerged as promising solutions for enhancing ocular drug delivery. This review provides a comprehensive summary of lipid nanoparticle-based drug delivery systems, emphasizing their biocompatibility and efficiency in ocular applications. We evaluated research and review articles sourced from databases such as Google Scholar, TandFonline, SpringerLink, and ScienceDirect, focusing on studies published between 2013 and 2023. The review discusses the materials and methodologies employed in the preparation of SLNs, NLCs, and CNLCs, focusing on their application as proficient carriers for ocular drug delivery. CNLCs, in particular, demonstrate superior effectiveness attributed due to their electrostatic bioadhesion to ocular tissues, enhancing drug delivery. However, continued research efforts are essential to further optimize CNLC formulations and validate their clinical utility, ensuring advancements in ocular drug delivery technology for improved patient outcomes.
Collapse
Affiliation(s)
- Mirza Salman Baig
- Anjuman-I-Islam’s Kalsekar Technical Campus School of Pharmacy, Affiliated to the University of Mumbai, New Panvel, Maharashtra, India
| | | | - Anas Ahmad
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Mohd. Ashif Khan
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Anzarul Haque
- Central Laboratories Unit (CLU), Qatar University, Doha, Qatar
| | - Thomas J. Webster
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- School of Engineering, Saveetha University, Chennai, India
- Program in Materials, UFPI, Teresina, Brazil
- Division of Pre-College and Undergraduate Studies, Brown University, Providence, RI, United States
| | - Md. Faiyazuddin
- School of Pharmacy, Al – Karim University, Katihar, Bihar, India
- Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Noora H. Al-Qahtani
- Central Laboratories Unit (CLU), Qatar University, Doha, Qatar
- Center for Advanced Materials, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Zheng L, Chen Y, Han Y, Lin J, Fan K, Wang M, Teng T, Yang X, Ke L, Li M, Guo S, Li Z, Wu Y, Li C. Thermosensitive Polyhedral Oligomeric Silsesquioxane Hybrid Hydrogel Enhances the Antibacterial Efficiency of Erythromycin in Bacterial Keratitis. Biomater Res 2024; 28:0033. [PMID: 39040621 PMCID: PMC11260774 DOI: 10.34133/bmr.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/26/2024] [Indexed: 07/24/2024] Open
Abstract
Bacterial keratitis is a serious ocular infection that can impair vision or even cause blindness. The clinical use of antibiotics is limited due to their low bioavailability and drug resistance. Hence, there is a need to develop a novel drug delivery system for this infectious disease. In this study, erythromycin (EM) was encapsulated into a bifunctional polyhedral oligomeric silsesquioxane (BPOSS) with the backbone of the poly-PEG/PPG urethane (BPEP) hydrogel with the aim of improving the drug efficiency in treating bacterial keratitis. A comprehensive characterization of the BPEP hydrogel was performed, and its biocompatibility was assessed. Furthermore, we carried out the evaluation of the antimicrobial effect of the BPEP-EM hydrogel in S. aureus keratitis using in vivo mouse model. The BPEP hydrogel exhibited self-assembling and thermogelling properties, which assisted the drug loading of drug EM and improved its water solubility. Furthermore, the BPEP hydrogel could effectively bind with mucin on the ocular surface, thereby markedly prolonging the ocular residence time of EM. In vivo testing confirmed that the BPEP-EM hydrogel exerted a potent therapeutic action in the mouse model of bacterial keratitis. In addition, the hydrogel also exhibited an excellent biocompatibility. Our findings demonstrate that the BPEP-EM hydrogel showed a superior therapeutic effect in bacterial keratitis and demonstrated its potential as an ophthalmic formulation.
Collapse
Affiliation(s)
- Lan Zheng
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center & Affiliated First Hospital, School of Medicine,
Xiamen University, Xiamen 361102, PR China
| | - Ying Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology,
School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Yi Han
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center & Affiliated First Hospital, School of Medicine,
Xiamen University, Xiamen 361102, PR China
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Jingwei Lin
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center & Affiliated First Hospital, School of Medicine,
Xiamen University, Xiamen 361102, PR China
| | - Kai Fan
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology,
School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Mengyuan Wang
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center & Affiliated First Hospital, School of Medicine,
Xiamen University, Xiamen 361102, PR China
| | - Ting Teng
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Xiuqin Yang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology,
School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Lingjie Ke
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology,
School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Muyuan Li
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117,Shandong Province, PR China
| | - Shujia Guo
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center & Affiliated First Hospital, School of Medicine,
Xiamen University, Xiamen 361102, PR China
| | - Zibiao Li
- Huaxia Eye Hospital of Quanzhou, Quanzhou, Fujian 362000, China
| | - Yunlong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology,
School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Cheng Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center & Affiliated First Hospital, School of Medicine,
Xiamen University, Xiamen 361102, PR China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117,Shandong Province, PR China
- Huaxia Eye Hospital of Quanzhou, Quanzhou, Fujian 362000, China
| |
Collapse
|
5
|
Li Y, Wang Y, Li Y, Yan S, Gao X, Li P, Zheng X, Gu Q. Dress me an outfit: advanced probiotics hybrid systems for intelligent IBD therapy. Crit Rev Food Sci Nutr 2024:1-24. [PMID: 39007752 DOI: 10.1080/10408398.2024.2359135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Inflammation bowel disease (IBD) has emerged as a public health challenge worldwide; with high incidence and rapid prevalence, it has troubled billions of people and further induced multitudinous systemic complications. Recent decade has witnessed the vigorous application of food-borne probiotics for IBD therapy; however, the complicated and changeable environments of digestive tract have forced probiotics to face multiple in vivo pressures, consequently causing unsatisfied prophylactic or therapeutic efficacy attributed to off-targeted arrival, damaged viability, insufficient colonization efficiency, etc. Fortunately, arisen hybrid technology has provided versatile breakthroughs for the targeted transplantation of probiotics. By ingeniously modifying probiotics to form probiotics hybrid systems (PHS), the biological behaviors of probiotics in vivo could be mediated, the interactions between probiotics with intestinal components can be facilitated, and diverse advanced probiotic-based therapies for IBD challenge can be developed, which attribute to the intelligent response to microenvironment of PHS, and intelligent design of PHS for multiple functions combination. In this review, various PHS were categorized and their intestinal behaviors were elucidated systematically, their therapeutic effects and intrinsic mechanism were further analyzed. Besides, shortages of present PHS and the corresponding solutions have been discussed, based on which the future perspectives of this field have also been proposed. The undeniable fact is that PHS show an incomparable future to bring the next generation of advanced food science.
Collapse
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yadi Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yapeng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Shihai Yan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xin Gao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Ping Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, People's Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
6
|
Shaikhi Shoushtari F, Naghshbandy M, Rezaei L, Mehrandish S, Mirzaeei S. Fabrication of Anti-glaucoma Nanofibers as Controlled-Release Inserts for Ophthalmic Delivery of Brimonidine Tartrate: In Vivo Evaluation in Caprine Eye. Adv Pharm Bull 2024; 14:378-387. [PMID: 39206390 PMCID: PMC11347738 DOI: 10.34172/apb.2024.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/02/2023] [Accepted: 01/07/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Chronic ailments usually decrease the quality of life due to the requirement for repetitive administration of drugs. Glaucoma is a chronic eye disease occurred because of increased intraocular pressure (IOP). Controlled-release inserts can overcome this challenge by a gradual release of the antiglaucoma drugs. This study aimed to fabricate ocular inserts of brimonidine tartrate (BMD) for the management of glaucoma. Methods Different polymers including poly (D, L-lactide), polycaprolactone, cellulose acetate, and Eudragit RL100® were used to develop the BMD-loaded nanofibrous inserts by electrospinning technique. The inserts were characterized. The morphology and drug-polymer compatibility were examined by scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy and in vitro drug release in PBS. The IOP-lowering efficacy and irritancy of optimized formulation were assessed in the caprines. Results SEM images demonstrated nanofibers with uniform morphology and a mean diameter<300 nm were fabricated. The nanofibers were high-strength and flexible enough to be placed in the conjunctival sac. FTIR showed drug-polymer compatibility. In vitro release study indicated a sustained-release profile of the drug during 6 days for inserts. In vivo evaluation indicated that the optimized formulation is capable of maintaining the IOP in a non-glaucomatous range for an extended duration of 6 days. In addition, the formulation was non-irritant to the caprine eye. Conclusion Due to the prolonged IOP-lowering efficiency, BMD-loaded nanofibrous inserts can be considered suitable for the controlled release of drugs and thus enhance patient compliance by reducing the frequency of administration.
Collapse
Affiliation(s)
- Fariba Shaikhi Shoushtari
- Department of Ophthalmology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammadshakib Naghshbandy
- Department of Ophthalmology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezaei
- Department of Ophthalmology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saba Mehrandish
- Pharmaceutical Sciences Research Center, Rahesh Daru Novine, Kermanshah 6715847141, Iran
| | - Shahla Mirzaeei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Farahmandnejad M, Alipour S, Nokhodchi A. Physical and mechanical properties of ocular thin films: a systematic review and meta-analysis. Drug Discov Today 2024; 29:103964. [PMID: 38552779 DOI: 10.1016/j.drudis.2024.103964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
The ocular thin film presents a potential solution for addressing challenges to ocular drug delivery. In this review, we summarise the findings of a comprehensive review analysing 336 formulations from 68 studies. We investigated the physical and mechanical properties of ocular thin films, categorised into natural polymer-based, synthetic polymer-based, and combined polymer films. The results showed that the type of polymers used impacted mucoadhesion force, moisture absorption:moisture loss ratio, pH, swelling index, and elongation percentage. Significant relationships were found between these properties within each subgroup. The results also highlighted the influence of plasticisers on elongation percentage, mucoadhesion force, swelling index, and moisture absorption:moisture loss ratio. These findings have implications for designing and optimising ocular drug formulations and selecting appropriate plasticisers to achieve formulations with the desired properties.
Collapse
Affiliation(s)
- Mitra Farahmandnejad
- Department of Drug & Food Quality Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Shohreh Alipour
- Department of Drug & Food Quality Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Nokhodchi
- School of Life Sciences, University of Sussex, Brighton, UK; Lupin Research Inc, Coral Springs, FL, USA.
| |
Collapse
|
8
|
Maddileti R, Chinthaginjala H. Precision Formulation of Ocular Films for Eye Infections using Innovative Quality by Design Optimization. DRUG METABOLISM AND BIOANALYSIS LETTERS 2024; 17:88-98. [PMID: 39936432 DOI: 10.2174/0118723128364823250130094219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 02/13/2025]
Abstract
AIM The current study focused on formulating ocular films embedded with levofloxacin for the treatment of conjunctivitis by employing the solvent-casting technique. METHODS These films were formulated with gelatin, Aloe barbadensis leaves mucilage (ABLM), and HPMC K4M to enhance the therapeutic effectiveness of levofloxacin. Various evaluations were carried out to confirm the quality and stability of the films, including assessments of thickness, weight uniformity, uniformity in LFX, % loss of moisture, and permeation. In vitro drug release studies were conducted to simulate ocular environments and analyze the precise release of LFX. RESULTS The films exhibited uniform thickness (0.15-0.19 mm) and weight (61.85-65.54 mg) with a consistent film area (0.502 cm²). LFX content ranged from 85.66% to 97.03%, with T-6 being the most uniform. Moisture loss was found to be 7.98-9.55%, and absorption (highest in T-6, i.e., 18.05%) increased with gelatin. LFX permeation peaked at 97.03% (T-6) in 24-h diffusion studies. T-8 demonstrated exceptional mucoadhesion (>10 h), and ANOVA confirmed the important influence of gelatin, ABLM, and HPMC K4M on LFX content (F-value: 129.91, p=0.0010). CONCLUSION The study concluded that combining ABLM with HPMC K4M enabled consistent, diffusion-controlled release of LFX, offering an effective and sustained formulation for treating conjunctivitis.
Collapse
Affiliation(s)
- Repollu Maddileti
- Department of Pharmaceutical Sciences, Research and Development, Jawaharlal Nehru Technological University- Anantapur, Ananthapuramu, 515001, Andhra Pradesh, India
| | - Haranath Chinthaginjala
- Department of Pharmaceutics, Raghavendra Institute of Pharmaceutical Education and Research (Autonomous), KR. Palli Cross, 515721 (affiliated to JNTU-Anantapur), Ananthapuramu, Andhra Pradesh, India
| |
Collapse
|
9
|
El Zaafarany GM, Hathout RM, Ibrahim SS. Nanocarriers significantly augment the absorption of ocular-delivered drugs: A comparative meta-analysis study. Int J Pharm 2023; 642:123204. [PMID: 37406947 DOI: 10.1016/j.ijpharm.2023.123204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
This study presents a meta-analysis that compiles information collected from several studies aiming to prove, by evidence, that nanocarriers out-perform conventional formulations in augmenting the bioavailability of ocular topically administered drugs. Data was further categorized into two subgroups; polymeric-based nanocarriers versus their lipid-based counterparts, as well as, naturally-driven carriers versus synthetically-fabricated ones. After normalization, the pharmacokinetic factor, area under the curve (AUC), was denoted as the "effect" in the conducted study, and the corresponding Forest plots were obtained. Our meta-analysis study confirmed the absorption enhancement effect of loading drugs into nanocarriers as compared to conventional topical ocular dosage forms. Interestingly, no significant differences were recorded between the polymeric and lipidic nanocarriers included in the study, while naturally-driven nanoplatforms were proven superior to the synthetic alternatives.
Collapse
Affiliation(s)
- Ghada M El Zaafarany
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Shaimaa S Ibrahim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
10
|
Bierbrauer KL, Comini LR, Leonhard V, Escobar Manzanelli MA, Castelli G, Farfán S, Alasino RV, Beltramo DM. Eudragit Films as Carriers of Lipoic Acid for Transcorneal Permeability. Polymers (Basel) 2023; 15:polym15071793. [PMID: 37050407 PMCID: PMC10097161 DOI: 10.3390/polym15071793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 04/08/2023] Open
Abstract
Diabetes mellitus (DM) is a highly prevalent disease affecting almost 10% of the world population; it is characterized by acute and chronic conditions. Diabetic patients have twenty-five times higher risk of going blind and developing cataracts early than the general population. Alpha-lipoic acid (LA) is a highly valuable natural antioxidant for the prevention and treatment of ophthalmic complications, such as diabetic keratopathy and retinopathy. However, its applicability is limited due to its low solubility in water; therefore, suitable systems are required for its formulation. In this work we developed an erodible insert based on Eudragit E100 (E PO) and Lipoic Acid (LA) for the delivery of this compound for the preventive treatment of ocular diseases especially in diabetic patients. Film evaluation was carried out by mechanical and thermal properties, mucoadhesivity, drug release, dynamic light scattering and corneal permeability as the concentration of LA increased. It was shown that upon LA release, it forms nanoparticles in combination with E PO that favor corneal permeation and LA retention in the cornea. These E PO-LA films also resulted non-irritable hence they are promising for their application in the treatment of ocular diseases.
Collapse
Affiliation(s)
- Karina L. Bierbrauer
- Centro de Excelencia en Productos y Procesos de Córdoba, Gobierno de la Provincia de Córdoba, Pabellón CEPROCOR, Santa María de Punilla, Córdoba CP 5164, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CCT Córdoba, Córdoba CP X5000, Argentina
| | - Laura R. Comini
- Centro de Excelencia en Productos y Procesos de Córdoba, Gobierno de la Provincia de Córdoba, Pabellón CEPROCOR, Santa María de Punilla, Córdoba CP 5164, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CCT Córdoba, Córdoba CP X5000, Argentina
| | - Victoria Leonhard
- Centro de Excelencia en Productos y Procesos de Córdoba, Gobierno de la Provincia de Córdoba, Pabellón CEPROCOR, Santa María de Punilla, Córdoba CP 5164, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CCT Córdoba, Córdoba CP X5000, Argentina
| | - Micaela A. Escobar Manzanelli
- Centro de Excelencia en Productos y Procesos de Córdoba, Gobierno de la Provincia de Córdoba, Pabellón CEPROCOR, Santa María de Punilla, Córdoba CP 5164, Argentina
| | - Gabriela Castelli
- Centro de Excelencia en Productos y Procesos de Córdoba, Gobierno de la Provincia de Córdoba, Pabellón CEPROCOR, Santa María de Punilla, Córdoba CP 5164, Argentina
| | - Silvia Farfán
- Centro de Excelencia en Productos y Procesos de Córdoba, Gobierno de la Provincia de Córdoba, Pabellón CEPROCOR, Santa María de Punilla, Córdoba CP 5164, Argentina
| | - Roxana V. Alasino
- Centro de Excelencia en Productos y Procesos de Córdoba, Gobierno de la Provincia de Córdoba, Pabellón CEPROCOR, Santa María de Punilla, Córdoba CP 5164, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CCT Córdoba, Córdoba CP X5000, Argentina
| | - Dante M. Beltramo
- Centro de Excelencia en Productos y Procesos de Córdoba, Gobierno de la Provincia de Córdoba, Pabellón CEPROCOR, Santa María de Punilla, Córdoba CP 5164, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CCT Córdoba, Córdoba CP X5000, Argentina
- Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba CP X5000, Argentina
| |
Collapse
|