1
|
Cheema NA, Castagna A, Ambrosani F, Argentino G, Friso S, Zurlo M, Beri R, Maule M, Vaia R, Senna G, Caminati M. Extracellular Vesicles in Asthma: Intercellular Cross-Talk in TH2 Inflammation. Cells 2025; 14:542. [PMID: 40214495 PMCID: PMC11989134 DOI: 10.3390/cells14070542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
Asthma is a complex, multifactorial inflammatory disorder of the airways, characterized by recurrent symptoms and variable airflow obstruction. So far, two main asthma endotypes have been identified, type 2 (T2)-high or T2-low, based on the underlying immunological mechanisms. Recently, extracellular vesicles (EVs), particularly exosomes, have gained increasing attention due to their pivotal role in intercellular communication and distal signaling modulation. In the context of asthma pathobiology, an increasing amount of experimental evidence suggests that EVs secreted by eosinophils, mast cells, dendritic cells, T cells, neutrophils, macrophages, and epithelial cells contribute to disease modulation. This review explores the role of EVs in profiling the molecular signatures of T2-high and T2-low asthma, offering novel perspectives on disease mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Naila Arif Cheema
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
| | - Annalisa Castagna
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
| | - Francesca Ambrosani
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
| | - Giuseppe Argentino
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
| | - Simonetta Friso
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
| | - Marco Zurlo
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
- Allergy Unit and Asthma Center, Verona Integrated University Hospital, 37126 Verona, Italy
| | - Ruggero Beri
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
| | - Matteo Maule
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
- Allergy Unit and Asthma Center, Verona Integrated University Hospital, 37126 Verona, Italy
| | - Rachele Vaia
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
- Allergy Unit and Asthma Center, Verona Integrated University Hospital, 37126 Verona, Italy
| | - Gianenrico Senna
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
- Allergy Unit and Asthma Center, Verona Integrated University Hospital, 37126 Verona, Italy
| | - Marco Caminati
- Department of Medicine, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy; (N.A.C.); (M.Z.); (R.V.); (G.S.) (A.C.); (F.A.); (G.A.); (S.F.); (R.B.)
- Allergy Unit and Asthma Center, Verona Integrated University Hospital, 37126 Verona, Italy
| |
Collapse
|
2
|
Chavda VP, Bezbaruah R, Ahmed N, Alom S, Bhattacharjee B, Nalla LV, Rynjah D, Gadanec LK, Apostolopoulos V. Proinflammatory Cytokines in Chronic Respiratory Diseases and Their Management. Cells 2025; 14:400. [PMID: 40136649 PMCID: PMC11941495 DOI: 10.3390/cells14060400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Pulmonary homeostasis can be agitated either by external environmental insults or endogenous factors produced during respiratory/pulmonary diseases. The lungs counter these insults by initiating mechanisms of inflammation as a localized, non-specific first-line defense response. Cytokines are small signaling glycoprotein molecules that control the immune response. They are formed by numerous categories of cell types and induce the movement, growth, differentiation, and death of cells. During respiratory diseases, multiple proinflammatory cytokines play a crucial role in orchestrating chronic inflammation and structural changes in the respiratory tract by recruiting inflammatory cells and maintaining the release of growth factors to maintain inflammation. The issue aggravates when the inflammatory response is exaggerated and/or cytokine production becomes dysregulated. In such instances, unresolving and chronic inflammatory reactions and cytokine production accelerate airway remodeling and maladaptive outcomes. Pro-inflammatory cytokines generate these deleterious consequences through interactions with receptors, which in turn initiate a signal in the cell, triggering a response. The cytokine profile and inflammatory cascade seen in different pulmonary diseases vary and have become fundamental targets for advancement in new therapeutic strategies for lung diseases. There are considerable therapeutic approaches that target cytokine-mediated inflammation in pulmonary diseases; however, blocking specific cytokines may not contribute to clinical benefit. Alternatively, broad-spectrum anti-inflammatory approaches are more likely to be clinically effective. Herein, this comprehensive review of the literature identifies various cytokines (e.g., interleukins, chemokines, and growth factors) involved in pulmonary inflammation and the pathogenesis of respiratory diseases (e.g., asthma, chronic obstructive pulmonary, lung cancer, pneumonia, and pulmonary fibrosis) and investigates targeted therapeutic treatment approaches.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (R.B.); (N.A.); (S.A.)
- Institute of Pharmacy, Assam Medical College and Hospital, Dibrugarh 786002, Assam, India
| | - Nasima Ahmed
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (R.B.); (N.A.); (S.A.)
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (R.B.); (N.A.); (S.A.)
- Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India; (B.B.); (D.R.)
| | - Bedanta Bhattacharjee
- Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India; (B.B.); (D.R.)
| | - Lakshmi Vineela Nalla
- Department of Pharmacology, GITAM School of Pharmacy, GITAM (Deemed to be University), Rushikonda, Visakhapatnam 530045, Andhra Pradesh, India;
| | - Damanbhalang Rynjah
- Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India; (B.B.); (D.R.)
| | - Laura Kate Gadanec
- Institute for Health and Sport, Immunology and Translational Research Group, Victoria University, Werribee, VIC 3030, Australia;
| | - Vasso Apostolopoulos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia;
| |
Collapse
|
3
|
García-Moguel I, Martínez-Mesa Á, Andújar-Espinosa R, Díaz-Campos R, Velasco-Garrido JL, Sanchez-Trincado JL, Luzon E, Nuevo J, Alconada C, Gutiérrez MÁ, Niza G, Padilla-Galo A. The impact of blood eosinophil count and FeNO on benralizumab effectiveness in clinical practice: An ORBE II subanalysis. Respir Med 2025; 237:107940. [PMID: 39814271 DOI: 10.1016/j.rmed.2025.107940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/28/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND The ORBE II study showed the real-world effectiveness of benralizumab in severe eosinophilic asthma (SEA). This subgroup analysis aimed to characterize patients and outcomes based on baseline blood eosinophil count (BEC) and/or fractional exhaled nitric oxide (FeNO) levels. METHODS In this analysis of the ORBE II retrospective study, SEA patients receiving benralizumab were categorized into subgroups based on individual or combined BEC/FeNO levels, according to the following thresholds: high BEC (hiBEC): ≥300 cells/μL; low BEC (loBEC): <300 cells/μL; high FeNO (hiFeNO): ≥50 ppb; low FeNO (loFeNO): <50 ppb. Baseline and up to 1 year of follow-up data are described. RESULTS Most patients with available data were classified as hiBEC (72.6 %) and 38.3 % as hiFeNO. The distribution according to combined baseline BEC and FeNO levels revealed a heterogeneous patient population. Although common SEA features were shared among subgroups, some distinct characteristics were observed, including elevated allergic asthma prevalence in hiBEC/loFeNO patients, high obesity prevalence and fewer non-smokers in loBEC/loFeNO patients, remarkable severe exacerbation rates in loBEC/hiFeNO patients [5.5 SD (6.0)], and more severe symptoms in the hiBEC/loBEC subgroup. All subgroups showed benefits following benralizumab treatment, with super-responder rates ranging from 68.2 % to 83.3 % and clinical remission rates reaching 70.0 %. Particularly good responses were noted in hiBEC/hiFeNO patients. CONCLUSIONS This study shows the variability of T2 biomarkers in ORBE II SEA patients, emphasizing the prevalence of high BEC values. While benralizumab benefits were important regardless of BEC, high BEC predicted good outcomes and FeNO had less influence on treatment effectiveness.
Collapse
Affiliation(s)
- Ismael García-Moguel
- Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain
| | | | | | - Rocío Díaz-Campos
- Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Madrid, Spain
| | | | | | - Elisa Luzon
- Departamento Médico, AstraZeneca Farmacéutica S.A., Madrid, Spain
| | - Javier Nuevo
- Departamento Médico, AstraZeneca Farmacéutica S.A., Madrid, Spain
| | - Carlos Alconada
- Departamento Médico, AstraZeneca Farmacéutica S.A., Madrid, Spain
| | | | - Gabriel Niza
- Departamento Médico, AstraZeneca Farmacéutica S.A., Madrid, Spain
| | | |
Collapse
|
4
|
Mohany KM, Gamal Y, Raheem YFA. Association of LPCAT1-rs8352 genetic variant with susceptibility and severity of pediatric bronchial asthma: a case-control study. BMC Pediatr 2025; 25:68. [PMID: 39871194 PMCID: PMC11770991 DOI: 10.1186/s12887-025-05425-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND This study aimed to investigate the possible association of LPCAT1-rs8352 genetic variant (single nucleotide change C to G) with the onset and severity of pediatric asthma. Additionally, the study examined the influence of LPCAT1-rs8352 genotypes on asthma-related biomarkers including blood eosinophils count (BEC), eosinophil cationic protein (ECP), high-sensitivity C-reactive protein (hs-CRP), and immunoglobulin E (IgE) and on lung function [forced expiratory volume in one second (FEV1) and the forced vital capacity (FVC)]. PATIENTS AND METHODS The study included ninety-six participant grouped into two groups: G1 (46 asthmatics) and G2 (50 healthy controls). ECP, hs-CRP, and total IgE serum levels were measured using their corresponding ELISA kits. Neonatal blood DNA was extracted using the Gene JET™ Whole Blood Genomic DNA Purification Mini Kit. Genotyping was performed by RT-PCR. RESULTS A significantly higher proportion of individuals in G1 had the LPCAT1-rs8352 CC and GC genotypes compared to G2 (p < 0.001). Individuals with the CC genotype exhibited significantly more severe asthma, along with elevated levels of BEC, ECP, hs-CRP, and total IgE. Those with the GC genotype demonstrated a similar, though less severe, pattern, followed by individuals with the GG genotype. The FEV1 and FVC values showed the opposite trend, with individuals having the GG genotype exhibiting the highest lung function values. CONCLUSION The LPCAT1-rs8352 allele C is associated with pediatric asthma onset and severity. Further research on the LPCAT1 genetic variants may provide a deeper understanding of pediatric bronchial asthma mechanisms and lead to improved management strategies.
Collapse
Affiliation(s)
- Khalid M Mohany
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, EL Gammaa street, Assiut, 71515, Egypt.
| | - Yasser Gamal
- Department of Pediatrics, Faculty of Medicine, Assiut University, Egypt, 71515, Assiut, Egypt
| | - Yaser F Abdel Raheem
- Department of Pediatrics, Faculty of Medicine, Assiut University, Egypt, 71515, Assiut, Egypt
| |
Collapse
|
5
|
Ashique S, Mishra N, Mantry S, Garg A, Kumar N, Gupta M, Kar SK, Islam A, Mohanto S, Subramaniyan V. Crosstalk between ROS-inflammatory gene expression axis in the progression of lung disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:417-448. [PMID: 39196392 DOI: 10.1007/s00210-024-03392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
A significant number of deaths and disabilities worldwide are brought on by inflammatory lung diseases. Many inflammatory lung disorders, including chronic respiratory emphysema, resistant asthma, resistance to steroids, and coronavirus-infected lung infections, have severe variants for which there are no viable treatments; as a result, new treatment alternatives are needed. Here, we emphasize how oxidative imbalance contributes to the emergence of provocative lung problems that are challenging to treat. Endogenic antioxidant systems are not enough to avert free radical-mediated damage due to the induced overproduction of ROS. Pro-inflammatory mediators are then produced due to intracellular signaling events, which can harm the tissue and worsen the inflammatory response. Overproduction of ROS causes oxidative stress, which causes lung damage and various disease conditions. Invasive microorganisms or hazardous substances that are inhaled repeatedly can cause an excessive amount of ROS to be produced. By starting signal transduction pathways, increased ROS generation during inflammation may cause recurrent DNA damage and apoptosis and activate proto-oncogenes. This review provides information about new targets for conducting research in related domains or target factors to prevent, control, or treat such inflammatory oxidative stress-induced inflammatory lung disorders.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, 713212, India.
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, MP, 474005, India
| | - Shubhrajit Mantry
- Department of Pharmaceutics, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, 483001, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to Be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Sanjeeb Kumar Kar
- Department of Pharmaceutical Chemistry, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
6
|
Kang YR, Kim H, Lee CE, Jung JW, Moon JY, Park SY, Kim SH, Yang MS, Kim BK, Kwon JW, Park HK, Nam YH, Cho YJ, Lee T, Adcock IM, Bhavsar P, Chung KF, Kim TB. Serum and urine eosinophil-derived neurotoxin (EDN) levels predict biologic response in severe asthma. World Allergy Organ J 2025; 18:100990. [PMID: 39896201 PMCID: PMC11784766 DOI: 10.1016/j.waojou.2024.100990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 02/04/2025] Open
Abstract
Background Eosinophils are crucial in allergic inflammation, and their correlation with asthma severity has made them a focal point in predicting treatment outcomes. Blood eosinophil count is a commonly utilized marker. However, its limitations have prompted alternative biomarker exploration, such as eosinophil-derived neurotoxin (EDN). Objective This research was conducted over 24 weeks on 56 patients with severe asthma treated with mepolizumab, reslizumab, and dupilumab. We aimed to evaluate the clinical significance of blood eosinophil count and their potential, including those of blood EDN levels and urine EDN values as biomarkers for predicting treatment response. Methods The analysis encompassed examining correlations between biomarkers and clinical features, including exacerbation rates and lung function, through ELISA assays and subsequent statistical analyses. The study protocol is registered at ClinicalTrials.gov (NCT05164939). Results The findings underscore strong correlations between serum EDN levels, blood eosinophil counts, and treatment responses, with EDN demonstrating comparable predictive capabilities to blood eosinophil counts to determine treatment responses. Different biologics exhibited varying efficacy regarding baseline eosinophil counts and EDN levels. Conclusions Blood eosinophil counts and EDN levels show potential as predictive markers for treatment responses in patients with severe asthma undergoing biologic therapies. However, further comprehensive studies are warranted to enhance the reliability and applicability of EDN as an effective asthma treatment biomarker.
Collapse
Affiliation(s)
- Yu Ri Kang
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| | - Hyunkyoung Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Chae Eun Lee
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae-Woo Jung
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Ji-Yong Moon
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, South Korea
| | - So Young Park
- Department of Internal Medicine, Eulji University School of Medicine, Seoul, South Korea
| | - Sae-Hoon Kim
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Min-Suk Yang
- Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Byung Keun Kim
- Department of Internal Medicine, Korea University Medical Center Anam Hospital, Seoul, South Korea
| | - Jae-Woo Kwon
- Department of Allergy and Clinical Immunology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hye-Kyung Park
- Department of Internal Medicine, Pusan National University Hospital, Pusan National University College of Medicine, Busan, South Korea
| | - Young-Hee Nam
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, South Korea
| | - Young-Joo Cho
- Department of Allergy and Clinical Immunology, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Taehoon Lee
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, South Korea
| | | | | | | | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
Vultaggio A, Bergantini L, Crimi C, Matucci A, Menzella F, Schroeder JWV, Senna G, Cameli P. Benralizumab: from tissue distribution to eosinophilic cytotoxicity up to potential immunoregulation. Expert Opin Biol Ther 2025; 25:175-185. [PMID: 39708290 DOI: 10.1080/14712598.2024.2446600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION Benralizumab, a monoclonal IgG antibody, has emerged as a key therapeutic agent in severe asthma by specifically targeting eosinophils, pivotal cells that drive inflammation and tissue damage. Over the past two decades, the availability of such targeted therapies has allowed patients to achieve better disease control. Real-world evidence has consistently demonstrated the effectiveness of benralizumab in managing severe asthma. AREAS COVERED This paper discusses the kinetic and potential mechanism of action of benralizumab beyond the well-known antibody-dependent cell-mediated cytotoxicity involving natural killer cells. EXPERT OPINION The available data so far clearly show that reducing eosinophils, one of the main drivers of inflammation and tissue damage in SA, accounts for clinical benefits to these patients. Benralizumab is able to directly reduce tissue levels of eosinophils via multiple mechanisms, and additionally, it is potentially able to modulate the innate immune response. The complex and unique multiple modes of action of benralizumab and its pharmacokinetic features, seem to be the milestone on which the effectiveness of benralizumab is founded.
Collapse
Affiliation(s)
- Alessandra Vultaggio
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Bergantini
- Respiratory Diseases Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Claudia Crimi
- Respiratory Medicine Unit, Policlinico "G. Rodolico-San Marco" University Hospital, Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Andrea Matucci
- Immunoallergology Unit, Careggi University Hospital, Florence, Italy
| | | | | | - Gianenrico Senna
- Allergy Unit and Asthma Center, Verona University Hospital, Verona, Italy
| | - Paolo Cameli
- Respiratory Diseases Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
8
|
Hansi RK, Ranjbar M, Whetstone CE, Gauvreau GM. Regulation of Airway Epithelial-Derived Alarmins in Asthma: Perspectives for Therapeutic Targets. Biomedicines 2024; 12:2312. [PMID: 39457624 PMCID: PMC11505104 DOI: 10.3390/biomedicines12102312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Asthma is a chronic respiratory condition predominantly driven by a type 2 immune response. Epithelial-derived alarmins such as thymic stromal lymphopoietin (TSLP), interleukin (IL)-33, and IL-25 orchestrate the activation of downstream Th2 cells and group 2 innate lymphoid cells (ILC2s), along with other immune effector cells. While these alarmins are produced in response to inhaled triggers, such as allergens, respiratory pathogens or particulate matter, disproportionate alarmin production by airway epithelial cells can lead to asthma exacerbations. With alarmins produced upstream of the type 2 inflammatory cascade, understanding the pathways by which these alarmins are regulated and expressed is critical to further explore new therapeutics for the treatment of asthmatic patients. This review emphasizes the critical role of airway epithelium and epithelial-derived alarmins in asthma pathogenesis and highlights the potential of targeting alarmins as a promising therapeutic to improve outcomes for asthma patients.
Collapse
Affiliation(s)
| | | | | | - Gail M. Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (R.K.H.); (M.R.); (C.E.W.)
| |
Collapse
|
9
|
Rupani H, Busse WW, Howarth PH, Bardin PG, Adcock IM, Konno S, Jackson DJ. Therapeutic relevance of eosinophilic inflammation and airway viral interactions in severe asthma. Allergy 2024; 79:2589-2604. [PMID: 39087443 DOI: 10.1111/all.16242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
The role of eosinophils in airway inflammation and asthma pathogenesis is well established, with raised eosinophil counts in blood and sputum associated with increased disease severity and risk of asthma exacerbation. Conversely, there is also preliminary evidence suggesting antiviral properties of eosinophils in the airways. These dual roles for eosinophils are particularly pertinent as respiratory virus infections contribute to asthma exacerbations. Biologic therapies targeting key molecules implicated in eosinophil-associated pathologies have been approved in patients with severe asthma and, therefore, the effects of depleting eosinophils in a clinical setting are of considerable interest. This review discusses the pathological and antiviral roles of eosinophils in asthma and exacerbations. We also highlight the significant reduction in asthma exacerbations seen with biologic therapies, even at the height of the respiratory virus season. Furthermore, we discuss the implications of these findings in relation to the role of eosinophils in inflammation and antiviral responses to respiratory virus infection in asthma.
Collapse
Affiliation(s)
- Hitasha Rupani
- Department of Respiratory Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, Hampshire, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - William W Busse
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Peter H Howarth
- Global Medical, Global Specialty and Primary Care, GSK, Brentford, Middlesex, UK
| | - Philip G Bardin
- Monash Lung Sleep Allergy and Immunology, Monash University and Medical Centre and Hudson Institute, Melbourne, Victoria, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - David J Jackson
- Guy's Severe Asthma Centre, Guy's and St Thomas' Hospitals, London, UK
- School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
10
|
Ambrosino P, Marcuccio G, Raffio G, Formisano R, Candia C, Manzo F, Guerra G, Lubrano E, Mancusi C, Maniscalco M. Endotyping Chronic Respiratory Diseases: T2 Inflammation in the United Airways Model. Life (Basel) 2024; 14:899. [PMID: 39063652 PMCID: PMC11278432 DOI: 10.3390/life14070899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Over the past 15 years, the paradigm of viewing the upper and lower airways as a unified system has progressively shifted the approach to chronic respiratory diseases (CRDs). As the global prevalence of CRDs continues to increase, it becomes evident that acknowledging the presence of airway pathology as an integrated entity could profoundly impact healthcare resource allocation and guide the implementation of pharmacological and rehabilitation strategies. In the era of precision medicine, endotyping has emerged as another novel approach to CRDs, whereby pathologies are categorized into distinct subtypes based on specific molecular mechanisms. This has contributed to the growing acknowledgment of a group of conditions that, in both the upper and lower airways, share a common type 2 (T2) inflammatory signature. These diverse pathologies, ranging from allergic rhinitis to severe asthma, frequently coexist and share diagnostic and prognostic biomarkers, as well as therapeutic strategies targeting common molecular pathways. Thus, T2 inflammation may serve as a unifying endotypic trait for the upper and lower airways, reinforcing the practical significance of the united airways model. This review aims to summarize the literature on the role of T2 inflammation in major CRDs, emphasizing the value of common biomarkers and integrated treatment strategies targeting shared molecular mechanisms.
Collapse
Affiliation(s)
- Pasquale Ambrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Scientific Directorate of Telese Terme Institute, 82037 Telese Terme, Italy
| | - Giuseppina Marcuccio
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (G.M.); (G.R.)
| | - Giuseppina Raffio
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (G.M.); (G.R.)
| | - Roberto Formisano
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (R.F.); (E.L.)
| | - Claudio Candia
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy;
| | - Fabio Manzo
- Fleming Clinical Laboratory, 81020 Casapulla, Italy;
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy;
| | - Ennio Lubrano
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (R.F.); (E.L.)
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy;
| | - Costantino Mancusi
- Department of Advanced Biomedical Science, Federico II University, 80131 Naples, Italy;
| | - Mauro Maniscalco
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (G.M.); (G.R.)
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy;
| |
Collapse
|
11
|
Pelaia C, Melhorn J, Hinks TS, Couillard S, Vatrella A, Pelaia G, Pavord ID. Type 2 severe asthma: pathophysiology and treatment with biologics. Expert Rev Respir Med 2024; 18:485-498. [PMID: 38994712 DOI: 10.1080/17476348.2024.2380072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION The hallmark of most patients with severe asthma is type 2 inflammation, driven by innate and adaptive immune responses leading to either allergic or non-allergic eosinophilic infiltration of airways. The cellular and molecular pathways underlying severe type 2 asthma can be successfully targeted by specific monoclonal antibodies. AREAS COVERED This review article provides a concise overview of the pathophysiology of type 2 asthma, followed by an updated appraisal of the mechanisms of action and therapeutic efficacy of currently available biologic treatments used for management of severe type 2 asthma. Therefore, all reported information arises from a wide literature search performed on PubMed. EXPERT OPINION The main result of the recent advances in the field of anti-asthma biologic therapies is the implementation of a personalized medicine approach, aimed to achieve clinical remission of severe asthma. Today this accomplishment is made possible by the right choice of the most beneficial biologic drug for the pathologic traits characterizing each patient, including type 2 severe asthma and its comorbidities.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Calabria, Italy
| | - James Melhorn
- Nuffield Department of Medicine, Respiratory Medicine Unit, University of Oxford, Oxford, UK
| | - Timothy Sc Hinks
- Nuffield Department of Medicine, Respiratory Medicine Unit, University of Oxford, Oxford, UK
| | - Simon Couillard
- Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Girolamo Pelaia
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Ian D Pavord
- Nuffield Department of Medicine, Respiratory Medicine Unit, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Kumar A, Kant S, Niranjan V. Phenotype to Treatable Traits-Based Management in Chronic Obstructive Pulmonary Disease. Cureus 2024; 16:e60423. [PMID: 38882972 PMCID: PMC11179745 DOI: 10.7759/cureus.60423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a heterogeneous respiratory disease driven by various genetic and environmental factors, presents significant challenges in diagnosis and management. Traditional approaches focused on phenotypic classification, but recent paradigms emphasize identifying and addressing treatable traits to personalize treatment strategies. Treatable traits facilitate personalized interventions, optimizing symptom control, and reducing exacerbation risk. Dyspnea and exacerbations, recognized as key traits, guide treatment decisions and follow-up management. Various interventions, including bronchodilators, corticosteroids, and lifestyle modifications, target specific traits like airway inflammation, mucus overproduction, and emphysema. Strategies for assessing and addressing treatable traits during initial encounters and follow-up visits enhance disease monitoring and treatment efficacy. Comprehensive trait assessment demands resources and specialized monitoring, posing barriers to widespread implementation. The lack of standardized protocols and evolving evidence further complicates decision-making and clinical practice. Despite these challenges, the shift toward treatable traits-based management signifies a pivotal advancement in COPD care, emphasizing holistic approaches tailored to individual patient needs. Recognizing and addressing treatable traits offers personalized interventions, enhancing symptom control and disease management. Embracing treatable traits-based approaches holds promise for improving clinical outcomes and enhancing the quality of life for individuals living with COPD.
Collapse
Affiliation(s)
- Ankit Kumar
- Respiratory Medicine, King George's Medical University, Lucknow, IND
| | - Surya Kant
- Respiratory Medicine, King George's Medical University, Lucknow, IND
| | - Vijeta Niranjan
- Pathology, T.S. Misra Medical College and Hospital, Lucknow, IND
| |
Collapse
|
13
|
Onemu SO, Obeagu EI, Popoola AA, Osuntuyi MA, Isibor CN. An assessment of the immune status of some stone quarry workers in Ondo state, Nigeria. Medicine (Baltimore) 2024; 103:e36969. [PMID: 38215125 PMCID: PMC10783365 DOI: 10.1097/md.0000000000036969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/21/2023] [Indexed: 01/14/2024] Open
Abstract
Stone quarry activities in Nigeria are mostly unregulated such that the workers in these quarries are continuously exposed to the inhalation of silica dust. It has been observed that silica dust particles negatively impact the health of stone quarry workers which usually manifest as respiratory difficulties, asthma-like illnesses and other adventitious events of the lungs. The study was designed to evaluate the probable immunological impact of silica dust inhalation from stone crushing by workers. Blood samples were collected from consenting workers and analyzed for total white blood cells and their subsets. Absolute CD4 cells numbers were also determined. The results indicated that neutrophils and eosinophils numbers increased significantly (P < .05) and CD4 counts declined significantly (P < .001). Alteration in these proportions is a pointer to the injurious impact of silica dust on the immune system of these workers. The findings in this study should spur actions in the education of these workers on the need for the use of proper personal protection equipment and the establishment of a scheme to periodically carry out a health assessment check to identity those at most risk of developing chronic illnesses.
Collapse
Affiliation(s)
- Samson O. Onemu
- Department of Medical Laboratory Science, Achievers University, Owo, Nigeria
| | | | | | - Michael A. Osuntuyi
- Department of Medical Laboratory Science, Achievers University, Owo, Nigeria
| | - Clement N. Isibor
- Department of Biological Sciences, University of Delta, Agbor, Nigeria
| |
Collapse
|
14
|
Kunitatsu K, Yamamoto Y, Nasu S, Taniji A, Kawashima S, Yamagishi N, Ito T, Inoue S, Kanai Y. Novel Peritoneal Sclerosis Rat Model Developed by Administration of Bleomycin and Lansoprazole. Int J Mol Sci 2023; 24:16108. [PMID: 38003303 PMCID: PMC10671295 DOI: 10.3390/ijms242216108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
In our preliminary experiment, peritoneal sclerosis likely induced by peritoneal dialysis was unexpectedly observed in the livers of rats given bleomycin and lansoprazole. We examined whether this peritoneal thickening around the liver was time-dependently induced by administration of both drugs. Male Wistar rats were injected with bleomycin and/or lansoprazole for 2 or 4 weeks. The 3YB-1 cell line derived from rat fibroblasts was treated by bleomycin and/or lansoprazole for 24 h. The administration of both drugs together, but not individually, thickened the peritoneal tissue around the liver. There was accumulation of collagen fibers, macrophages, and eosinophils under mesothelial cells. Expressions of Col1a1, Mcp1 and Mcp3 genes were increased in the peritoneal tissue around the liver and in 3YB-1 cells by the administration of both drugs together, and Opn genes had increased expressions in this tissue and 3YB-1 cells. Mesothelial cells indicated immunoreactivity against both cytokeratin, a mesothelial cell marker, and αSMA, a fibroblast marker, around the livers of rats given both drugs. Administration of both drugs induced the migration of macrophages and eosinophils and induced fibrosis associated with the possible activation of fibroblasts and the possible promotion of the mesothelial-mesenchymal transition. This might become a novel model of peritoneal sclerosis for peritoneal dialysis.
Collapse
Affiliation(s)
- Kosei Kunitatsu
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Yuta Yamamoto
- Department of Anatomy and Cell Biology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Shota Nasu
- Department of Anatomy and Cell Biology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Akira Taniji
- Department of Anatomy and Cell Biology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Shuji Kawashima
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Naoko Yamagishi
- Department of Anatomy and Cell Biology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Takao Ito
- Department of Anatomy and Cell Biology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Shigeaki Inoue
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Yoshimitsu Kanai
- Department of Anatomy and Cell Biology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| |
Collapse
|
15
|
Siddiqui S, Bachert C, Bjermer L, Buchheit KM, Castro M, Qin Y, Rupani H, Sagara H, Howarth P, Taillé C. Eosinophils and tissue remodeling: Relevance to airway disease. J Allergy Clin Immunol 2023; 152:841-857. [PMID: 37343842 DOI: 10.1016/j.jaci.2023.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/15/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
The ability of human tissue to reorganize and restore its existing structure underlies tissue homeostasis in the healthy airways, but in disease can persist without normal resolution, leading to an altered airway structure. Eosinophils play a cardinal role in airway remodeling both in health and disease, driving epithelial homeostasis and extracellular matrix turnover. Physiological consequences associated with eosinophil-driven remodeling include impaired lung function and reduced bronchodilator reversibility in asthma, and obstructed airflow in chronic rhinosinusitis with nasal polyps. Given the contribution of airway remodeling to the development and persistence of symptoms in airways disease, targeting remodeling is an important therapeutic consideration. Indeed, there is early evidence that eosinophil attenuation may reduce remodeling and disease progression in asthma. This review provides an overview of tissue remodeling in both health and airway disease with a particular focus on eosinophilic asthma and chronic rhinosinusitis with nasal polyps, as well as the role of eosinophils in these processes and the implications for therapeutic interventions. Areas for future research are also noted, to help improve our understanding of the homeostatic and pathological roles of eosinophils in tissue remodeling, which should aid the development of targeted and effective treatments for eosinophilic diseases of the airways.
Collapse
Affiliation(s)
- Salman Siddiqui
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | - Claus Bachert
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Münster, Münster, Germany; First Affiliated Hospital, Sun Yat-Sen University, International Airway Research Center, Guangzhou, China; Division of Ear, Nose, and Throat Diseases, Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden; Upper Airways Research Laboratory, Faculty of Medicine, Ghent University, Ghent, Belgium
| | - Leif Bjermer
- Department of Clinical Sciences, Respiratory Medicine, and Allergology, Lund University, Lund, Sweden
| | - Kathleen M Buchheit
- Jeff and Penny Vinik Center for Allergic Diseases Research, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Mario Castro
- Division of Pulmonary, Critical Care Medicine, University of Kansas School of Medicine, Kansas City, NC
| | - Yimin Qin
- Global Medical Affairs, Global Specialty and Primary Care, GlaxoSmithKline, Research Triangle Park, NC
| | - Hitasha Rupani
- Department of Respiratory Medicine, University Hospital Southampton National Health Service Foundation Trust, Southampton, United Kingdom
| | - Hironori Sagara
- Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University, School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Peter Howarth
- Global Medical, Global Specialty and Primary Care, GlaxoSmithKline, Brentford, Middlesex, United Kingdom
| | - Camille Taillé
- Pneumology Department, Reference Center for Rare Pulmonary Diseases, Bichat Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unit 1152, University of Paris Cité, Paris, France
| |
Collapse
|
16
|
Yin R, Huang KX, Huang LA, Ji M, Zhao H, Li K, Gao A, Chen J, Li Z, Liu T, Shively JE, Kandeel F, Li J. Indole-Based and Cyclopentenylindole-Based Analogues Containing Fluorine Group as Potential 18F-Labeled Positron Emission Tomography (PET) G-Protein Coupled Receptor 44 (GPR44) Tracers. Pharmaceuticals (Basel) 2023; 16:1203. [PMID: 37765011 PMCID: PMC10534865 DOI: 10.3390/ph16091203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Recently, growing evidence of the relationship between G-protein coupled receptor 44 (GPR44) and the inflammation-cancer system has garnered tremendous interest, while the exact role of GPR44 has not been fully elucidated. Currently, there is a strong and urgent need for the development of non-invasive in vivo GPR44 positron emission tomography (PET) radiotracers that can be used to aid the exploration of the relationship between inflammation and tumor biologic behavior. Accordingly, the choosing and radiolabeling of existing GPR44 antagonists containing a fluorine group could serve as a viable method to accelerate PET tracers development for in vivo imaging to this purpose. The present study aims to evaluate published (2000-present) indole-based and cyclopentenyl-indole-based analogues of the GPR44 antagonist to guide the development of fluorine-18 labeled PET tracers that can accurately detect inflammatory processes. The selected analogues contained a crucial fluorine nuclide and were characterized for various properties including binding affinity, selectivity, and pharmacokinetic and metabolic profile. Overall, 26 compounds with favorable to strong binding properties were identified. This review highlights the potential of GPR44 analogues for the development of PET tracers to study inflammation and cancer development and ultimately guide the development of targeted clinical therapies.
Collapse
Affiliation(s)
- Runkai Yin
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Kelly X. Huang
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Lina A. Huang
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Melinda Ji
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Hanyi Zhao
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Kathy Li
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Anna Gao
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Jiaqi Chen
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Zhixuan Li
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Tianxiong Liu
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - John E. Shively
- Department of Immunology & Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Junfeng Li
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
17
|
Bergantini L, d'Alessandro M, Pianigiani T, Cekorja B, Bargagli E, Cameli P. Benralizumab affects NK cell maturation and proliferation in severe asthmatic patients. Clin Immunol 2023; 253:109680. [PMID: 37380086 DOI: 10.1016/j.clim.2023.109680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/18/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
INTRODUCTION The mechanism of action of benralizumab is determined by its afucosylated constant fragment that binds CD16a receptors on the membrane of natural killer cells. Here we analysed changes in Natural Killer and T-cells in Severe asthmatic patients, before and after benralizumab.. METHODS Natural Killer and T-cell subsets were detected through multiparametric flow cytometry. The concentrations of serum cytokines levels were detected through multiplex assay. Functional proliferation assay was performed in follow-up samples in severe asthmatic patients. RESULTS At baseline, severe asthmatic patients showed higher percentages of immature Natural Killer cells when compared with healthy controls. We demonstrate the proliferative capacity of these cells and their activation after benralizumab administration. Benralizumab shifted Natural Killer cell phenotypes towards maturity. Correlation between the Natural Killer cells and functional parameters and with steroid-sparing was observed. CONCLUSION Together this data contributes to our understanding of the mechanisms of action of benralizumab in the resolution of inflammation in severe asthma patients.
Collapse
Affiliation(s)
- Laura Bergantini
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Viale Bracci, 53100 Siena, Italy.
| | - Miriana d'Alessandro
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Viale Bracci, 53100 Siena, Italy
| | - Tommaso Pianigiani
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Viale Bracci, 53100 Siena, Italy
| | - Behar Cekorja
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Viale Bracci, 53100 Siena, Italy
| | - Elena Bargagli
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Viale Bracci, 53100 Siena, Italy
| | - Paolo Cameli
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Viale Bracci, 53100 Siena, Italy
| |
Collapse
|
18
|
Niu X, Yin X, Wu X, Zhang Q, Jiang Y, He J, Zhao Y, Zhang C, Ren Y, Lai M, Sang Y, Wang R. Heat-Killed Bifidobacterium longum BBMN68 in Pasteurized Yogurt Alleviates Mugwort Pollen-Induced Allergic Airway Responses through Gut Microbiota Modulation in a Murine Model. Foods 2023; 12:foods12102049. [PMID: 37238867 DOI: 10.3390/foods12102049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Many probiotic bacteria have been proven to prevent allergic airway responses through immunomodulation. This study was conducted to evaluate the effects of heat-killed Bifidobacterium longum BBMN68 (BBMN68) in pasteurized yogurt on the alleviation of mugwort pollen (MP)-induced allergic inflammation. BALB/c mice aged 5-6 weeks were randomly assigned and fed pasteurized yogurt containing heat-killed BBMN68 for 27 days, followed by allergic sensitization and challenge with MP extract. The allergic mice that received pasteurized yogurt containing heat-killed BBMN68 had improved immune status, including a lower serum IgE level, decreased serum interleukin (IL)-4, IL-5, and IL-13 concentrations, and alleviated airway inflammation manifested by increased macrophage and decreased eosinophil and neutrophil counts in BALF, as well as airway remodeling and suppressed peribronchial cellular infiltration. Moreover, oral administration of pasteurized yogurt containing heat-killed BBMN68 significantly modulated gut microbiota composition by influencing the proportion of beneficial genera associated with inflammation and immunity, such as Lactobacillus, Candidatus_Saccharimonas, Odoribacter, and Parabacteroides, which also negatively correlated with serum IgE and Th2 cytokine levels. These results demonstrated that pasteurized yogurt containing heat-killed BBMN68 had mitigative effects on allergic airway inflammation, likely through maintaining the systemic Th1/Th2 immune balance by altering the structure and function of the gut microbiota.
Collapse
Affiliation(s)
- Xiaokang Niu
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Xindi Yin
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Xiuying Wu
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China
| | - Qi Zhang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Yunyun Jiang
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China
| | - Jingjing He
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Yuyang Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chao Zhang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Yimei Ren
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Mengxuan Lai
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China
| | - Yue Sang
- Hebei Engineering Research Center of Animal Product, Sanhe 065200, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| |
Collapse
|
19
|
Niu X, Yin X, Wu X, Zhang Q, Jiang Y, He J, Zhao Y, Zhang C, Ren Y, Lai M, Sang Y, Wang R. Heat-Killed Bifidobacterium longum BBMN68 in Pasteurized Yogurt Alleviates Mugwort Pollen-Induced Allergic Airway Responses through Gut Microbiota Modulation in a Murine Model. Foods 2023; 12:2049. [PMID: 37238867 DOI: 10.3390/foods12102049if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 07/26/2024] Open
Abstract
Many probiotic bacteria have been proven to prevent allergic airway responses through immunomodulation. This study was conducted to evaluate the effects of heat-killed Bifidobacterium longum BBMN68 (BBMN68) in pasteurized yogurt on the alleviation of mugwort pollen (MP)-induced allergic inflammation. BALB/c mice aged 5-6 weeks were randomly assigned and fed pasteurized yogurt containing heat-killed BBMN68 for 27 days, followed by allergic sensitization and challenge with MP extract. The allergic mice that received pasteurized yogurt containing heat-killed BBMN68 had improved immune status, including a lower serum IgE level, decreased serum interleukin (IL)-4, IL-5, and IL-13 concentrations, and alleviated airway inflammation manifested by increased macrophage and decreased eosinophil and neutrophil counts in BALF, as well as airway remodeling and suppressed peribronchial cellular infiltration. Moreover, oral administration of pasteurized yogurt containing heat-killed BBMN68 significantly modulated gut microbiota composition by influencing the proportion of beneficial genera associated with inflammation and immunity, such as Lactobacillus, Candidatus_Saccharimonas, Odoribacter, and Parabacteroides, which also negatively correlated with serum IgE and Th2 cytokine levels. These results demonstrated that pasteurized yogurt containing heat-killed BBMN68 had mitigative effects on allergic airway inflammation, likely through maintaining the systemic Th1/Th2 immune balance by altering the structure and function of the gut microbiota.
Collapse
Affiliation(s)
- Xiaokang Niu
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Xindi Yin
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Xiuying Wu
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China
| | - Qi Zhang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Yunyun Jiang
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China
| | - Jingjing He
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Yuyang Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chao Zhang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Yimei Ren
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Mengxuan Lai
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China
| | - Yue Sang
- Hebei Engineering Research Center of Animal Product, Sanhe 065200, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| |
Collapse
|
20
|
Pelaia C, Pelaia G, Maglio A, Tinello C, Gallelli L, Lombardo N, Terracciano R, Vatrella A. Pathobiology of Type 2 Inflammation in Asthma and Nasal Polyposis. J Clin Med 2023; 12:jcm12103371. [PMID: 37240477 DOI: 10.3390/jcm12103371] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Asthma and nasal polyposis often coexist and are frequently intertwined by tight pathogenic links, mainly consisting of the cellular and molecular pathways underpinning type 2 airway inflammation. The latter is characterized by a structural and functional impairment of the epithelial barrier, associated with the eosinophilic infiltration of both the lower and upper airways, which can be driven by either allergic or non-allergic mechanisms. Type 2 inflammatory changes are predominantly due to the biological actions exerted by interleukins 4 (IL-4), 13 (IL-13), and 5 (IL-5), produced by T helper 2 (Th2) lymphocytes and group 2 innate lymphoid cells (ILC2). In addition to the above cytokines, other proinflammatory mediators involved in the pathobiology of asthma and nasal polyposis include prostaglandin D2 and cysteinyl leukotrienes. Within this context of 'united airway diseases', nasal polyposis encompasses several nosological entities such as chronic rhinosinusitis with nasal polyps (CRSwNP) and aspirin-exacerbated respiratory disease (AERD). Because of the common pathogenic origins of asthma and nasal polyposis, it is not surprising that the more severe forms of both these disorders can be successfully treated by the same biologic drugs, targeting many molecular components (IgE, IL-5 and its receptor, IL-4/IL-13 receptors) of the type 2 inflammatory trait.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Giulia Pelaia
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Angelantonio Maglio
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy
| | - Caterina Tinello
- Pediatrics Unit, Provincial Outpatient Center of Catanzaro, 88100 Catanzaro, Italy
| | - Luca Gallelli
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Nicola Lombardo
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rosa Terracciano
- Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy
| |
Collapse
|
21
|
Effectiveness of Benralizumab in OCS-Dependent Severe Asthma: The Impact of 2 Years of Therapy in a Real-Life Setting. J Clin Med 2023; 12:jcm12030985. [PMID: 36769635 PMCID: PMC9918073 DOI: 10.3390/jcm12030985] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Patients with severe OCS-dependent asthma can be considered a subgroup of asthma patients with severe disease and great risk of complications, related to chronic OCS use. The introduction of biological drugs has represented a turning point in the therapeutic strategy for severe asthma, offering a valid alternative to OCS. Benralizumab, like other anti-IL-5 agents, has been shown to reduce exacerbations and OCS intake/dosage and improve symptom control and lung function. While these findings have also been confirmed in real-life studies, data on long-term efficacy are still limited. METHODS In this retrospective study, we evaluated the effects of 2 years of treatment with benralizumab on 44 patients with OCS-dependent severe asthma by analyzing clinical, biological and functional data. RESULTS After 2 years of benralizumab, 59.4% discontinued OCS and patients who continued to use OCS had their mean dose reduced by approximately 85% from baseline. Meanwhile, 85% of patients had their asthma well-controlled (ACT score > 20) and had no exacerbations, and 41.6% had normal lung function. CONCLUSIONS Our findings support the long-term effectiveness of benralizumab in severe OCS-dependent asthma in a real-life setting, suggesting potential reductive effects on costs and complications such as adverse pharmacological events.
Collapse
|
22
|
Zhou X, Zhang P, Tan H, Dong B, Jing Z, Wu H, Luo J, Zhang Y, Zhang J, Sun X. Progress in diagnosis and treatment of difficult-to-treat asthma in children. Ther Adv Respir Dis 2023; 17:17534666231213637. [PMID: 38069568 PMCID: PMC10710755 DOI: 10.1177/17534666231213637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
At present, medications containing inhaled corticosteroids (ICS-containing) are the keystones of asthma treatment. The majority of asthmatic children can significantly improve clinical outcomes with little worsening by standardized inhaled glucocorticoid treatment, but there is still a small proportion of children who are unable to achieve good symptom control even after the maximum standardized treatment, known as 'children with difficult-to-treat asthma (DA)'. The high heterogeneity of DA makes therapy challenging and expensive, which poses a serious risk to children's health and makes it extremely difficult for clinical physicians to accurately identify and treat children with DA. This article reviews the definition, evaluation, and treatment of this asthma in order to provide a reference for optimal clinical decision-making.
Collapse
Affiliation(s)
- Xuehua Zhou
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Panpan Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Hong Tan
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Bo Dong
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zenghui Jing
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Huajie Wu
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jianfeng Luo
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yao Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Juan Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, No. 127, Changle West Road, Xi’an, Shaanxi 710032, China
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, No. 127, Changle West Road, Xi’an, Shaanxi 710032, China
| |
Collapse
|