1
|
Liu Z, Liu J, Wu Y, Zhou Z, Ousmane D, Zeinalzadeh Z, Wang J. Shared chemoresistance genes in ESCC and cervical Cancer: Insights from pharmacogenomics and Mendelian randomization. Int Immunopharmacol 2025; 147:113933. [PMID: 39755112 DOI: 10.1016/j.intimp.2024.113933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/29/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Neoadjuvant chemotherapy, particularly the use of platinum-based compounds and taxanes, is pivotal in the treatment of epithelial-derived tumors, such as cervical cancer and esophageal squamous cell carcinoma (ESCC); however, resistance remains a significant challenge. Utilizing Mendelian randomization (MR) with pharmacogenomics offers a novel approach to understanding the genetic underpinnings of drug responses, thereby aiding in personalized treatment. METHODS Single-cell RNA sequencing (scRNA-seq) analysis revealed a shared cellular subpopulation of CD8 + T effector memory (CD8 + TEM) cells that are pivotal in mediating chemotherapy resistance in ESCC and cervical cancer. A two-sample approach was employed for MR using data from genome-wide association studies, focusing on single nucleotide polymorphisms (SNPs) linked to CD8 + TEM cell expression. The SNPs were carefully selected, and statistical models, including the Wald ratio and inverse variance weighted methods, were used for robust causal effect estimation. These were supplemented by MR-Egger and weighted median analyses to address pleiotropy and variant heterogeneity. 3-(4,5-Dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) and immunohistochemistry assays were used to verify the relationship between the gene and drug sensitivity. RESULTS Increased proportion of CD8 + TEM cells were observed in resistant samples. MR identified IL32, SPOCK1, and TRBC2 as key genes associated with resistance to cisplatin, carboplatin, and paclitaxel, respectively. These findings were validated across various cohorts and underscored the role of CD8 + TEM cells in drug responsiveness. The results of the MTT and immunohistochemistry assays confirmed the MR findings. CONCLUSIONS Our study highlights the significant role of CD8 + TEM cells in the chemoresistance of ESCC and cervical cancer and identified three genetic markers crucial for resistance to common chemotherapeutic agents. These findings suggest potential pathways for developing personalized treatment strategies, offering clinically relevant insights that could enhance therapeutic efficacy and help overcome drug resistance in patients with ESCC or cervical cancer.
Collapse
Affiliation(s)
- Ziyu Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China; FuRong Laboratory, Changsha City, Hunan Province, China
| | - Jie Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Yanhao Wu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Zongjiang Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Diabate Ousmane
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Zahra Zeinalzadeh
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China; Ultrapathology (Biomedical Electron Microscopy) Center, Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; FuRong Laboratory, Changsha City, Hunan Province, China.
| |
Collapse
|
2
|
Zhan P, Huang S, Chen D, Li Y, Chen D. Echinatin inhibits osteoarthritis through the NF-κB signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03756-7. [PMID: 39747466 DOI: 10.1007/s00210-024-03756-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
Osteoarthritis (OA) is currently the most common degenerative joint disease in China and even worldwide and is the leading cause of disability in the elderly population. So far, due to an insufficient understanding of the pathogenesis and etiology of the disease, there is still no effective targeted treatment for early OA. Pro-inflammatory cytokine interleukin-1 is an important inflammatory mediator secreted in early OA, and IL-1β plays a crucial role in the pathogenesis of OA, affecting chondrocytes and the extracellular matrix of CARTILAGE. Echinatin has been used for years as a health supplement, retaining its antioxidant, anti-inflammatory, and autophagy-promoting effects. However, whether echinatin has inhibitory effects on OA is still unknown. In this study, we used an in vitro OA model of chondrocytes induced by IL-1β and an in vivo OA model of rats induced by anterior cruciate ligament transection (ACLT), and through experiments such as western blotting and IHC, we demonstrated that echinatin can be used as a novel drug for treating OA. Mechanistically, we found that echinatin inhibits the activity of chondrocytes induced by IL-1β through the NF-kB signaling pathway. This study can provide more effective treatment options for OA patients and further diagnostic and therapeutic methods for clinical treatment.
Collapse
Affiliation(s)
- Peng Zhan
- Department of Bone and Joint Sports Medicine, Longyan First Affiliated Hospital of Fujian Medical University, No.105 Jiuyi North Road, Longyan, Fujian, 364000, China
| | - Shiming Huang
- Department of Bone and Joint Sports Medicine, Longyan First Affiliated Hospital of Fujian Medical University, No.105 Jiuyi North Road, Longyan, Fujian, 364000, China
| | - Daohua Chen
- Department of Bone and Joint Sports Medicine, Longyan First Affiliated Hospital of Fujian Medical University, No.105 Jiuyi North Road, Longyan, Fujian, 364000, China
| | - Ying Li
- Department of Bone and Joint Sports Medicine, Longyan First Affiliated Hospital of Fujian Medical University, No.105 Jiuyi North Road, Longyan, Fujian, 364000, China
| | - Dongfeng Chen
- Department of Bone and Joint Sports Medicine, Longyan First Affiliated Hospital of Fujian Medical University, No.105 Jiuyi North Road, Longyan, Fujian, 364000, China.
| |
Collapse
|
3
|
Shams SGE, Dawud D, Michalak K, Makhlouf MM, Moustafa A, Jazwinski SM, Kang L, Zerfaoui M, El Sayed KA, Abd Elmageed ZY. Blockade of neutral sphingomyelinase 2 exerts antitumor effect on metastatic castration resistant prostate cancer cells and promotes tumor regression when combined with Enzalutamide. Am J Cancer Res 2024; 14:5697-5716. [PMID: 39803655 PMCID: PMC11711525 DOI: 10.62347/xxxa3182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related deaths among American men. The development of metastatic castration resistant PCa (mCRPC) is the current clinical challenge. Antiandrogens such as Enzalutamide (ENZ) are commonly used for CRPC treatment. However, patients with androgen receptor (AR)-negative tumors do not respond to ENZ, while AR-positive tumors frequently develop resistance, limiting the long-term efficacy of this therapy. This study investigates the efficacy of neutral sphingomyelinase 2 (n-SMase2) inhibition by DPTIP, both alone and in combination with ENZ, as a therapeutic strategy for mCRPC. In vitro assays were conducted to determine the half-maximal inhibitory concentration (IC50) of DPTIP and ENZ in mCRPC cells. The effect of these treatments on cell proliferation, migration, and colony formation was assessed. The antitumor effect of DPTIP was also evaluated in a preclinical PCa mouse model. Elevated n-SMase2 expression was observed in PCa patients compared to normal subjects at both mRNA and protein levels. In CWR-R1ca and PC-3 cells, DPTIP had IC50 values of 10.31 and 14.57 µM, while ENZ had IC50 values of 33.7 and 81 µM, respectively. Combined treatment significantly suppressed cell proliferation, colony formation, and migration of mCRPC cells. Mechanistically, the ERK1/2 activity and the expression of nSMase2 and NF-kB p65 were inhibited by DPTIP. The in vivo combination of DPTIP and ENZ reduced tumor size and weight more effectively than either drug alone, without significant changes in body weight. This study highlights the therapeutic potential of targeting n-SMase2 for mCRPC. Inhibition of n-SMase2 using DPTIP, both as a standalone treatment and in combination with ENZ, effectively suppressed the growth and migration of mCRPC cells. These findings suggest a promising novel approach to treating mCRPC and warrant further investigation in clinical settings.
Collapse
Affiliation(s)
- Shams GE Shams
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM)Monroe, LA 71203, USA
| | - Dalal Dawud
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM)Monroe, LA 71203, USA
| | - Kasia Michalak
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM)Monroe, LA 71203, USA
| | - Maysoon M Makhlouf
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM)Monroe, LA 71203, USA
| | - Ahmed Moustafa
- Tulane Center for Aging, School of Medicine, Tulane UniversityNew Orleans, LA 70112, USA
| | - S Michal Jazwinski
- Tulane Center for Aging, School of Medicine, Tulane UniversityNew Orleans, LA 70112, USA
| | - Lin Kang
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM)Monroe, LA 71203, USA
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at MonroeMonroe, LA 71201, USA
- Center for One Health Research, VA-MD College of Veterinary MedicineBlacksburg, VA 24060, USA
| | - Mourad Zerfaoui
- Department of Pediatrics, Center for ViroScience and Cure (CVC), School of Medicine, Emory UniversityAtlanta, GA 30322, USA
| | - Khalid A El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at MonroeMonroe, LA 71201, USA
| | - Zakaria Y Abd Elmageed
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM)Monroe, LA 71203, USA
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at MonroeMonroe, LA 71201, USA
| |
Collapse
|
4
|
Alfaifi A, Bahashwan S, Alsaadi M, Ageel AH, Ahmed HH, Fatima K, Malhan H, Qadri I, Almehdar H. Advancements in B-Cell Non-Hodgkin's Lymphoma: From Signaling Pathways to Targeted Therapies. Adv Hematol 2024; 2024:5948170. [PMID: 39563886 PMCID: PMC11576080 DOI: 10.1155/2024/5948170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 06/27/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
Lymphoma is the sixth most prevalent cancer globally. Non-Hodgkin's lymphomas are the majority group of lymphomas, with B cells accounting for approximately 95% of these lymphomas. A key feature of B-cell lymphoma is the functional perturbations of essential biological pathways caused by genetic aberrations. These lead to atypical gene expression, providing cells with a selective growth advantage. Molecular analysis reveals that each lymphoma subtype has unique molecular mutations, which pose challenges in disease management and treatment. Substantial efforts over the last decade have led to the integration of this information into clinical applications, resulting in crucial insights into clinical diagnosis and targeted therapies. However, with the growing need for more effective medication development, we anticipate a deeper understanding of signaling pathways and their interactions to emerge. This review aims to demonstrate how the BCR, specific signaling pathways like PI3K/AKT/mTOR, NF-kB, and JAK/STAT are diverse in common types of B-cell lymphoma. Furthermore, it offers a detailed examination of each pathway and a synopsis of the approved or in-development targeted therapies. In conclusion, finding the activated signaling pathways is crucial for developing effective treatment plans to improve the prognosis of patients with relapsed or refractory lymphoma. Trial Registration: ClinicalTrials.gov identifier: NCT02180724, NCT02029443, NCT02477696, NCT03836261, NCT02343120, NCT04440059, NCT01882803, NCT01258998, NCT01742988, NCT02055820, NCT02285062, NCT01855750, NCT03422679, NCT01897571.
Collapse
Affiliation(s)
- Abdullah Alfaifi
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia
- Fayfa General Hospital, Ministry of Health, Jazan 83581, Saudi Arabia
- Hematology Research Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Salem Bahashwan
- Hematology Research Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21589, Saudi Arabia
- Department of Hematology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Alsaadi
- Hematology Research Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Ali H Ageel
- Eradah Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Hamzah H Ahmed
- Department of Radiologic Sciences, Faculty of Applied Medical Sciences, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Kaneez Fatima
- IQ Institute of Infection and Immunity, Lahore, Punjab, Pakistan
| | - Hafiz Malhan
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Hussein Almehdar
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Singh S, Singh TG. Unlocking the mechanistic potential of Thuja occidentalis for managing diabetic neuropathy and nephropathy. J Tradit Complement Med 2024; 14:581-597. [PMID: 39850604 PMCID: PMC11752125 DOI: 10.1016/j.jtcme.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 01/25/2025] Open
Abstract
Diabetes mellitus and its debilitating microvascular complications, including diabetic neuropathy and nephropathy, represent a growing global health burden. Despite advances in conventional therapies, their suboptimal efficacy and adverse effects necessitate exploring complementary and alternative medicine approaches. Thuja occidentalis, a coniferous tree species native to eastern North America, has gained significant attention for its potential therapeutic applications in various disorders, attributed to its rich phytochemical composition. The present comprehensive review evaluates the therapeutic potential of Thuja occidentalis in managing diabetic neuropathy and nephropathy, with a particular emphasis on elucidating the underlying cellular and molecular mechanisms. The review delves into the active constituents of Thuja occidentalis, such as essential oils, flavonoids, tannins, and proanthocyanidin compounds, which have demonstrated antioxidant, anti-inflammatory, and other beneficial properties in preclinical studies. Importantly, the review provides an in-depth analysis of the intricate signaling pathways modulated by Thuja occidentalis, including NF-κB, PI3K-Akt, JAK-STAT, JNK, MAPK/ERK, and Nrf2 cascades. These pathways are intricately linked to oxidative stress, inflammation, and apoptosis processes, which play pivotal roles in the pathogenesis of diabetic neuropathy and nephropathy. Furthermore, the review critically evaluates the evidence-based toxicological data of Thuja occidentalis as a more effective and comprehensive therapeutic strategy in diabetes complications. Therefore, the current review aims to provide a comprehensive understanding of the therapeutic potential of Thuja occidentalis as an adjunctive treatment strategy for diabetic neuropathy and nephropathy while highlighting the need for further research to optimize its clinical translation.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
6
|
Mahat DB, Kumra H, Castro SA, Metcalf E, Nguyen K, Morisue R, Ho WW, Chen I, Sullivan B, Yim LK, Singh A, Fu J, Waterton SK, Cheng YC, Roberge S, Moiso E, Chauhan VP, Silva HM, Spranger S, Jain RK, Sharp PA. Mutant p53 Exploits Enhancers to Elevate Immunosuppressive Chemokine Expression and Impair Immune Checkpoint Inhibitors in Pancreatic Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.609802. [PMID: 39257788 PMCID: PMC11383995 DOI: 10.1101/2024.08.28.609802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer without effective treatments. It is characterized by activating KRAS mutations and p53 alterations. However, how these mutations dysregulate cancer-cell-intrinsic gene programs to influence the immune landscape of the tumor microenvironment (TME) remains poorly understood. Here, we show that p53R172H establishes an immunosuppressive TME, diminishes the efficacy of immune checkpoint inhibitors (ICIs), and enhances tumor growth. Our findings reveal that the upregulation of the immunosuppressive chemokine Cxcl1 mediates these pro-tumorigenic functions of p53R172H. Mechanistically, we show that p53R172H associates with the distal enhancers of the Cxcl1 gene, increasing enhancer activity and Cxcl1 expression. p53R172H occupies these enhancers in an NF-κB-pathway-dependent manner, suggesting NF-κB's role in recruiting p53R172H to the Cxcl1 enhancers. Our work uncovers how a common mutation in a tumor-suppressor transcription factor appropriates enhancers, stimulating chemokine expression and establishing an immunosuppressive TME that diminishes ICI efficacy in PDAC.
Collapse
Affiliation(s)
- Dig B Mahat
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Heena Kumra
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Sarah A Castro
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Emily Metcalf
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kim Nguyen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ryo Morisue
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - William W Ho
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Ivy Chen
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Brandon Sullivan
- Ragon Institute of Mass General, MIT, and Harvard, MA, 02139, USA
| | - Leon K Yim
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Arundeep Singh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jiayu Fu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sean K Waterton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yu-Chi Cheng
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sylvie Roberge
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Enrico Moiso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vikash P Chauhan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hernandez Moura Silva
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA,02139, USA
- Ragon Institute of Mass General, MIT, and Harvard, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA,02139, USA
- Ragon Institute of Mass General, MIT, and Harvard, MA, 02139, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Phillip A Sharp
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA,02139, USA
| |
Collapse
|
7
|
Elkrewi EZ, Al Abdulqader AA, Khasanov R, Maas-Omlor S, Boettcher M, Wessel LM, Schäfer KH, Tapia-Laliena MÁ. Role of Inflammation and the NF-κB Signaling Pathway in Hirschsprung's Disease. Biomolecules 2024; 14:992. [PMID: 39199380 PMCID: PMC11352745 DOI: 10.3390/biom14080992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Hirschsprung's disease (HSCR, incidence 1/5000 live births) is caused by the failure of neural crest-derived precursors to migrate, survive, proliferate, or differentiate during the embryonic development of the Enteric Nervous System (ENS), which could be disrupted by many factors, including inflammatory processes. The NF-κB family controls several biological processes, including inflammation, neurogenesis, and cell migration. With the aim of studying the potential role of NF-κB in HSCR, we have analyzed the expression of the NF-κB main subunits and other NF-κB-related genes by RT-qPCR in HSCR tissue samples (sub-divided into ganglionic and aganglionic segments). We found decreased gene expression of the NF-κB main subunit RELA but also of NFKBIA, TNFA, TFGBR2, and ERBB3 in the pathologic distal aganglionic segments compared to the proximal ganglionic segments. Moreover, we could also confirm the lower protein expression of RelA/p65 in the aganglionic distal segments by immunofluorescence staining. Further, we show that the expression of RelA/p65 protein in the proximal segments concurs with lymphocyte infiltration in the bowel tissue, indicating a pro-inflammatory activation of p65 in the proximal ganglionic HSCR tissue in the patients analyzed. All in all, our findings suggest that the modulation of NF-κB signaling in the neuro-enteric system does obviously contribute to the pathological effects of HSCR.
Collapse
Affiliation(s)
- Enas Zoheer Elkrewi
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
| | - Ahmad A. Al Abdulqader
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
- Department of Surgery, College of Medicine, King Faisal University, Al Hofuf 31982, Saudi Arabia
| | - Rasul Khasanov
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
| | - Silke Maas-Omlor
- Working Group Enteric Nervous Systems (AGENS), University of Applied Sciences Kaiserslautern, Amerikastrasse 1,66482 Zweibrücken, Germany (K.-H.S.)
| | - Michael Boettcher
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
| | - Lucas M. Wessel
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
| | - Karl-Herbert Schäfer
- Working Group Enteric Nervous Systems (AGENS), University of Applied Sciences Kaiserslautern, Amerikastrasse 1,66482 Zweibrücken, Germany (K.-H.S.)
| | - María Ángeles Tapia-Laliena
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
| |
Collapse
|
8
|
Vlahopoulos SA. Divergent Processing of Cell Stress Signals as the Basis of Cancer Progression: Licensing NFκB on Chromatin. Int J Mol Sci 2024; 25:8621. [PMID: 39201306 PMCID: PMC11354898 DOI: 10.3390/ijms25168621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Inflammation is activated by diverse triggers that induce the expression of cytokines and adhesion molecules, which permit a succession of molecules and cells to deliver stimuli and functions that help the immune system clear the primary cause of tissue damage, whether this is an infection, a tumor, or a trauma. During inflammation, short-term changes in the expression and secretion of strong mediators of inflammation occur, while long-term changes occur to specific groups of cells. Long-term changes include cellular transdifferentiation for some types of cells that need to regenerate damaged tissue, as well as death for specific immune cells that can be detrimental to tissue integrity if they remain active beyond the boundaries of essential function. The transcriptional regulator NFκB enables some of the fundamental gene expression changes during inflammation, as well as during tissue development. During recurrence of malignant disease, cell stress-induced alterations enable the growth of cancer cell clones that are substantially resistant to therapeutic intervention and to the immune system. A number of those alterations occur due to significant defects in feedback signal cascades that control the activity of NFκB. Specifically, cell stress contributes to feedback defects as it overrides modules that otherwise control inflammation to protect host tissue. NFκB is involved in both the suppression and promotion of cancer, and the key distinctive feature that determines its net effect remains unclear. This paper aims to provide a clear answer to at least one aspect of this question, namely the mechanism that enables a divergent response of cancer cells to critical inflammatory stimuli and to cell stress in general.
Collapse
|
9
|
Wu Z, Li W, Jiang K, Lin Z, Qian C, Wu M, Xia Y, Li N, Zhang H, Xiao H, Bai J, Geng D. Regulation of bone homeostasis: signaling pathways and therapeutic targets. MedComm (Beijing) 2024; 5:e657. [PMID: 39049966 PMCID: PMC11266958 DOI: 10.1002/mco2.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
As a highly dynamic tissue, bone is continuously rebuilt throughout life. Both bone formation by osteoblasts and bone resorption by osteoclasts constitute bone reconstruction homeostasis. The equilibrium of bone homeostasis is governed by many complicated signaling pathways that weave together to form an intricate network. These pathways coordinate the meticulous processes of bone formation and resorption, ensuring the structural integrity and dynamic vitality of the skeletal system. Dysregulation of the bone homeostatic regulatory signaling network contributes to the development and progression of many skeletal diseases. Significantly, imbalanced bone homeostasis further disrupts the signaling network and triggers a cascade reaction that exacerbates disease progression and engenders a deleterious cycle. Here, we summarize the influence of signaling pathways on bone homeostasis, elucidating the interplay and crosstalk among them. Additionally, we review the mechanisms underpinning bone homeostatic imbalances across diverse disease landscapes, highlighting current and prospective therapeutic targets and clinical drugs. We hope that this review will contribute to a holistic understanding of the signaling pathways and molecular mechanisms sustaining bone homeostasis, which are promising to contribute to further research on bone homeostasis and shed light on the development of targeted drugs.
Collapse
Affiliation(s)
- Zebin Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Wenming Li
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Kunlong Jiang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Zhixiang Lin
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Chen Qian
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Mingzhou Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yu Xia
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Ning Li
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Hongtao Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Haixiang Xiao
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Department of OrthopedicsJingjiang People's HospitalSeventh Clinical Medical School of Yangzhou UniversityJingjiangJiangsu ProvinceChina
| | - Jiaxiang Bai
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Dechun Geng
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
10
|
Deng S, Yuan P, Sun J. The role of NF-κB in carcinogenesis of cervical cancer: opportunities and challenges. Mol Biol Rep 2024; 51:538. [PMID: 38642209 DOI: 10.1007/s11033-024-09447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/13/2024] [Indexed: 04/22/2024]
Abstract
The nuclear factor-κB (NF-κB) family, consisting of several transcription factors, has been implicated in the regulation of cell proliferation and invasion, as well as inflammatory reactions and tumor development. Cervical cancer (CC) results from long-term interactions of multiple factors, among which persistent high-risk human papillomavirus (hrHPV) infection is necessary. During different stages from early to late after HPV infection, the activity of NF-κB varies and plays various roles in carcinogenesis and progress of CC. As the center of the cell signaling transduction network, NF-κB can be activated through classical and non-classical pathways, and regulate the expression of downstream target genes involved in regulating the tumor microenvironment and acquiring hallmark traits of CC cells. Targeting NF-κB may help treat CC and overcome the resistance to radiation and chemotherapy. Even though NF-κB inhibitors have not been applied in clinical treatment as yet, due to limitations such as dose-restrictive toxicity and poor tumor-specificity, it is still considered to have significant therapeutic potential and application prospects. In this review, we focus on the role of NF-κB in the process of CC occurrence and hallmark capabilities acquisition. Finally, we summarize relevant NF-κB-targeted treatments, providing ideas for the prevention and treatment of CC.
Collapse
Affiliation(s)
- Song Deng
- The Second Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, China
| | - Jun Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, China.
| |
Collapse
|
11
|
Tan W, Zhang J, Dai F, Yang D, Gu R, Tang L, Liu H, Cheng YX. Insights on the NF-κB system in polycystic ovary syndrome, attractive therapeutic targets. Mol Cell Biochem 2024; 479:467-486. [PMID: 37097332 DOI: 10.1007/s11010-023-04736-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/07/2023] [Indexed: 04/26/2023]
Abstract
The nuclear factor κappa B (NF-κB) signaling plays a well-known function in inflammation and regulates a wide variety of biological processes. Low-grade chronic inflammation is gradually considered to be closely related to the pathogenesis of Polycystic ovary syndrome (PCOS). In this review, we provide an overview on the involvement of NF-κB in the progression of PCOS particularly, such as hyperandrogenemia, insulin resistance, cardiovascular diseases, and endometrial dysfunction. From a clinical perspective, progressive recognition of NF-κB pathway provides opportunities for therapeutic interventions aimed at inhibiting pathway-specific mechanisms. With the accumulation of basic experimental and clinical data, NF-κB signaling pathway was recognized as a therapeutic target. Although there have been no specific small molecule NF-κB inhibitors in PCOS, a plethora of natural and synthetic compound have emerged for the pharmacologic intervention of the pathway. The traditional herbs developed for NF-κB pathway have become increasingly popular in recent years. Abundant evidence elucidated that NF-κB inhibitors can significantly improve the symptoms of PCOS. Herein, we summarized evidence relating to how NF-κB pathway is involved in the development and progression of PCOS. Furthermore, we present an in-depth overview of NF-κB inhibitors for therapy interventions of PCOS. Taken together, the NF-κB signaling may be a futuristic treatment strategy for PCOS.
Collapse
Affiliation(s)
- Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Jie Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Ran Gu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Lujia Tang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China.
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
12
|
Bacher S, Schmitz ML. Open questions in the NF-κB field. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119469. [PMID: 37951506 DOI: 10.1016/j.bbamcr.2023.119469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 11/14/2023]
Abstract
A variety of stress signals leads to activation of the inducible transcription factor NF-κB, one of the master regulators of the innate immune response. Despite a wealth of information available on the NF-κB core components and its control by different activation pathways and negative feedback loops, several levels of complexity hamper our understanding of the system. This has also contributed to the limited success of NF-κB inhibitors in the clinic and explains some of their unexpected effects. Here we consider the molecular and cellular events generating this complexity at all levels and point to a number of unresolved questions in the field. We also discuss potential future experimental and computational strategies to provide a deeper understanding of NF-κB and its coregulatory signaling networks.
Collapse
Affiliation(s)
- Susanne Bacher
- Institute of Biochemistry, Justus Liebig University Giessen (Germany), Member of the German Center for Lung Research (DZL), Germany
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus Liebig University Giessen (Germany), Member of the German Center for Lung Research (DZL), Germany.
| |
Collapse
|
13
|
Cornice J, Verzella D, Arboretto P, Vecchiotti D, Capece D, Zazzeroni F, Franzoso G. NF-κB: Governing Macrophages in Cancer. Genes (Basel) 2024; 15:197. [PMID: 38397187 PMCID: PMC10888451 DOI: 10.3390/genes15020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are the major component of the tumor microenvironment (TME), where they sustain tumor progression and or-tumor immunity. Due to their plasticity, macrophages can exhibit anti- or pro-tumor functions through the expression of different gene sets leading to distinct macrophage phenotypes: M1-like or pro-inflammatory and M2-like or anti-inflammatory. NF-κB transcription factors are central regulators of TAMs in cancers, where they often drive macrophage polarization toward an M2-like phenotype. Therefore, the NF-κB pathway is an attractive therapeutic target for cancer immunotherapy in a wide range of human tumors. Hence, targeting NF-κB pathway in the myeloid compartment is a potential clinical strategy to overcome microenvironment-induced immunosuppression and increase anti-tumor immunity. In this review, we discuss the role of NF-κB as a key driver of macrophage functions in tumors as well as the principal strategies to overcome tumor immunosuppression by targeting the NF-κB pathway.
Collapse
Affiliation(s)
- Jessica Cornice
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; (J.C.); (P.A.)
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Paola Arboretto
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; (J.C.); (P.A.)
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Guido Franzoso
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; (J.C.); (P.A.)
| |
Collapse
|
14
|
Mahmoud IS, Jarrar YB, Febrimarsa. Modulation of IRAK enzymes as a therapeutic strategy against SARS-CoV-2 induced cytokine storm. Clin Exp Med 2023; 23:2909-2923. [PMID: 37061574 PMCID: PMC10105542 DOI: 10.1007/s10238-023-01064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/02/2023] [Indexed: 04/17/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the current pandemic coronavirus disease 2019 (COVID-19). Dysregulated and excessive production of cytokines and chemokines, known as cytokine storm, is frequently seen in patients with severe COVID-19 disease and it can provoke a severe systematic inflammation in the patients. The IL-1R/TLRs/IRAKs signaling network is a key pathway in immune cells that plays a central role in regulating innate immunity and inflammatory responses via stimulating the expression and production of various proinflammatory molecules including cytokines. Modulation of IRAKs activity has been proposed to be a promising strategy in the treatment of inflammatory disorders. In this review, we highlight the biochemical properties of IRAKs and their role in regulating inflammatory molecular signaling pathways and discuss the potential targeting of IRAKs to suppress the SARS-CoV-2-induced cytokine storm in COVID-19 patients.
Collapse
Affiliation(s)
- Ismail Sami Mahmoud
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan.
| | - Yazun Bashir Jarrar
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, As-Salt, Jordan
| | - Febrimarsa
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Republic of Ireland
| |
Collapse
|
15
|
Dancik GM, Varisli L, Vlahopoulos SA. The Molecular Context of Oxidant Stress Response in Cancer Establishes ALDH1A1 as a Critical Target: What This Means for Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:ijms24119372. [PMID: 37298333 DOI: 10.3390/ijms24119372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The protein family of aldehyde dehydrogenases (ALDH) encompasses nineteen members. The ALDH1 subfamily consists of enzymes with similar activity, having the capacity to neutralize lipid peroxidation products and to generate retinoic acid; however, only ALDH1A1 emerges as a significant risk factor in acute myeloid leukemia. Not only is the gene ALDH1A1 on average significantly overexpressed in the poor prognosis group at the RNA level, but its protein product, ALDH1A1 protects acute myeloid leukemia cells from lipid peroxidation byproducts. This capacity to protect cells can be ascribed to the stability of the enzyme under conditions of oxidant stress. The capacity to protect cells is evident both in vitro, as well as in mouse xenografts of those cells, shielding cells effectively from a number of potent antineoplastic agents. However, the role of ALDH1A1 in acute myeloid leukemia has been unclear in the past due to evidence that normal cells often have higher aldehyde dehydrogenase activity than leukemic cells. This being true, ALDH1A1 RNA expression is significantly associated with poor prognosis. It is hence imperative that ALDH1A1 is methodically targeted, particularly for the acute myeloid leukemia patients of the poor prognosis risk group that overexpress ALDH1A1 RNA.
Collapse
Affiliation(s)
- Garrett M Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT 06226, USA
| | - Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Spiros A Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece
| |
Collapse
|
16
|
Dai J, Zhou P, Li S, Qiu HJ. New Insights into the Crosstalk among the Interferon and Inflammatory Signaling Pathways in Response to Viral Infections: Defense or Homeostasis. Viruses 2022; 14:v14122798. [PMID: 36560803 PMCID: PMC9783938 DOI: 10.3390/v14122798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Innate immunity plays critical roles in eliminating viral infections, healing an injury, and restoring tissue homeostasis. The signaling pathways of innate immunity, including interferons (IFNs), nuclear factor kappa B (NF-κB), and inflammasome responses, are activated upon viral infections. Crosstalk and interplay among signaling pathways are involved in the complex regulation of antiviral activity and homeostasis. To date, accumulating evidence has demonstrated that NF-κB or inflammasome signaling exhibits regulatory effects on IFN signaling. In addition, several adaptors participate in the crosstalk between IFNs and the inflammatory response. Furthermore, the key adaptors in innate immune signaling pathways or the downstream cytokines can modulate the activation of other signaling pathways, leading to excessive inflammatory responses or insufficient antiviral effects, which further results in tissue injury. This review focuses on the crosstalk between IFN and inflammatory signaling to regulate defense and homeostasis. A deeper understanding of the functional aspects of the crosstalk of innate immunity facilitates the development of targeted treatments for imbalanced homeostasis.
Collapse
Affiliation(s)
- Jingwen Dai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Pingping Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Department of Immunology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China
| | - Su Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (S.L.); (H.-J.Q.)
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (S.L.); (H.-J.Q.)
| |
Collapse
|