1
|
Furrer R, Handschin C. Biomarkers of aging: from molecules and surrogates to physiology and function. Physiol Rev 2025; 105:1609-1694. [PMID: 40111763 DOI: 10.1152/physrev.00045.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/10/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Many countries face an unprecedented challenge in aging demographics. This has led to an exponential growth in research on aging, which, coupled to a massive financial influx of funding in the private and public sectors, has resulted in seminal insights into the underpinnings of this biological process. However, critical validation in humans has been hampered by the limited translatability of results obtained in model organisms, additionally confined by the need for extremely time-consuming clinical studies in the ostensible absence of robust biomarkers that would allow monitoring in shorter time frames. In the future, molecular parameters might hold great promise in this regard. In contrast, biomarkers centered on function, resilience, and frailty are available at the present time, with proven predictive value for morbidity and mortality. In this review, the current knowledge of molecular and physiological aspects of human aging, potential antiaging strategies, and the basis, evidence, and potential application of physiological biomarkers in human aging are discussed.
Collapse
|
2
|
Li C, Yuan Y, Jia Y, Zhou Q, Wang Q, Jiang X. Cellular senescence: from homeostasis to pathological implications and therapeutic strategies. Front Immunol 2025; 16:1534263. [PMID: 39963130 PMCID: PMC11830604 DOI: 10.3389/fimmu.2025.1534263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Cellular aging is a multifactorial and intricately regulated physiological process with profound implications. The interaction between cellular senescence and cancer is complex and multifaceted, senescence can both promote and inhibit tumor progression through various mechanisms. M6A methylation modification regulates the aging process of cells and tissues by modulating senescence-related genes. In this review, we comprehensively discuss the characteristics of cellular senescence, the signaling pathways regulating senescence, the biomarkers of senescence, and the mechanisms of anti-senescence drugs. Notably, this review also delves into the complex interactions between senescence and cancer, emphasizing the dual role of the senescent microenvironment in tumor initiation, progression, and treatment. Finally, we thoroughly explore the function and mechanism of m6A methylation modification in cellular senescence, revealing its critical role in regulating gene expression and maintaining cellular homeostasis. In conclusion, this review provides a comprehensive perspective on the molecular mechanisms and biological significance of cellular senescence and offers new insights for the development of anti-senescence strategies.
Collapse
Affiliation(s)
- Chunhong Li
- Department of Oncology, Suining Central Hospital, Suining, Sichuan, China
| | - Yixiao Yuan
- Department of Medicine, Health Cancer Center, University of Florida, Gainesville, FL, United States
| | - YingDong Jia
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan, China
| | - Qiang Zhou
- Department of Oncology, Suining Central Hospital, Suining, Sichuan, China
| | - Qiang Wang
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan, China
| | - Xiulin Jiang
- Department of Medicine, Health Cancer Center, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Martinović A, Mantovani M, Trpchevska N, Novak E, Milev NB, Bode L, Ewald CY, Bischof E, Reichmuth T, Lapides R, Navarini A, Saravi B, Roider E. Climbing the longevity pyramid: overview of evidence-driven healthcare prevention strategies for human longevity. FRONTIERS IN AGING 2024; 5:1495029. [PMID: 39659760 PMCID: PMC11628525 DOI: 10.3389/fragi.2024.1495029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Longevity medicine is an emerging and iterative healthcare discipline focusing on early detection, preventive measures, and personalized approaches that aim to extend healthy lifespan and promote healthy aging. This comprehensive review introduces the innovative concept of the "Longevity Pyramid." This conceptual framework delineates progressive intervention levels, providing a structured approach to understanding the diverse strategies available in longevity medicine. At the base of the Longevity Pyramid lies the level of prevention, emphasizing early detection strategies and advanced diagnostics or timely identification of potential health issues. Moving upwards, the next step involves lifestyle modifications, health-promoting behaviors, and proactive measures to delay the onset of age-related conditions. The Longevity Pyramid further explores the vast range of personalized interventions, highlighting the importance of tailoring medical approaches based on genetic predispositions, lifestyle factors, and unique health profiles, thereby optimizing interventions for maximal efficacy. These interventions aim to extend lifespan and reduce the impact and severity of age-related conditions, ensuring that additional years are characterized by vitality and wellbeing. By outlining these progressive levels of intervention, this review offers valuable insights into the evolving field of longevity medicine. This structured framework guides researchers and practitioners toward a nuanced strategic approach to advancing the science and practice of healthy aging.
Collapse
Affiliation(s)
- Anđela Martinović
- Maximon AG, Zug, Switzerland
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | | | | | | | | | | | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Evelyne Bischof
- Shanghai University of Medicine and Health Sciences, Shanghai, China
- Sheba Longevity Center, Sheba Medical Center Tel Aviv, Ramat Gan, Israel
| | | | - Rebecca Lapides
- The Robert Larner, M.D., College of Medicine at the University of Vermont, Burlington, VT, United States
| | - Alexander Navarini
- Department of Dermatology, University Hospital Basel, Basel, Switzerland
| | - Babak Saravi
- Department of Orthopedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elisabeth Roider
- Maximon AG, Zug, Switzerland
- Department of Dermatology, University Hospital of Basel, Basel, Switzerland
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
4
|
Marín Penella G. The Epistemic Policies of Anti-Ageing Medicines in the European Union. HEALTH CARE ANALYSIS 2024:10.1007/s10728-024-00497-9. [PMID: 39560904 DOI: 10.1007/s10728-024-00497-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/20/2024]
Abstract
Anti-ageing medicines are products intended to extend lifespan and healthspan in humans that have a good potential use in public health policies. In the European Union, their development, production and consumption are dependent on regulatory science performed by the European Medicines Agency and its associated epistemic policies. They impose, among other things, an unfavourable burden of proof, a strict standard of proof and meta-methodological constrictions related to some theoretical issues. This results in a distribution of errors that tends to reduce false positives while increasing false negatives, leading to a set of social consequences that are generally accepted when the focus is placed on conventional medicines. However, when the same epistemic policies are applied to anti-ageing medicines, the distribution of errors is imbalanced, and undesirable outcomes like research discouragement and waiting time extensions appear. Three possible strategies that policymakers could implement to unblock the situation are presented for future reflection: the consideration of ageing as a disease, the application of methodological asymmetry and the use of biomarkers during clinical research.
Collapse
Affiliation(s)
- Guillermo Marín Penella
- Department of Philosophy and Social Work, Faculty of Philosophy and Letters, University of the Balearic Islands, Carretera de Valldemossa Km. 7, 5, Palma de Mallorca, 07071, Spain.
| |
Collapse
|
5
|
Nunkoo VS, Cristian A, Jurcau A, Diaconu RG, Jurcau MC. The Quest for Eternal Youth: Hallmarks of Aging and Rejuvenating Therapeutic Strategies. Biomedicines 2024; 12:2540. [PMID: 39595108 PMCID: PMC11591597 DOI: 10.3390/biomedicines12112540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/26/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The impressive achievements made in the last century in extending the lifespan have led to a significant growth rate of elderly individuals in populations across the world and an exponential increase in the incidence of age-related conditions such as cardiovascular diseases, diabetes mellitus type 2, and neurodegenerative diseases. To date, geroscientists have identified 12 hallmarks of aging (genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, impaired macroautophagy, mitochondrial dysfunction, impaired nutrient sensing, cellular senescence, stem cell exhaustion, defective intercellular communication, chronic inflammation, and gut dysbiosis), intricately linked among each other, which can be targeted with senolytic or senomorphic drugs, as well as with more aggressive approaches such as cell-based therapies. To date, side effects seriously limit the use of these drugs. However, since rejuvenation is a dream of mankind, future research is expected to improve the tolerability of the available drugs and highlight novel strategies. In the meantime, the medical community, healthcare providers, and society should decide when to start these treatments and how to tailor them individually.
Collapse
Affiliation(s)
| | - Alexander Cristian
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | | | | |
Collapse
|
6
|
Hu J, Yang F, Yang G, Pan J, Tan Y, Tang Y, Liu Y, Zhang H, Wang J. Integrating transcriptomics and metabolomics to reveal the protective effect and mechanism of Bushen Kangshuai Granules on the elderly people. Front Pharmacol 2024; 15:1361284. [PMID: 39135783 PMCID: PMC11317404 DOI: 10.3389/fphar.2024.1361284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Background: Aging is characterized by a decline in the adaptability and resistance of the body. In this study, Bushen Kangshuai Granules (BKG), as a kind of Chinese herbal formula, was developed and shown to alleviate aging-related symptoms. Methods: Self-controlled study combined with RNA-seq and metabonomics were used to expound the efficacy and safety of BKG and revealed the regulation mechanism of BKG treating aging. In vitro experiments were used to confirm the analytical results. The aging cell model of AC16 cells were treated with D-galactose. The RT-qPCR was used to detect the impact of BKG on telomere length. The DCFH-DA staining was used for detecting intracellular ROS. The targeted signaling pathway was selected and verified using Western blot. Results: After 8 weeks of treatment, BKG significantly reduced SOD level (p = 0.046), TCM aging symptoms (p < 0.001) and TNF-α level (p = 0.044) in the elderly participants. High-throughput sequencing showed that BKG reversed the expression of 70 and 79 age-related genes and metabolites, respectively. Further enrichment analysis indicated that BKG downregulated the PI3K-AKT signaling pathway, extracellular matrix (ECM)-receptor interaction, and Rap1 signaling pathway, while up-regulating sphingolipid metabolism. The results of in vitro experiments show that, after D-gal treatment, the viability and telomere length of AC16 cells significantly decreased (p < 0.05), while the expression of ROS increased (p < 0.05), BKG significantly increased the telomere length of AC16 cells and reduced the level of ROS expression (p < 0.05). In addition, BKG decreased the expression of THBS1, PDGFRA, and EPS8L1(p < 0.05), consistent with the RNA-seq results. Our results also showed that BKG affects PI3K-AKT signaling pathway. Conclusion: BKG can significantly improve aging-related symptoms and increase SOD levels, which may be associated with the reversal of the expression of various aging-related genes. The PI3K-AKT signaling pathway and sphingolipid metabolism may be potential mechanisms underlying BKG anti-aging effects.
Collapse
Affiliation(s)
- Jun Hu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmin Yang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Guang Yang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juhua Pan
- Research and Development Center of Traditional Chinese Medicine, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yumeng Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yalin Tang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yongmei Liu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong Zhang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Jie Wang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Yan X, Bao X, Cheng S, Ba Q, Chang J, Zhou K, Yan X. Anti-aging and rejuvenating effects and mechanism of Dead Sea water in skin. Int J Cosmet Sci 2024; 46:307-317. [PMID: 38212954 DOI: 10.1111/ics.12931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/04/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE External environmental stressors and internal factors have a significant impact on the skin, causing inflammation, aging, reduced immunity and other adverse responses. Dead Sea Water (DSW) is well known for its dermatological benefits and has been widely used in dermatological therapy and skin care for conditions such as psoriasis, atopic dermatitis and photoaging. However, the anti-aging and rejuvenating effects of DSW and the related biological pathways involved, which have attracted increasing attention, are not fully understood. The aim of this study is to investigate the anti-aging and rejuvenating effects of DSW and to explore the related potential biological mechanisms of DSW under different environmental conditions. METHODS The effects of DSW were investigated using in vitro human dermal cells and reconstructed skin models. Extracellular matrix (ECM) components and the morphological changes at the dermal-epidermal junction (DEJ) in a 3D human skin model were evaluated after DSW treatment. RNA sequencing (RNA-seq) analysis of human dermal fibroblast models after DSW treatment was performed to explore the potential mechanisms of action of DSW under normal and UV stress conditions. RESULTS The novel findings in this work present the biological functions of DSW, including procollagen-1 and elastin secretion, hemidesmosome increase and the epidermal basal cell regeneration. In addition, GO, KEGG and Reactome analyses reveal the activation of pathways related to ion transmembrane transporter activity, ECM component biosynthesis, senescence-associated secretory phenotype (SASP), DNA repair and autophagy, which are associated with the anti-aging activities of DSW. CONCLUSION Our work provides new perspectives for understanding the anti-aging and rejuvenating effects and mechanisms of DSW. The new findings also provide a theoretical basis for the further development of age-related strategies.
Collapse
Affiliation(s)
- Xiaojuan Yan
- Department of Fundamental Research, Fosun Cosmetics (Shanghai) Bio-Technology Co., Ltd, Shanghai, China
| | - Xijun Bao
- Department of Fundamental Research, Fosun Cosmetics (Shanghai) Bio-Technology Co., Ltd, Shanghai, China
| | - Shujun Cheng
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian Ba
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junzhuang Chang
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kanghui Zhou
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiufang Yan
- Department of Fundamental Research, Fosun Cosmetics (Shanghai) Bio-Technology Co., Ltd, Shanghai, China
| |
Collapse
|
8
|
R K, Kumar A, Vinod Kumar K, Sengupta A, Kundal K, Sharma S, Pawar A, Krishna PS, Alfatah M, Ray S, Tiwari B, Kumar R. AagingBase: a comprehensive database of anti-aging peptides. Database (Oxford) 2024; 2024:baae016. [PMID: 38470883 PMCID: PMC10930205 DOI: 10.1093/database/baae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/07/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
The process of aging is an intrinsic and inevitable aspect of life that impacts every living organism. As biotechnological advancements continue to shape our understanding of medicine, peptide therapeutics have emerged as a promising strategy for anti-aging interventions. This is primarily due to their favorable attributes, such as low immunogenicity and cost-effective production. Peptide-based treatments have garnered widespread acceptance and interest in aging research, particularly in the context of age-related therapies. To effectively develop anti-aging treatments, a comprehensive understanding of the physicochemical characteristics of anti-aging peptides is essential. Factors such as amino acid composition, instability index, hydrophobic areas and other relevant properties significantly determine their efficacy as potential therapeutic agents. Consequently, the creation of 'AagingBase', a comprehensive database for anti-aging peptides, aims to facilitate research on aging by leveraging the potential of peptide therapies. AagingBase houses experimentally validated 282 anti-aging peptides collected from 54 research articles and 236 patents. Employing state-of-the-art computational techniques, the acquired sequences have undergone rigorous physicochemical calculations. Furthermore, AagingBase presents users with various informative analyses highlighting atomic compositions, secondary structure fractions, tertiary structure, amino acid compositions and frequencies. The database also offers advanced search and filtering options and similarity search, thereby aiding researchers in understanding their biological functions. Hence, the database enables efficient identification and prioritization of potential peptide candidates in geriatric medicine and holds immense potential for advancing geriatric medicine research and innovations. AagingBase can be accessed without any restriction. Database URL: https://project.iith.ac.in/cgntlab/aagingbase/.
Collapse
Affiliation(s)
- Kunjulakshmi R
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana 502284, India
- Department of Biological Sciences, Indian Institute of Science Education and Research, Berhampur, Odisha 760010, India
| | - Ambuj Kumar
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana 502284, India
| | - Keerthana Vinod Kumar
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana 502284, India
| | - Avik Sengupta
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana 502284, India
| | - Kavita Kundal
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana 502284, India
| | - Simran Sharma
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana 502284, India
| | - Ankita Pawar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O., Kollam, Kerala 690525, India
| | - Pithani Sai Krishna
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O., Kollam, Kerala 690525, India
| | - Mohammad Alfatah
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore 138671, Republic of Singapore
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana 502284, India
| | - Bhavana Tiwari
- Department of Biological Sciences, Indian Institute of Science Education and Research, Berhampur, Odisha 760010, India
| | - Rahul Kumar
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana 502284, India
| |
Collapse
|
9
|
Calabrò A, Accardi G, Aiello A, Caruso C, Galimberti D, Candore G. Senotherapeutics to Counteract Senescent Cells Are Prominent Topics in the Context of Anti-Ageing Strategies. Int J Mol Sci 2024; 25:1792. [PMID: 38339070 PMCID: PMC10855240 DOI: 10.3390/ijms25031792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Cellular senescence is implicated in ageing and associated with a broad spectrum of age-related diseases. Importantly, a cell can initiate the senescence program irrespective of the organism's age. Various stress signals, including those defined as ageing hallmarks and alterations leading to cancer development, oncogene activation, or loss of cancer-suppressive functions, can trigger cellular senescence. The primary outcome of these alterations is the activation of nuclear factor (NF)-κB, thereby inducing the senescence-associated secretory phenotype (SASP). Proinflammatory cytokines and chemokines, components of this phenotype, contribute to chronic systemic sterile inflammation, commonly referred to as inflamm-ageing. This inflammation is linked to age-related diseases (ARDs), frailty, and increased mortality in older individuals. Additionally, senescent cells (SCs) accumulate in multiple tissues with age and are believed to underlie the organism functional decline, as demonstrated by models. An escalating effort has been dedicated to identify senotherapeutics that selectively target SCs by inducing apoptosis; these drugs are termed senolytics. Concurrently, small molecules that suppress senescent phenotypes without causing cell death are known as senomorphics. Both natural and synthetic senotherapeutics, along with immunotherapies employing immune cell-mediated clearance of SCs, currently represent the most promising strategies to combat ageing and ARDs. Indeed, it is fascinating to observe that information regarding the immune reaction to SCs indicates that regulation by specific lymphocyte subsets, elevated in the oldest centenarians, plays a role in attaining extreme longevity. Regardless, the application of methods already utilized in cancer treatment, such as CAR cells and monoclonal antibodies, broadens the spectrum of potential approaches to be utilized.
Collapse
Affiliation(s)
- Anna Calabrò
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.C.); (G.A.); (A.A.); (G.C.)
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.C.); (G.A.); (A.A.); (G.C.)
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.C.); (G.A.); (A.A.); (G.C.)
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.C.); (G.A.); (A.A.); (G.C.)
- Italian Association of Anti-Ageing Physicians, 20133 Milan, Italy;
| | | | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.C.); (G.A.); (A.A.); (G.C.)
| |
Collapse
|
10
|
Mendoza-Núñez VM, Mendoza-Soto AB. Is Aging a Disease? A Critical Review Within the Framework of Ageism. Cureus 2024; 16:e54834. [PMID: 38405657 PMCID: PMC10894070 DOI: 10.7759/cureus.54834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2024] [Indexed: 02/27/2024] Open
Abstract
Ageism is a type of discrimination characterized by negative social representations of old age and aging, with prejudices and stereotypes that cause rejection and marginalization of older adults, generally considering them as fragile and unproductive. For this reason, it is recognized as one of the main enemies of healthy aging, especially when it arises from the scientific and professional fields. In this sense, the proposals promoted by some researchers regarding the World Health Organization (WHO) classifying aging as a disease goes against the healthy aging approach. In this sense, we consider that there is no theoretical or scientific support to classify aging as a disease, so we must advocate before the WHO so that aging is eliminated within its disease classification codes. In this framework, this review proposes the concept of "hallmarks of ageism" defined as the characteristics, representations and attitudes of rejection and discrimination towards aging, old age and older people, at the political and institutional, scientific or professional, technological and digital, social, family and personal levels, which are presented in an articulated and structured manner. For this reason, it is essential to comprehensively identify and analyze the "hallmarks of ageism", in order to propose programs that include strategies and public policies that promote "anti-ageism" as a counterproposal to the "hallmarks of aging", whose biological changes related to aging are intended to be comparable to chronic non-communicable diseases.
Collapse
Affiliation(s)
| | - Ana Belén Mendoza-Soto
- Posdoc Research of Biology, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional - Sinaloa, Mexico, MEX
| |
Collapse
|
11
|
Borghini A, Ndreu R, Canale P, Campolo J, Marinaro I, Mercuri A, Turchi S, Andreassi MG. Telomere Length, Mitochondrial DNA, and Micronucleus Yield in Response to Oxidative Stress in Peripheral Blood Mononuclear Cells. Int J Mol Sci 2024; 25:1428. [PMID: 38338706 PMCID: PMC10855977 DOI: 10.3390/ijms25031428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Telomere shortening, chromosomal damage, and mitochondrial dysfunction are major initiators of cell aging and biomarkers of many diseases. However, the underlying correlations between nuclear and mitochondrial DNA alterations remain unclear. We investigated the relationship between telomere length (TL) and micronucleus (MN) and their association with mitochondrial DNA copy number (mtDNAcn) in peripheral blood mononuclear cells (PBMCs) in response to 100 μM and 200 μM of hydrogen peroxide (H2O2) at 44, 72, and 96 h. Significant TL shortening was observed after both doses of H2O2 and at all times (all p < 0.05). A concomitant increase in MN was found at 72 h (p < 0.01) and persisted at 96 h (p < 0.01). An increase in mtDNAcn (p = 0.04) at 200 µM of H2O2 was also found. In PBMCs treated with 200 µM H2O2, a significant inverse correlation was found between TL and MN (r = -0.76, p = 0.03), and mtDNA content was directly correlated with TL (r = 0.6, p = 0.04) and inversely related to MN (r = -0.78, p = 0.02). Telomere shortening is the main triggering mechanism of chromosomal damage in stimulated T lymphocytes under oxidative stress. The significant correlations between nuclear DNA damage and mtDNAcn support the notion of a telomere-mitochondria axis that might influence age-associated pathologies and be a target for the development of relevant anti-aging drugs.
Collapse
Affiliation(s)
- Andrea Borghini
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (R.N.); (P.C.); (I.M.); (A.M.); (S.T.); (M.G.A.)
| | - Rudina Ndreu
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (R.N.); (P.C.); (I.M.); (A.M.); (S.T.); (M.G.A.)
| | - Paola Canale
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (R.N.); (P.C.); (I.M.); (A.M.); (S.T.); (M.G.A.)
- Health Science Interdisciplinary Center, Sant’Anna School of Advanced Studies, 56124 Pisa, Italy
| | - Jonica Campolo
- CNR Institute of Clinical Physiology, ASST Grande Ospedale Metropolitano Niguarda, 20142 Milan, Italy;
| | - Irene Marinaro
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (R.N.); (P.C.); (I.M.); (A.M.); (S.T.); (M.G.A.)
| | - Antonella Mercuri
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (R.N.); (P.C.); (I.M.); (A.M.); (S.T.); (M.G.A.)
| | - Stefano Turchi
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (R.N.); (P.C.); (I.M.); (A.M.); (S.T.); (M.G.A.)
| | - Maria Grazia Andreassi
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (R.N.); (P.C.); (I.M.); (A.M.); (S.T.); (M.G.A.)
| |
Collapse
|
12
|
Liang Y, Su W, Wang F. Skin Ageing: A Progressive, Multi-Factorial Condition Demanding an Integrated, Multilayer-Targeted Remedy. Clin Cosmet Investig Dermatol 2023; 16:1215-1229. [PMID: 37192990 PMCID: PMC10182820 DOI: 10.2147/ccid.s408765] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
Of the human organs, skin is the most visible one that displays the manifestations of ageing. It has a very intricate microanatomical structure and performs several key physiological functions. The pathophysiology of cutaneous ageing is characterized by deterioration of structural stability and functional integrity, implying a continuous reduction in maximal function and reserve capacity, as a result of the accumulating damage due to both intrinsic and extrinsic factors. Elimination of unfavorable expressions associated with facial and cutaneous ageing is the key patient demand in aesthetic dermatology. Even though the progress has been made in nonsurgical therapies like fillers and lasers, non-invasive interventions by using skin care products designed for rejuvenation at an early stage are the most popular and accessible solution among people. In this review, we have scrutinized the ageing-associated cutaneous changes at molecular, cellular and tissue levels. To optimize the ageing process towards a healthy skin, we propose an integrated, multilayer-targeted intervention, which involves both topical application of anti-ageing formulations from outside and oral supplementation from inside. Additionally, several promising naturally derived ingredients are reviewed from an anti-aging perspective. Most of them possess various bioactivities and may contribute to the development of the mentioned anti-ageing remedy.
Collapse
Affiliation(s)
- Yihuai Liang
- Research and Development Center, Yunnan Botanee Bio-Technology Group Co. Ltd, Shanghai, People’s Republic of China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co. Ltd, Kunming, Yunnan, People’s Republic of China
| | - Wenrou Su
- Research and Development Center, Yunnan Botanee Bio-Technology Group Co. Ltd, Shanghai, People’s Republic of China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co. Ltd, Kunming, Yunnan, People’s Republic of China
| | - Feifei Wang
- Research and Development Center, Yunnan Botanee Bio-Technology Group Co. Ltd, Shanghai, People’s Republic of China
- Yunnan Yunke Characteristic Plant Extraction Laboratory Co. Ltd, Kunming, Yunnan, People’s Republic of China
- Medaesthee (Shanghai) Biotechnology Co., Ltd, Shanghai, People’s Republic of China
- Correspondence: Feifei Wang, Research and Development Center, Yunnan Botanee Bio-Technology Group Co. Ltd, No. 999 Huaxu Road, Shanghai, 201702, People’s Republic of China, Tel +86 21 39880807, Email
| |
Collapse
|
13
|
Lizard G, Hammami M, Poli G. Pharmacological and Nutraceutical Activation of Rejuvenation, Geroprotection and Cytoprotection: Proofs of Concept. Cells 2022; 11:cells11233786. [PMID: 36497045 PMCID: PMC9737771 DOI: 10.3390/cells11233786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Aging is a process associated with life [...].
Collapse
Affiliation(s)
- Gérard Lizard
- Team Bio-PeroxIL ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ (EA 7270), Université de Bourgogne, Inserm, 21000 Dijon, France
- Correspondence:
| | - Mohamed Hammami
- Lab-NAFS ‘Nutrition-Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Orbassano, 10043 Turin, Italy
| |
Collapse
|