1
|
Al-Naimi MS, Abu-Raghif AR, Mansoor AFA, Fawzi HA. Isofraxidin Attenuates Lipopolysaccharide-Induced Cytokine Release in Mice Lung and Liver Tissues via Inhibiting Inflammation and Oxidative Stress. Biomedicines 2025; 13:653. [PMID: 40149629 PMCID: PMC11940160 DOI: 10.3390/biomedicines13030653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Isofraxidin is a hydroxylcoumarin derived from herbal Fraxinus and Eleutherococcus. It has been shown that isofraxidin has antioxidant, anti-inflammatory, anti-diabetic, and anti-lipidemic effects. The study aimed to examine the therapeutic effects of isofraxidin with and without methylprednisolone to ameliorate lipopolysaccharide (LPS)-induced cytokine-releasing syndrome. Methods: The study comprised two phases: preventive and therapeutic. In all the experiments that involved LPS induction, a single dose of LPS (5 mg/kg) was used. The preventive phase involved the administration of the agents before LPS induction, in which 50 mg/kg of methylprednisolone, 15 mg/kg of isofraxidin, or a combination of 7.5 mg/kg of isofraxidin plus 25 mg/kg methylprednisolone were given daily for 3 days before induction. The therapeutic phase involved the administration of the following agents after LPS induction: 50 mg/kg methylprednisolone, 15 mg/kg of isofraxidin, or a combination of 7.5 mg/kg of isofraxidin plus 25 mg/kg methylprednisolone were given once daily was given for 7 days. Results: Isofraxidin treatment with or without methylprednisolone ameliorates LPS-induced inflammatory and oxidative stress damage in mice; it reduces the inflammatory (IL-6, TNF-α, IL-1β, IL-8, Malondialdehyde, and IFN-γ) and oxidative stress markers. Additionally, isofraxidin treatment with or without methylprednisolone prevented liver and lung tissue damage induced by LPS. Conclusions: Isofraxidin exhibited preventive and therapeutic properties against lipopolysaccharide-induced cytokine storms in mice via anti-inflammatory and antioxidant pathways, and its combination with methylprednisolone demonstrated synergistic outcomes.
Collapse
Affiliation(s)
- Marwa Salih Al-Naimi
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad 10006, Iraq;
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Farahidi University, Baghdad 00965, Iraq
| | - Ahmed R. Abu-Raghif
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad 10006, Iraq;
| | - Ahmed F. Abed Mansoor
- Department of Pharmacology and Toxicology, College of Pharmacy, National University of Science and Technology, Nasiriyah 64001, Iraq;
| | - Hayder Adnan Fawzi
- Department of Clinical Pharmacy, College of Pharmacy, AlMustafa University, Baghdad 10064, Iraq;
| |
Collapse
|
2
|
He Y, Liu Y, Zhang M. The beneficial effects of curcumin on aging and age-related diseases: from oxidative stress to antioxidant mechanisms, brain health and apoptosis. Front Aging Neurosci 2025; 17:1533963. [PMID: 39906716 PMCID: PMC11788355 DOI: 10.3389/fnagi.2025.1533963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/06/2025] [Indexed: 02/06/2025] Open
Abstract
Aging and age-related disease are among the most common and challenging issues worldwide. During the aging process, the accumulation of oxidative stress, DNA damage, telomere dysfunction, and other related changes lead to cellular dysfunction and the development of diseases such as neurodegenerative and cardiovascular conditions. Curcumin is a widely-used dietary supplement against various diseases such as cancer, diabetes, cardiovascular diseases and aging. This agent mediates its effects through several mechanisms, including the reduction of reactive oxygen species (ROS) and oxidative stress-induced damage, as well as the modulation of subcellular signaling pathways such as AMPK, AKT/mTOR, and NF-κB. These pathways are involved in cellular senescence and inflammation, and their modulation can improve cell function and help prevent disease. In cancer, Curcumin can induce apoptosis in a variety of different tumor cell lines. Curcumin also activates redox reactions within cells inducing ROS production that leads to the upregulation of apoptosis receptors on the tumor cell membrane. Curcumin can also upregulate the expression and activity of p53 that inhibits tumor cell proliferation and increases apoptosis. Furthermore, curcumin has a potent inhibitory effect on the activity of nuclear factor kappa B (NF-κB) and cyclooxygenase-2 (COX-2), which are involved in the overexpression of antiapoptosis genes such as Bcl-2. It can also attenuate the regulation of antiapoptosis phosphoinositide 3-kinases (PI3K) signaling and increase the expression of mitogen-activated protein kinases (MAPKs) to induce endogenous production of ROS. Therefore, herein, we aim to summarize how curcumin affect different epigenetic processes (such as apoptosis and oxidative stress) in order to change aging-related mechanisms. Furthermore, we discuss its roles in age-related diseases, such as Alzheimer, Parkinson, osteoporosis, and cardiovascular diseases.
Collapse
Affiliation(s)
- Ying He
- Department of Biological and Food Engineering, Lyuliang University, Lishi, Shanxi, China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yongqing Liu
- Department of Biological and Food Engineering, Lyuliang University, Lishi, Shanxi, China
| | - Min Zhang
- Key Laboratory of Agro-Products Primary Processing, Academy of Agricultural Planning and Engineering, MARA, Beijing, China
| |
Collapse
|
3
|
Kang S, Lee N, Jung B, Jeong H, Moon C, Park SI, Yun S, Yim T, Oh JM, Kim JW, Song JH, Chae S, Kim JS. Anti-Amnesic Effect of Agastache rugosa on Scopolamine-Induced Memory Impairment in Mice. Pharmaceuticals (Basel) 2024; 17:1173. [PMID: 39338335 PMCID: PMC11435268 DOI: 10.3390/ph17091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Agastache rugosa, a traditional Asian herbal medicine, is primarily used for digestive problems; yet, its cognitive benefits remain unexplored. This study evaluated the anti-amnesic effects of A. rugosa extract (ARE) on scopolamine (SCO)-induced memory impairment in mice. Mice received 100 or 200 mg/kg ARE orally for 5 days, followed by SCO injection. The ARE demonstrated significant antioxidant (DPPH IC50: 75.3 µg/mL) and anti-inflammatory effects (NO reduction). Furthermore, the ARE significantly improved memory performance in the passive avoidance test (escape latency: 157.2 s vs. 536.9 s), the novel object recognition test (novel object preference: 47.6% vs. 66.3%) and the Morris water maze (time spent in the target quadrant: 30.0% vs. 45.1%). The ARE reduced hippocampal acetylcholinesterase activity (1.8-fold vs. 1.1-fold) while increasing choline acetyltransferase (0.4-fold vs. 1.0-fold) and muscarinic acetylcholine receptor subtype I (0.3-fold vs. 1.6-fold) expression. The ARE improved hippocampal neurogenesis via doublecortin- (0.4-fold vs. 1.1-fold) and KI-67-positive (6.3 vs. 12.0) cells. Therefore, the ARE exerts protective effects against cognitive decline through cholinergic system modulation and antioxidant activity, supporting its potential use as a cognitive enhancer.
Collapse
Affiliation(s)
- Sohi Kang
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Nari Lee
- Jeju Institute of Korean Medicine, Jeju-si 63309, Republic of Korea
| | - Bokyung Jung
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Huiyeong Jeong
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Changjong Moon
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang-Ik Park
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seungpil Yun
- Department of Pharmacology and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Teresa Yim
- Global GreenFriends Co., Seocho-gu, Seoul 06569, Republic of Korea
| | - Jung Min Oh
- Jeju Institute of Korean Medicine, Jeju-si 63309, Republic of Korea
| | - Jae-Won Kim
- Jeju Institute of Korean Medicine, Jeju-si 63309, Republic of Korea
| | - Ji Hoon Song
- Jeju Institute of Korean Medicine, Jeju-si 63309, Republic of Korea
- Vital to Life Co., Seongnam-si 13306, Republic of Korea
| | - Sungwook Chae
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology, Jeongeup 56212, Republic of Korea
- KMConvergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Joong Sun Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
4
|
Xu S, Han X, Wang X, Yu Y, Qu C, Liu X, Yang B. The role of oxidative stress in aortic dissection: a potential therapeutic target. Front Cardiovasc Med 2024; 11:1410477. [PMID: 39070552 PMCID: PMC11272543 DOI: 10.3389/fcvm.2024.1410477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
The incidence of aortic dissection (AD) is steadily increasing, driven by the rising prevalence of chronic conditions such as hypertension and the global aging of the population. Oxidative stress emerges as a pivotal pathophysiological mechanism contributing to the progression of AD. Oxidative stress triggers apoptosis in vascular smooth muscle cells, reshapes the extracellular matrix (ECM), and governs ECM degradation and remodeling, subsequently impacting aortic compliance. Furthermore, oxidative stress not only facilitates the infiltration of macrophages and mononuclear lymphocytes but also disrupts the integral structure and functionality of endothelial cells, thereby inducing endothelial cell dysfunction and furthering the degeneration of the middle layer of the aortic wall. Investigating antioxidants holds promise as a therapeutic avenue for addressing AD.
Collapse
Affiliation(s)
- Shengnan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xueyu Han
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xiukun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Yi Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Strugała-Danak P, Spiegel M, Gabrielska J. Malvidin and Its Mono- and Di-Glucosides Forms: A Study of Combining Both In Vitro and Molecular Docking Studies Focused on Cholinesterase, Butyrylcholinesterase, COX-1 and COX-2 Activities. Molecules 2023; 28:7872. [PMID: 38067599 PMCID: PMC10708353 DOI: 10.3390/molecules28237872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Malvidin, one of the six most prominent anthocyanins found in various fruits and vegetables, may possess a wide range of health-promoting properties. The biological activity of malvidin and its glycosides is not entirely clear and has been relatively less frequently studied compared to other anthocyanins. Therefore, this study aimed to determine the relationship between the structural derivatives of malvidin and their anti-cholinergic and anti-inflammatory activity. The study selected malvidin (Mv) and its two sugar derivatives: malvidin 3-O-glucoside (Mv 3-glc) and malvidin 3,5-O-diglucoside (Mv 3,5-diglc). The anti-inflammatory activity was assessed by inhibiting the enzymes, specifically COX-1 and COX-2. Additionally, the inhibitory effects on cholinesterase activity, particularly acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), were evaluated. Molecular modeling was also employed to examine and visualize the interactions between enzymes and anthocyanins. The results revealed that the highest inhibitory capacity at concentration 100 µM was demonstrated by Mv 3-glc in relation to AChE (26.3 ± 3.1%) and BChE (22.1 ± 3.0%), highlighting the crucial role of the glycoside substituent at the C3 position of the C ring in determining the inhibitory efficiency of these enzymes. In addition, the glycosylation of malvidin significantly reduced the anti-inflammatory activity of these derivatives compared to the aglycone form. The IC50 parameter demonstrates the following relationship for the COX-1 enzyme: Mv (12.45 ± 0.70 µM) < Mv 3-glc (74.78 ± 0.06 µM) < Mv 3,5-diglc (90.36 ± 1.92 µM). Similarly, for the COX-2 enzyme, we have: Mv (2.76 ± 0.16 µM) < Mv 3-glc (39.92 ± 3.02 µM) < Mv 3.5-diglc (66.45 ± 1.93 µM). All tested forms of malvidin exhibited higher activity towards COX-2 compared to COX-1, indicating their selectivity as inhibitors of COX-2. Theoretical calculations were capable of qualitatively replicating most of the noted patterns in the experimental data, explaining the impact of deprotonation and glycosylation on inhibitory activity. It can be suggested that anthocyanins, such as malvidins, could be valuable in the development of treatments for inflammatory conditions and Alzheimer's disease and deserve further study.
Collapse
Affiliation(s)
- Paulina Strugała-Danak
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, C. K. Norwida 25, 50-375 Wrocław, Poland;
| | - Maciej Spiegel
- Department of Organic Chemistry and Pharmaceutical Technology, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Janina Gabrielska
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, C. K. Norwida 25, 50-375 Wrocław, Poland;
| |
Collapse
|
6
|
Yen PL, Lin TA, Chuah WL, Chang CY, Tseng YH, Huang CY, Yang JC, Hsu FL, Liao VHC. Methanol Extracts from Cirsium japonicum DC. var. australe Kitam. and Their Active Components Reduce Intracellular Oxidative Stress in Caenorhabditis elegans. Molecules 2023; 28:6923. [PMID: 37836767 PMCID: PMC10574689 DOI: 10.3390/molecules28196923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Cirsium japonicum DC. var. australe Kitam. has been used as an herbal remedy and often involves using the whole plant or roots. However, the bioactivities of different parts of the plant have been far less explored. This study aimed to evaluate the antioxidative ability of methanol extracts from the flowers, leaves, stems, and roots of the Cirsium plant and their possible active components against juglone-induced oxidative stress in the nematode Caenorhabditis elegans. The results showed that the highest dry weight (12.3 g per plant) was observed in leaves, which was followed by stems (8.0 g). The methanol extract yields from the flowers, leaves, and roots were all similar (13.0-13.8%), while the yield from stems was the lowest (8.6%). The analysis of the silymarin contents in the extracts indicated that the flowers, leaves, stems, and roots contained silychristin and taxifolin; however, silydianin was only found in the leaves, stems, and roots. The flower, leaf, and stem extracts, at a concentration of 10 mg/L, significantly reduced juglone-induced oxidative stress in C. elegans, which was potentially due to the presence of silychristin and taxifolin. Overall, C. japonicum DC. var. australe Kitam. contains a significant amount of silymarin and exhibits in vivo antioxidative activity, suggesting that the prospects for the plant in terms of health supplements or as a source of silymarin are promising.
Collapse
Affiliation(s)
- Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan; (P.-L.Y.); (T.-A.L.); (W.L.C.)
| | - Ting-An Lin
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan; (P.-L.Y.); (T.-A.L.); (W.L.C.)
| | - Wei Lin Chuah
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan; (P.-L.Y.); (T.-A.L.); (W.L.C.)
| | - Chih-Yi Chang
- Department of Forestry, National Chung Hsing University, No. 145, Xingda Rd., Taichung 402, Taiwan;
| | - Yen-Hsueh Tseng
- Taiwan Forestry Research Institute, No. 53, Nanhai Rd., Taipei 100, Taiwan; (Y.-H.T.); (J.-C.Y.)
| | - Chia-Yin Huang
- Taiwan Forestry Research Institute, No. 53, Nanhai Rd., Taipei 100, Taiwan; (Y.-H.T.); (J.-C.Y.)
| | - Jeng-Chuann Yang
- Taiwan Forestry Research Institute, No. 53, Nanhai Rd., Taipei 100, Taiwan; (Y.-H.T.); (J.-C.Y.)
| | - Fu-Lan Hsu
- Taiwan Forestry Research Institute, No. 53, Nanhai Rd., Taipei 100, Taiwan; (Y.-H.T.); (J.-C.Y.)
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan; (P.-L.Y.); (T.-A.L.); (W.L.C.)
| |
Collapse
|
7
|
Chen G, Wen D, Shen L, Feng Y, Xiong Q, Li P, Zhao Z. Cepharanthine Exerts Antioxidant and Anti-Inflammatory Effects in Lipopolysaccharide (LPS)-Induced Macrophages and DSS-Induced Colitis Mice. Molecules 2023; 28:6070. [PMID: 37630322 PMCID: PMC10458559 DOI: 10.3390/molecules28166070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Cepharanthine (CEP), a biscoclaurine alkaloid extracted from Stephania cepharantha Hayata, has been widely used for the treatment of various acute and chronic diseases, including leukopenia, and snake bites. Here, our objective was to investigate the anti-oxidative stress and anti-inflammatory response effects of CEP in lipopolysaccharide (LPS)-induced macrophages as well as dextran sulfate sodium (DSS)-induced colitis mice. Our findings demonstrated that supplementation with CEP effectively mitigates body weight loss and elevation of disease activity index (DAI), reduces the malondialdehyde (MDA) content to 2.45 nM/mL while increasing the reduced glutathione (GSH) content to 35.53 μg/mL, inhibits inflammatory response, and maintains proper intestinal epithelium tight junctions in DSS-induced wild type (WT) mice. However, it failed to provide protective effects in DSS-induced transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) knockout (NRF2-/-) mice. GSH content decreased to 10.85 μg/106 cells following LPS treatment, whereas supplementation with CEP increased the GSH content to 12.26 μg/106 cells. Moreover, CEP effectively attenuated ROS production in LPS-induced macrophages. Additionally, CEP exhibited inhibitory effects on pro-inflammatory cytokines and mediators in LPS-induced macrophages. Furthermore, we observed that supplementation with CEP promoted the expression of NRF2/heme oxygenase 1 (HO-1)/NADPH quinone oxidoreductase-1 (NQO-1) as well as the phosphorylation of the adenosine monophosphate-activated protein kinase alpha 1 (AMPK-α1)/protein kinase B (AKT)/glycogen synthase kinase-3 beta (GSK-3β) signaling pathway in macrophages while inhibiting the phosphorylation of the extracellular signal-regulated kinase (ERK)/c-Jun N-terminal kinase (JNK), and nuclear factor-kappa B p65 (NF-κB p65) signaling pathway in LPS-induced macrophages. Although CEP did not demonstrate inhibitory effects on oxidative stress or promote the expression of HO-1/NQO-1, it effectively activated the phosphorylation of the AMPK-α1/AKT/GSK-3β signaling pathway which is an upstream regulator of NRF2 in LPS-induced primary peritoneal macrophages from NRF2-/- mice. In summary, our findings suggest that CEP exerts protective effects against oxidative stress and inflammatory response by activating the AMPK-α1/AKT/GSK-3β/NRF2 signaling pathway while concurrently inhibiting the activation of mitogen activated protein kinases (MAPKs) and the NF-κB p65 signaling pathway. These results not only elucidate the mechanisms underlying CEP's protective effects on colon oxidative stress and inflammation but also provide evidence supporting NRF2 as a potential therapeutic target for IBD treatment.
Collapse
Affiliation(s)
- Guangxin Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Biological Feed, Ministry of Agriculture and Rural Afairs, Boen Biotechnology Co., Ltd., Ganzhou 341000, China
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (D.W.); (L.S.); (Y.F.); (Q.X.); (P.L.)
| | - Da Wen
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (D.W.); (L.S.); (Y.F.); (Q.X.); (P.L.)
| | - Lin Shen
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (D.W.); (L.S.); (Y.F.); (Q.X.); (P.L.)
| | - Yazhi Feng
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (D.W.); (L.S.); (Y.F.); (Q.X.); (P.L.)
| | - Qiuhong Xiong
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (D.W.); (L.S.); (Y.F.); (Q.X.); (P.L.)
| | - Ping Li
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (D.W.); (L.S.); (Y.F.); (Q.X.); (P.L.)
| | - Zhonghua Zhao
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (D.W.); (L.S.); (Y.F.); (Q.X.); (P.L.)
| |
Collapse
|
8
|
Arenaza-Corona A, Obregón-Mendoza MA, Meza-Morales W, Ramírez-Apan MT, Nieto-Camacho A, Toscano RA, Pérez-González LL, Sánchez-Obregón R, Enríquez RG. The Homoleptic Curcumin-Copper Single Crystal (ML 2): A Long Awaited Breakthrough in the Field of Curcumin Metal Complexes. Molecules 2023; 28:6033. [PMID: 37630284 PMCID: PMC10458717 DOI: 10.3390/molecules28166033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The first single crystal structure of the homoleptic copper (II) ML2 complex (M=Cu (II), L = curcumin) was obtained and its structure was elucidated by X-ray diffraction showing a square planar geometry, also confirmed by EPR. The supramolecular arrangement is supported by C-H···O interactions and the solvent (MeOH) plays an important role in stabilizing the crystal packing Crystallinity was additionally assessed by XRD patterns. The log P value of the complex (2.3 ± 0.15) was determined showing the improvement in water solubility. The cytotoxic activity of the complex against six cancer cell lines substantially surpasses that of curcumin itself, and it is particularly selective against leukemia (K562) and human glioblastoma (U251) cell lines, with similar antioxidant activity to BHT. This constitutes the first crystal structure of pristine curcumin complexed with a metal ion.
Collapse
Affiliation(s)
- Antonino Arenaza-Corona
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Marco A. Obregón-Mendoza
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - William Meza-Morales
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez, Mayagüez, PR 00680, USA;
| | - María Teresa Ramírez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Antonio Nieto-Camacho
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Rubén A. Toscano
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Leidys L. Pérez-González
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Rubén Sánchez-Obregón
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Raúl G. Enríquez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| |
Collapse
|
9
|
High Yield Synthesis of Curcumin and Symmetric Curcuminoids: A "Click" and "Unclick" Chemistry Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010289. [PMID: 36615495 PMCID: PMC9822029 DOI: 10.3390/molecules28010289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
The worldwide known and employed spice of Asian origin, turmeric, receives significant attention due to its numerous purported medicinal properties. Herein, we report an optimized synthesis of curcumin and symmetric curcuminoids of aromatic (bisdemethoxycurcumin) and heterocyclic type, with yields going from good to excellent using the cyclic difluoro-boronate derivative of acetylacetone prepared by reaction of 2,4-pentanedione with boron trifluoride in THF (ca. 95%). The subsequent cleavage of the BF2 group is of significant importance for achieving a high overall yield in this two-step procedure. Such cleavage occurs by treatment with hydrated alumina (Al2O3) or silica (SiO2) oxides, thus allowing the target heptanoids obtained in high yields as an amorphous powder to be filtered off directly from the reaction media. Furthermore, crystallization instead of chromatographic procedures provides a straightforward purification step. The ease and efficiency with which the present methodology can be applied to synthesizing the title compounds earns the terms "click" and "unclick" applied to describe particularly straightforward, efficient reactions. Furthermore, the methodology offers a simple, versatile, fast, and economical synthetic alternative for the obtention of curcumin (85% yield), bis-demethoxycurcumin (78% yield), and the symmetrical heterocyclic curcuminoids (80-92% yield), in pure form and excellent yields.
Collapse
|