1
|
Waziry R, Williams OA, Tiemeier H, Miles C. Vascular-related biological stress, DNA methylation, allostatic load and domain-specific cognition: an integrated machine learning and causal inference approach. BMC Neurol 2025; 25:174. [PMID: 40269737 DOI: 10.1186/s12883-025-04185-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/07/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Vascular disease in aging populations spans a wide range of disorders including strokes, circulation disorders and hypertension. As individuals age, vascular disorders co-occur and hence exert combined effects. In the present study we introduce vascular-related biological stress as a novel biomarker to capture the combined effects of vascular disease burden for more precision in early detection of cognitive changes in aging. OBJECTIVE to determine the role of vascular-related biological Stress, DNA methylation-based biological aging and Allostatic Load in the relationship between vascular disorders and major cognitive domains including global cognition, episodic memory and executive function in a representative sample of adults across the age span. METHODS The present study included participants from MIDUS refresher sample. Vascular-related biological stress included: BMI, Average blood pressure, sitting, Waist-hip ratio, Blood hemoglobin A1c percent, Blood dehydroepiandrosterone (ng/mL), Blood fasting insulin levels uIU/mL, Blood serum interleukin-8 (pg/mL), Blood serum interleukin-6 (pg/mL), Blood fasting glucose levels mg/dL and Blood fibrinogen (mg/dL). DNA methylation-based biological age measures included GrimAge2 that was constructed based on DNA methylation surrogate markers for select plasma proteins and smoking-pack years. Allostatic load scores were calculated based on biomarkers commonly used in allostatic load calculations: cortisol (urine), norepinephrine (urine), epinephrine (urine), dopamine (urine), glycosylated hemoglobin (HBA1C, blood), low density lipoprotein (LDL, blood), C-reactive protein (CRP, blood) dehydroepiandrosterone sulfate (DHEAS, blood), high-density lipoprotein (HDL, blood) and systolic blood pressure (average, sitting). Least Absolute Shrinkage and Selection Operator (LASSO) and response models (item and continuous) were used to calculate vascular-related biological stress and theta scores. Four-way decomposition modeling approach was used to calculate the natural direct and indirect effects in the relationship between vascular disease and major cognitive domains. RESULTS 550 individuals with data on biomarkers, DNA methylation and cognition assessments were included in the present study. Median age was 54 (range = 26, 78) with females representing 48% of the sample. In the relationship between vascular disease and cognition, the overall proportions mediated through vascular-related biological stress (item-response scale) were 0.60 (P = 0.01); 1.1 (P = 0.308); 0.53 (P = 0.002) for global cognition, episodic memory and executive function respectively. The overall proportions mediated through DNA methylation (GrimAge2) were 0.27 (P = 0.002); 0.39 (P = 0.102); 0.20, (P = 0.002) for global cognition, episodic memory and executive function respectively and 0.10 (P = 0.08); 0.09 (P = 0.5); 0.07 (P = 0.18) through allostatic load (sum scores). CONCLUSIONS Our findings suggest that vascular-related biological stress, DNA methylation and to some extent allostatic load mediate the effects of vascular disease on global cognition and executive function.
Collapse
Affiliation(s)
- Reem Waziry
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA.
| | - Olajide A Williams
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA
| | - Henning Tiemeier
- Department of Epidemiology and Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Caleb Miles
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, USA
| |
Collapse
|
2
|
Yaghoobi A, Seyedmirzaei H, Jamaat M, Ala M. Epigenomic and clinical analyses of striatal DAT binding in healthy individuals reveal well-known loci of Parkinson's disease. Heliyon 2024; 10:e40618. [PMID: 39654757 PMCID: PMC11625257 DOI: 10.1016/j.heliyon.2024.e40618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Background Striatal dopamine transporter (DAT) binding is a sensitive and specific endophenotype for detecting dopaminergic deficits across Parkinson's disease (PD) spectrum. Molecular and clinical signatures of PD in asymptomatic phases help understand the earliest pathophysiological mechanisms underlying the disease. We aimed to investigate whether blood epigenetic markers are associated with inter-individual variation of striatal DAT binding among healthy elderly individuals. We also investigated whether this potential inter-individual variation can manifest as dysfunction of particular cognitive domains. Omics studies conducted on endophenotypes of PD among healthy asymptomatic individuals can provide invaluable insights into early detection, disease mechanisms, and potential therapeutic targets for PD. Method We conducted a blood epigenome-wide association study of striatal DAT binding on 96 healthy individuals using the Illumina EPIC array. For functional annotation of our top results, we employed the enhancer-gene mapping strategy using a midbrain single-nucleus multimodal dataset. Finally, we conducted several investigative regression analyses on several neuropsychological tests across five cognitive domains to assess their association with striatal DAT binding among 250 healthy subjects. Results We identified seven suggestive (P-value<10-5) CpG probes. Specifically, three probes were colocalized with three risk loci previously identified in PD's largest Genome-Wide Association Study (GWAS). UCN5A and APOE loci were identified as suggestive DMRs associated with striatal DAT binding. Functional analyses prioritized the FDFT1 gene as the potential target gene in the previously reported CTSB GWAS locus. We also showed that delayed recall memory impairment was correlated with reduced striatal DAT binding, irrespective of age. Conclusion Our study suggested epigenetic and cognitive signatures of striatal DAT binding among healthy individuals, providing valuable insights for future experimental and clinical studies of early PD.
Collapse
Affiliation(s)
- Arash Yaghoobi
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5746, Iran
| | - Homa Seyedmirzaei
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzie Jamaat
- Islamic Azad University, Tehran North Branch, Faculty of Biological Sciences, Tehran, Iran
| | - Moein Ala
- Experimental Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Koetsier J, Cavill R, Reijnders R, Harvey J, Homann J, Kouhsar M, Deckers K, Köhler S, Eijssen LMT, van den Hove DLA, Demuth I, Düzel S, Smith RG, Smith AR, Burrage J, Walker EM, Shireby G, Hannon E, Dempster E, Frayling T, Mill J, Dobricic V, Johannsen P, Wittig M, Franke A, Vandenberghe R, Schaeverbeke J, Freund‐Levi Y, Frölich L, Scheltens P, Teunissen CE, Frisoni G, Blin O, Richardson JC, Bordet R, Engelborghs S, de Roeck E, Martinez‐Lage P, Tainta M, Lleó A, Sala I, Popp J, Peyratout G, Verhey F, Tsolaki M, Andreasson U, Blennow K, Zetterberg H, Streffer J, Vos SJB, Lovestone S, Visser P, Lill CM, Bertram L, Lunnon K, Pishva E. Blood-based multivariate methylation risk score for cognitive impairment and dementia. Alzheimers Dement 2024; 20:6682-6698. [PMID: 39193899 PMCID: PMC11633365 DOI: 10.1002/alz.14061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION The established link between DNA methylation and pathophysiology of dementia, along with its potential role as a molecular mediator of lifestyle and environmental influences, positions blood-derived DNA methylation as a promising tool for early dementia risk detection. METHODS In conjunction with an extensive array of machine learning techniques, we employed whole blood genome-wide DNA methylation data as a surrogate for 14 modifiable and non-modifiable factors in the assessment of dementia risk in independent dementia cohorts. RESULTS We established a multivariate methylation risk score (MMRS) for identifying mild cognitive impairment cross-sectionally, independent of age and sex (P = 2.0 × 10-3). This score significantly predicted the prospective development of cognitive impairments in independent studies of Alzheimer's disease (hazard ratio for Rey's Auditory Verbal Learning Test (RAVLT)-Learning = 2.47) and Parkinson's disease (hazard ratio for MCI/dementia = 2.59). DISCUSSION Our work shows the potential of employing blood-derived DNA methylation data in the assessment of dementia risk. HIGHLIGHTS We used whole blood DNA methylation as a surrogate for 14 dementia risk factors. Created a multivariate methylation risk score for predicting cognitive impairment. Emphasized the role of machine learning and omics data in predicting dementia. The score predicts cognitive impairment development at the population level.
Collapse
Affiliation(s)
- Jarno Koetsier
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
| | - Rachel Cavill
- Department of Advanced Computing Sciences (DACS)Faculty of Science and Engineering (FSE)Maastricht UniversityMaastrichtThe Netherlands
| | - Rick Reijnders
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
| | - Joshua Harvey
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Jan Homann
- Institute of Epidemiology and Social MedicineUniversity of MünsterMünsterGermany
| | - Morteza Kouhsar
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Kay Deckers
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
| | - Sebastian Köhler
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
| | - Lars M. T. Eijssen
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
- Department of Bioinformatics ‐ BiGCaTResearch Institute of Nutrition and Translational Research in Metabolism (NUTRIM)Faculty of HealthMedicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
| | - Daniel L. A. van den Hove
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
- Department of PsychiatryPsychosomatics and Psychotherapy, University of Wuerzburg, Dr. Manuel NagelWürzburgGermany
| | - Ilja Demuth
- Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism)Charité – Universitätsmedizin Berlincorporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- BCRT ‐ Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of Health at Charité – Universitätsmedizin BerlinBerlinGermany
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human DevelopmentBerlinGermany
| | | | - Rebecca G. Smith
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Adam R. Smith
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Joe Burrage
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Emma M. Walker
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Gemma Shireby
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Eilis Hannon
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Emma Dempster
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Tim Frayling
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Jonathan Mill
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of LübeckLübeckGermany
| | - Peter Johannsen
- Danish Dementia Research Centre, RigshospitaletCopenhagenDenmark
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Christian‐Albrechts‐University of KielKielGermany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian‐Albrechts‐University of KielKielGermany
| | | | | | - Yvonne Freund‐Levi
- Department of Clinical Science and EducationSödersjukhuset, Karolinska InstitutetStockholmSweden
- School of Medical SciencesÖrebro UniversityÖrebroSweden
- Department of GeriatricsSödertälje HospitalSödertäljeSweden
| | - Lutz Frölich
- Department of Geriatric PsychiatryCentral Institute of Mental Health; Medical Faculty Mannheim/Heidelberg UniversityMannheimGermany
| | - Philip Scheltens
- Department of NeurologyAlzheimer Center AmsterdamAmsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry LaboratoryDepartment of Laboratory MedicineAmsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
| | - Giovanni Frisoni
- Memory CenterGeneva University and University Hospitals; on behalf of the AMYPAD ConsortiumGenèveSwitzerland
| | | | - Jill C. Richardson
- Neuroscience Therapeutic Area, GlaxoSmithKline R&DStevenageHertfordshireUK
| | | | - Sebastiaan Engelborghs
- Department of Biomedical SciencesUniversity of AntwerpAntwerpenBelgium
- Neuroprotection & Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB)Jette, BrusselsBelgium
| | - Ellen de Roeck
- Department of Biomedical SciencesUniversity of AntwerpAntwerpenBelgium
| | - Pablo Martinez‐Lage
- Center for Research and Advanced TherapiesCITA‐Alzheimer FoundationGipuzkoaSpain
| | - Mikel Tainta
- Center for Research and Advanced TherapiesCITA‐Alzheimer FoundationGipuzkoaSpain
| | - Alberto Lleó
- Neurology DepartmentCentro de Investigación en Red en enfermedades neurodegenerativas (CIBERNED), Hospital Sant Pau, Sant Antoni Maria ClaretBarcelonaSpain
| | - Isabel Sala
- Neurology DepartmentCentro de Investigación en Red en enfermedades neurodegenerativas (CIBERNED), Hospital Sant Pau, Sant Antoni Maria ClaretBarcelonaSpain
| | - Julius Popp
- University Hospital of Psychiatry ZürichUniversity of ZürichZürichSwitzerland
| | - Gwendoline Peyratout
- Department of PsychiatryUniversity Hospital of Lausanne (CHUV)LausanneSwitzerland
| | - Frans Verhey
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
| | - Magda Tsolaki
- 1st Department of NeurologySchool of Medicine`Laboratory of Neurodegenerative DiseasesCenter for Interdisciplinary Research and InnovationAristotle University of Thessaloniki, and Alzheimer Hellas, Macedonia, Balkan CenterThessalonikiGreece
| | - Ulf Andreasson
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Kaj Blennow
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at University of GothenburgGöteborgSweden
- Clinical Neurochemistry LabSahlgrenska University HospitalGöteborgSweden
- Paris Brain InstituteICM, Pitié‐Salpêtrière HospitalSorbonne UniversityParisFrance
- Neurodegenerative Disorder Research CenterDivision of Life Sciences and Medicineand Department of NeurologyInstitute on Aging and Brain DisordersUniversity of Science and Technology of China and First Affiliated Hospital of USTCHefeiP.R. China
| | - Henrik Zetterberg
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at University of GothenburgGöteborgSweden
- Department of Neurodegenerative DiseaseUCL Institute of Neurology, Queen SquareLondonUK
- UK Dementia Research Institute at UCL, Maple HouseLondonUK
- Hong Kong Center for Neurodegenerative DiseasesClear Water BayShatin, N.T.Hong KongChina
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Johannes Streffer
- AC Immune SA, formerly Janssen R&D, LLC. Beerse, Belgium at the time of study conductLausanneSwitzerland
| | - Stephanie J. B. Vos
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
| | - Simon Lovestone
- University of OxfordOxford, United Kingdom; Currently at Johnson & Johnson Innovative MedicinesBeerseBelgium
| | - Pieter‐Jelle Visser
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
- Department of GeriatricsSödertälje HospitalSödertäljeSweden
| | - Christina M. Lill
- Institute of Epidemiology and Social MedicineUniversity of MünsterMünsterGermany
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College, South Kensington CampusLondonUK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of LübeckLübeckGermany
| | - Katie Lunnon
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Ehsan Pishva
- Department of Psychiatry and NeuropsychologySchool for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht UniversityMaastrichtThe Netherlands
- Medical SchoolFaculty of Health and Life SciencesUniversity of ExeterExeterUK
| |
Collapse
|
4
|
Smith RG, Pishva E, Kouhsar M, Imm J, Dobricic V, Johannsen P, Wittig M, Franke A, Vandenberghe R, Schaeverbeke J, Freund‐Levi Y, Frölich L, Scheltens P, Teunissen CE, Frisoni G, Blin O, Richardson JC, Bordet R, Engelborghs S, de Roeck E, Martinez‐Lage P, Altuna M, Tainta M, Lleó A, Sala I, Popp J, Peyratout G, Winchester L, Nevado‐Holgado A, Verhey F, Tsolaki M, Andreasson U, Blennow K, Zetterberg H, Streffer J, Vos SJB, Lovestone S, Visser PJ, Bertram L, Lunnon K. Blood DNA methylomic signatures associated with CSF biomarkers of Alzheimer's disease in the EMIF-AD study. Alzheimers Dement 2024; 20:6722-6739. [PMID: 39193893 PMCID: PMC11485320 DOI: 10.1002/alz.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION We investigated blood DNA methylation patterns associated with 15 well-established cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) pathophysiology, neuroinflammation, and neurodegeneration. METHODS We assessed DNA methylation in 885 blood samples from the European Medical Information Framework for Alzheimer's Disease (EMIF-AD) study using the EPIC array. RESULTS We identified Bonferroni-significant differential methylation associated with CSF YKL-40 (five loci) and neurofilament light chain (NfL; seven loci) levels, with two of the loci associated with CSF YKL-40 levels correlating with plasma YKL-40 levels. A co-localization analysis showed shared genetic variants underlying YKL-40 DNA methylation and CSF protein levels, with evidence that DNA methylation mediates the association between genotype and protein levels. Weighted gene correlation network analysis identified two modules of co-methylated loci correlated with several amyloid measures and enriched in pathways associated with lipoproteins and development. DISCUSSION We conducted the most comprehensive epigenome-wide association study (EWAS) of AD-relevant CSF biomarkers to date. Future work should explore the relationship between YKL-40 genotype, DNA methylation, and protein levels in the brain. HIGHLIGHTS Blood DNA methylation was assessed in the EMIF-AD MBD study. Epigenome-wide association studies (EWASs) were performed for 15 Alzheimer's disease (AD)-relevant cerebrospinal fluid (CSF) biomarker measures. Five Bonferroni-significant loci were associated with YKL-40 levels and seven with neurofilament light chain (NfL). DNA methylation in YKL-40 co-localized with previously reported genetic variation. DNA methylation potentially mediates the effect of single-nucleotide polymorphisms (SNPs) in YKL-40 on CSF protein levels.
Collapse
Affiliation(s)
- Rebecca G. Smith
- Department of Clinical and Biomedical SciencesFaculty of Health and Life SciencesUniversity of ExeterExeterDevonUK
| | - Ehsan Pishva
- Department of Clinical and Biomedical SciencesFaculty of Health and Life SciencesUniversity of ExeterExeterDevonUK
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML)Maastricht UniversityMaastrichtThe Netherlands
| | - Morteza Kouhsar
- Department of Clinical and Biomedical SciencesFaculty of Health and Life SciencesUniversity of ExeterExeterDevonUK
| | - Jennifer Imm
- Department of Clinical and Biomedical SciencesFaculty of Health and Life SciencesUniversity of ExeterExeterDevonUK
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA)University of LübeckLübeckGermany
| | - Peter Johannsen
- Danish Dementia Research Centre, RigshospitaletCopenhagenDenmark
| | - Michael Wittig
- Institute of Clinical Molecular BiologyChristian‐Albrechts‐University of KielKielGermany
| | - Andre Franke
- Institute of Clinical Molecular BiologyChristian‐Albrechts‐University of KielKielGermany
| | - Rik Vandenberghe
- Laboratory for Cognitive NeurologyKU Leuven, Leuven Brain InstituteLeuvenBelgium
| | - Jolien Schaeverbeke
- Laboratory for Cognitive NeurologyKU Leuven, Leuven Brain InstituteLeuvenBelgium
| | - Yvonne Freund‐Levi
- Department of Clinical Science and EducationSödersjukhuset, Karolinska InstitutetStockholmSweden
- School of Medical SciencesÖrebro UniversityÖrebroSweden
- Department of GeriatricsSödertälje HospitalSödertäljeSweden
| | - Lutz Frölich
- Department of Geriatric PsychiatryCentral Institut of Mental HealthMedical Faculty Mannheim/Heidelberg UniversityMannheimGermany
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam NeuroscienceVrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry LaboratoryDepartment of Laboratory Medicine, Amsterdam NeuroscienceVrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
| | - Giovanni Frisoni
- Memory centerGeneva University and University Hospitals; on behalf of the AMYPAD consortiumGenevaSwitzerland
| | | | - Jill C. Richardson
- Neuroscience Therapeutic Area, GlaxoSmithKline R&DStevenageHertfordshireUK
| | | | - Sebastiaan Engelborghs
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
- Neuroprotection & Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N)Vrije Universiteit Brussel (VUB), JetteBrusselsBelgium
| | - Ellen de Roeck
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Pablo Martinez‐Lage
- Center for Research and Advanced TherapiesFundación CITA‐Alzhéimer FundazioaSan SebastianGipuzkoaSpain
| | - Miren Altuna
- Center for Research and Advanced TherapiesFundación CITA‐Alzhéimer FundazioaSan SebastianGipuzkoaSpain
| | - Mikel Tainta
- Center for Research and Advanced TherapiesFundación CITA‐Alzhéimer FundazioaSan SebastianGipuzkoaSpain
| | - Alberto Lleó
- Servicio de Neurología, Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED)Hospital Sant PauBarcelonaSpain
| | - Isabel Sala
- Servicio de Neurología, Centre of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED)Hospital Sant PauBarcelonaSpain
| | - Julius Popp
- University Hospital of Psychiatry Zürich, University of ZürichZürichSwitzerland
| | - Gwendoline Peyratout
- Department of PsychiatryUniversity Hospital of Lausanne (CHUV)LausanneSwitzerland
| | | | | | - Frans Verhey
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML)Maastricht UniversityMaastrichtThe Netherlands
| | - Magda Tsolaki
- 1st Department of NeurologySchool of MedicineLaboratory of Neurodegenerative DiseasesCenter for Interdisciplinary Research and InnovationAristotle University of Thessaloniki, and Alzheimer HellasThessalonikiGreece
| | - Ulf Andreasson
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at University of GothenburgGöteborgSweden
| | - Kaj Blennow
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at University of GothenburgGöteborgSweden
- Paris Brain InstituteICM, Pitié‐Salpêtrière HospitalSorbonne UniversityParisFrance
- Neurodegenerative Disorder Research CenterDivision of Life Sciences and Medicineand Department of NeurologyInstitute on Aging and Brain DisordersUniversity of Science and Technology of China and First Affiliated Hospital of USTCHefeiPR China
| | - Henrik Zetterberg
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at University of GothenburgGöteborgSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyQueen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative Diseases, N.T.ShatinHong KongChina
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public Health, University of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - Stephanie J. B. Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML)Maastricht UniversityMaastrichtThe Netherlands
| | - Simon Lovestone
- Department of PsychiatryUniversity Hospital of Lausanne (CHUV)LausanneSwitzerland
- Currently at: Johnson & Johnson Innovative MedicinesBeerseBelgium
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML)Maastricht UniversityMaastrichtThe Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam NeuroscienceVrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA)University of LübeckLübeckGermany
| | - Katie Lunnon
- Department of Clinical and Biomedical SciencesFaculty of Health and Life SciencesUniversity of ExeterExeterDevonUK
| |
Collapse
|
5
|
Ohlei O, Sommerer Y, Dobricic V, Homann J, Deecke L, Schilling M, Bartrés-Faz D, Cattaneo G, Düzel S, Fjell AM, Lindenberger U, Pascual-Leone Á, Sedghpour Sabet S, Solé-Padullés C, Tormos JM, Vetter VM, Walhovd KB, Wesse T, Wittig M, Franke A, Demuth I, Lill CM, Bertram L. Genome-wide QTL mapping across three tissues highlights several Alzheimer's and Parkinson's disease loci potentially acting via DNA methylation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.22.23300365. [PMID: 38196633 PMCID: PMC10775408 DOI: 10.1101/2023.12.22.23300365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
DNA methylation (DNAm) is an epigenetic mark with essential roles in disease development and predisposition. Here, we created genome-wide maps of methylation quantitative trait loci (meQTL) in three peripheral tissues and used Mendelian randomization (MR) analyses to assess the potential causal relationships between DNAm and risk for two common neurodegenerative disorders, i.e. Alzheimer's disease (AD) and Parkinson's disease (PD). Genome-wide single nucleotide polymorphism (SNP; ~5.5M sites) and DNAm (~850K CpG sites) data were generated from whole blood (n=1,058), buccal (n=1,527) and saliva (n=837) specimens. We identified between 11 and 15 million genome-wide significant (p<10-14) SNP-CpG associations in each tissue. Combining these meQTL GWAS results with recent AD/PD GWAS summary statistics by MR strongly suggests that the previously described associations between PSMC3, PICALM, and TSPAN14 and AD may be founded on differential DNAm in or near these genes. In addition, there is strong, albeit less unequivocal, support for causal links between DNAm at PRDM7 in AD as well as at KANSL1/MAPT in AD and PD. Our study adds valuable insights on AD/PD pathogenesis by combining two high-resolution "omics" domains, and the meQTL data shared along with this publication will allow like-minded analyses in other diseases.
Collapse
Affiliation(s)
- Olena Ohlei
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
| | - Yasmine Sommerer
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
| | - Jan Homann
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Laura Deecke
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Marcel Schilling
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
- Gene Regulation of Cell Identity, Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Camí de les Escoles, Badalona, Barcelona, Spain
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Álvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Sanaz Sedghpour Sabet
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Cristina Solé-Padullés
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Josep M Tormos
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Camí de les Escoles, Badalona, Barcelona, Spain
| | - Valentin M Vetter
- Biology of Aging Working Group, Department of Endocrinology and Metabolic Diseases, Division of Lipid Metabolism, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin), Berlin, Germany
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Tanja Wesse
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Ilja Demuth
- Biology of Aging Working Group, Department of Endocrinology and Metabolic Diseases, Division of Lipid Metabolism, Charité-Universitätsmedizin Berlin (corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin), Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christina M Lill
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
| |
Collapse
|