1
|
Chi J, Fan B, Li Y, Jiao Q, Li GY. Mitochondrial transplantation: a promising strategy for the treatment of retinal degenerative diseases. Neural Regen Res 2025; 20:3370-3387. [PMID: 39851134 PMCID: PMC11974652 DOI: 10.4103/nrr.nrr-d-24-00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 10/24/2024] [Indexed: 01/26/2025] Open
Abstract
The retina, a crucial neural tissue, is responsible for transforming light signals into visual information, a process that necessitates a significant amount of energy. Mitochondria, the primary powerhouses of the cell, play an integral role in retinal physiology by fulfilling the high-energy requirements of photoreceptors and secondary neurons through oxidative phosphorylation. In a healthy state, mitochondria ensure proper visual function by facilitating efficient conversion and transduction of visual signals. However, in retinal degenerative diseases, mitochondrial dysfunction significantly contributes to disease progression, involving a decline in membrane potential, the occurrence of DNA mutations, increased oxidative stress, and imbalances in quality-control mechanisms. These abnormalities lead to an inadequate energy supply, the exacerbation of oxidative damage, and the activation of cell death pathways, ultimately resulting in neuronal injury and dysfunction in the retina. Mitochondrial transplantation has emerged as a promising strategy for addressing these challenges. This procedure aims to restore metabolic activity and function in compromised cells through the introduction of healthy mitochondria, thereby enhancing the cellular energy production capacity and offering new strategies for the treatment of retinal degenerative diseases. Although mitochondrial transplantation presents operational and safety challenges that require further investigation, it has demonstrated potential for reviving the vitality of retinal neurons. This review offers a comprehensive examination of the principles and techniques underlying mitochondrial transplantation and its prospects for application in retinal degenerative diseases, while also delving into the associated technical and safety challenges, thereby providing references and insights for future research and treatment.
Collapse
Affiliation(s)
- Jing Chi
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Bin Fan
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yulin Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qing Jiao
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Guang-Yu Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
2
|
Swarup N, Leung HY, Choi I, Aziz MA, Cheng JC, Wong DTW. Cell-Free DNA: Features and Attributes Shaping the Next Frontier in Liquid Biopsy. Mol Diagn Ther 2025:10.1007/s40291-025-00773-x. [PMID: 40237938 DOI: 10.1007/s40291-025-00773-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2025] [Indexed: 04/18/2025]
Abstract
Cell-free DNA (cfDNA) is changing the face of liquid biopsy as a minimally invasive tool for disease detection and monitoring, with its main applications in oncology and prenatal testing, and rising roles in transplant patient monitoring. However, the processes of cfDNA biogenesis, fragmentation, and clearance are complex and require further investigation. Evidence suggests that cfDNA production relates to mechanisms of cell death and DNA repair, both of which further influence fragment size and its applicability as a biomarker. An emerging domain, cfDNA fragmentomics is being explored for advancing the field of diagnostics using non-mutational signatures such as fragment size ratios and methylation patterns. Thus, this review examines structural diversity in cfDNA with various fragment sizes. In examining these cfDNA subsets, we discuss their distinct biological origins and potential clinical utility. Development of sequencing methodologies has broadened the application of cfDNA in diagnosing cancers and organ-specific pathologies, as well as directing personalized therapies. This has been achieved by identifying and uncovering different subsets of cfDNA in biofluids using different methodologies and biofluids. Different cfDNA subsets provide important insights regarding genomic and epigenetic features, enhancing the understanding of gene regulation, tissue-specific functions, and disease progression. Advancement of these key areas further asserts increasing clinical relevance for the use of cfDNA as a biomarker. Continued exploration of cfDNA subsets is expected to drive further innovation in liquid biopsy and its integration into routine clinical practice.
Collapse
Affiliation(s)
- Neeti Swarup
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ho Yeung Leung
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Irene Choi
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mohammad Arshad Aziz
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jordan C Cheng
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - David T W Wong
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Liu F, Su Y, Liu X, Zhao L, Wu Z, Liu Y, Zhang L. Cell-free DNA: a metabolic byproduct with diagnostic and prognostic potential in rheumatic disorders. Front Pharmacol 2025; 16:1537934. [PMID: 40008123 PMCID: PMC11850341 DOI: 10.3389/fphar.2025.1537934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
The release of intracellular DNA into the extracellular area occurs via two pathways: cell death and active secretion by cells. The DNA, which is free in the extracellular space, is commonly known as Cell-Free DNA (cfDNA). In healthy people, the levels of cfDNA in the circulation are notably minimal. Within a healthy organism, cfDNA undergoes swift elimination and filtration upon release, ensuring a persistently low concentration in the bloodstream. Conversely, individuals suffering from diverse illnesses like stroke, trauma, myocardial infarction, and various cancers show markedly higher levels of cfDNA in their blood plasma or serum. Further research has shown that cfDNA is associated with a wide range of human diseases and may have a feedback relationship with inflammation, potentially serving as a non-invasive, accurate, sensitive, and rapid biomarker for clinical applications in disease differential diagnosis, activity monitoring, and prognosis assessment. Studies dating back to the 1970s have indicated elevated cfDNA concentrations in SLE. Currently, increased levels of cfDNA are noted in a range of rheumatic disorders. Inflammatory damage in patients with rheumatic diseases promotes the release of cfDNA, while potential abnormalities in cfDNA metabolism further increase its levels. Elevated concentrations of cfDNA are recognized by DNA receptors, initiating immune-inflammatory reactions which subsequently accelerate the progression of disease. Reducing excess cfDNA may help improve inflammation. Additionally, several trials have demonstrated a correlation between cfDNA concentrations and the activity of rheumatic diseases, indicating the potential of cfDNA, a novel marker for inflammation, in conjunction with C-creative protein (CRP), Erythrocyte Sedimentation Rate (ESR) to monitor disease activity in rheumatic conditions. This paper provides an overview of cfDNA and summarizes current research advancements in cfDNA in rheumatic diseases, aiming to offer new perspectives for researchers.
Collapse
Affiliation(s)
- Fancheng Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Shanxi Bethune Hospital, Taiyuan, China
| | - Yazhen Su
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Shanxi Bethune Hospital, Taiyuan, China
| | - Xinling Liu
- Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Li Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Shanxi Bethune Hospital, Taiyuan, China
| | - Zewen Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Shanxi Bethune Hospital, Taiyuan, China
| | - Yang Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Shanxi Bethune Hospital, Taiyuan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Shanxi Bethune Hospital, Taiyuan, China
| |
Collapse
|
4
|
Sobhani N, Tierno D, Pavan N, Generali D, Grassi G, Zanconati F, Scaggiante B. Circulating Cell-Free DNA Integrity for Breast and Prostate Cancer: What Is the Landscape for Clinical Management of the Most Common Cancers in Women and Men? Int J Mol Sci 2025; 26:900. [PMID: 39940669 PMCID: PMC11817310 DOI: 10.3390/ijms26030900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Breast cancer (BC) and prostate cancer (PCa) are major health problems for women and men worldwide. Although therapeutic approaches have increased, the complexity associated with their heterogeneity and progression requires better ways to monitor them over time. Cell-free DNA integrity (cfDI) represents a viable alternative to needle biopsy and has the potential to be representative of cancer at all stages. In addition to the advantages of liquid biopsy in terms of cost and reduced invasiveness, cfDI can be used to detect repetitive DNA elements (e.g., ALU and LINE1), which could circumvent the problem of mutational heterogeneity in BC and PCa. In this review, we summarise the latest findings on cfDI studies in BC and PCa. The results show that cfDI has the potential to improve early detection, metastasis, and recurrence of BC, while limited studies prevent its clinical value in PCa from being fully defined. However, it is expected that further studies in the near future will help to introduce the use of cfDI as another biomarker for the clinical monitoring of BC and PCa patients.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA;
| | - Domenico Tierno
- Department of Medicine, Surgery and Health Sciences, University Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (D.T.); (D.G.); (G.G.); (F.Z.)
| | - Nicola Pavan
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, 90127 Palermo, Italy;
| | - Daniele Generali
- Department of Medicine, Surgery and Health Sciences, University Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (D.T.); (D.G.); (G.G.); (F.Z.)
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100 Cremona, Italy
| | - Gabriele Grassi
- Department of Medicine, Surgery and Health Sciences, University Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (D.T.); (D.G.); (G.G.); (F.Z.)
| | - Fabrizio Zanconati
- Department of Medicine, Surgery and Health Sciences, University Hospital of Cattinara, University of Trieste, 34149 Trieste, Italy; (D.T.); (D.G.); (G.G.); (F.Z.)
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
5
|
Yamamoto R, Asano H, Tamaki R, Saito Y, Hosokawa A, Watari H, Umazume T. Dynamics and Half-Life of Cell-Free DNA After Exercise: Insights from a Fragment Size-Specific Measurement Approach. Diagnostics (Basel) 2025; 15:109. [PMID: 39795637 PMCID: PMC11720216 DOI: 10.3390/diagnostics15010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Background: Cell-free DNA (cfDNA) is present in healthy individuals but is elevated in those undergoing physical exertion, trauma, sepsis, and certain cancers. Maintaining cfDNA concentrations is vital for immune homeostasis and preventing inflammatory responses. Understanding cfDNA release and clearance is essential for using cfDNA as a biomarker in clinical diagnostics. We focused on the fragment size of cfDNA and investigated cfDNA dynamics and half-life, particularly the 100-250 base pair fragments. Methods: Healthy, adult men (n = 5; age 40 ± 4.1 years) were subjected to a 30 min treadmill exercise. Blood samples were collected at 0, 5, 10, 15, 30, and 60 min post-exercise using PAXgene® Blood ccfDNA tubes to stabilize and prevent nuclease-mediated cfDNA degradation and minimize genomic DNA contamination risk. The cfDNA concentration was measured using an electrophoresis-based technique (4150 TapeStation system) to quantify the concentration based on cfDNA fragment size. Results: The results showed a cfDNA half-life of 24.2 min, with a transient increase in 100-250 base pair cfDNA fragments post-exercise, likely due to nuclease activity. These levels rapidly reverted to the baseline within an hour. Conclusions: The rapid clearance of cfDNA underscores its potential as a biomarker for real-time disease monitoring and the evaluation of treatment efficacy. This study is expected to standardize cfDNA investigations, enhancing diagnosis and treatment monitoring across various disease conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Takeshi Umazume
- Department of Obstetrics, Hokkaido University Hospital, Sapporo 060-8648, Japan; (R.Y.)
| |
Collapse
|
6
|
Prkačin I, Mokos M, Ferara N, Šitum M. Melanoma's New Frontier: Exploring the Latest Advances in Blood-Based Biomarkers for Melanoma. Cancers (Basel) 2024; 16:4219. [PMID: 39766118 PMCID: PMC11727356 DOI: 10.3390/cancers16244219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025] Open
Abstract
Melanoma is one of the most malignant cancers, and the global incidence of cutaneous melanoma is increasing. While melanomas are highly prone to metastasize if diagnosed late, early detection and treatment significantly reduce the risk of mortality. Identifying patients at higher risk of metastasis, who might benefit from early adjuvant therapies, is particularly important, especially with the advent of new melanoma treatments. Therefore, there is a pressing need to develop additional prognostic biomarkers for melanoma to improve early stratification of patients and accurately identify high-risk subgroups, ultimately enabling more effective personalized treatments. Recent advances in melanoma therapy, including targeted treatments and immunotherapy, have underscored the importance of biomarkers in determining prognosis and predicting treatment response. The clinical application of these markers holds the potential for significant advancements in melanoma management. Various tumor-derived genetic, proteomic, and cellular components are continuously released into the bloodstream of cancer patients. These molecules, including circulating tumor DNA and RNA, proteins, tumor cells, and immune cells, are emerging as practical and precise liquid biomarkers for cancer. In the current era of effective molecular-targeted therapies and immunotherapies, there is an urgent need to integrate these circulating biomarkers into clinical practice to facilitate personalized treatment. This review highlights recent discoveries in circulating melanoma biomarkers, explores the challenges and potentials of emerging technologies for liquid biomarker discovery, and discusses future directions in melanoma biomarker research.
Collapse
Affiliation(s)
- Ivana Prkačin
- Department of Dermatology and Venereology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia; (M.M.); (N.F.); (M.Š.)
- School of Medicine, University of Split, 21000 Split, Croatia
| | - Mislav Mokos
- Department of Dermatology and Venereology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia; (M.M.); (N.F.); (M.Š.)
| | - Nikola Ferara
- Department of Dermatology and Venereology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia; (M.M.); (N.F.); (M.Š.)
| | - Mirna Šitum
- Department of Dermatology and Venereology, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia; (M.M.); (N.F.); (M.Š.)
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Croatian Academy of Sciences and Arts, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Geng F, Liu J, Liu J, Lu Z, Pan Y. Recent progress in understanding the role of bacterial extracellular DNA: focus on dental biofilm. Crit Rev Microbiol 2024:1-19. [PMID: 39648406 DOI: 10.1080/1040841x.2024.2438117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/11/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
Dental biofilm is a highly complicated and dynamic structure comprising not only microbial communities but also the surrounding matrix of extracellular polymeric substances (EPS), including polysaccharides, proteins, extracellular DNA (eDNA) and other biopolymers. In recent years, the important role of bacterial eDNA in dental biofilms has gradually attracted attention. In this review, we present recent studies on the presence, dynamic conformation and release of oral bacterial eDNA. Moreover, updated information on functions associated with oral bacterial eDNA in biofilm formation, antibiotic resistance, activation of the immune system and immune evasion is highlighted. Finally, we summarize the role of oral bacterial eDNA as a promising target for the treatment of oral diseases. Increasing insight into the versatile roles of bacterial eDNA in dental biofilms will facilitate the prevention and treatment of biofilm-induced oral infections.
Collapse
Affiliation(s)
- Fengxue Geng
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Junchao Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Jinwen Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ze Lu
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
8
|
Lee H, Rahman MH, Abdul-Nasir S, Kim CS, Kim B, Park J, Lim T, Rajoriya S, Kim WK, Kim SK. Elucidating the biological effects of cell-free DNA (cfDNA) extracted from septic mice: In Vitro and In Vivo investigations and mechanistic insights. Mol Cell Toxicol 2024. [DOI: 10.1007/s13273-024-00494-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 01/06/2025]
|
9
|
Thanapirom K, Al-Akkad W, Pelut A, Sadouki Z, Finkel JB, Nardi-Hiebl S, Vogt W, Vojnar B, Wulf H, Eberhart L, McHugh TD, Rombouts K, Pinzani M, Tsochatzis E, Ndieyira JW. Nanomechanical detection to empower robust monitoring of sepsis and microbial adaptive immune system-mediated proinflammatory disease. Sci Rep 2024; 14:29979. [PMID: 39622899 PMCID: PMC11612153 DOI: 10.1038/s41598-024-80126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024] Open
Abstract
The correlation between circulating microbes and sepsis as well as proinflammatory diseases is increasingly gaining recognition. However, the detection of microbes' cell-free DNA (cfDNA), which exist at concentrations of a billion times lower than blood proteins, poses a significant challenge for early disease detection. Here, we present Nano mechanics combined with highly sensitive readout sequences to address the challenges of ultralow counts of disease biomarkers, thus enabling robust quantitative monitoring of chronic medical conditions at different stages of human disease progression. To showcase the effectiveness of our approach, we employ fragments of cfDNA and human cell secretory proteins as models with predictive capabilities for human diseases. Notably, our method reveals a reliable representation over an impressive three to four orders of magnitude in the detection limit and dynamic range, surpassing commercially available quantitative polymerase chain reaction (qPCR) commonly used in routine clinical practice. This concept underpins a highly sensitive and selective medical device designed for the early detection of circulating microbes in patients undergoing intensive cancer therapy. This will help pinpoint individuals at risk of complications, including damage to the intestinal barrier and development of neutropenic fever/Sirsa/Sepsis. Moreover, this approach introduces new avenues for stratifying antibiotic prophylaxis in proinflammatory diseases.
Collapse
Affiliation(s)
- Kessarin Thanapirom
- Division of Medicine, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Walid Al-Akkad
- Division of Medicine, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Aylin Pelut
- Division of Medicine, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Zahra Sadouki
- UCL Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, Gower Street, WC1E 6BT, London, United Kingdom
| | - Jemima B Finkel
- Division of Medicine, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Stefan Nardi-Hiebl
- Department of Anaesthesia and Intensive Care, University Hospital of the Philipps-University of Marburg Baldingerstrasse, 35043, Marburg, Germany
| | - Wieland Vogt
- Medical Innovations and Management, Steinbeis University, Ernst-August-Strasse 15, 12489, Berlin, Germany
| | - Benjamin Vojnar
- Department of Anaesthesia and Intensive Care, University Hospital of the Philipps-University of Marburg Baldingerstrasse, 35043, Marburg, Germany
| | - Hinnerk Wulf
- Department of Anaesthesia and Intensive Care, University Hospital of the Philipps-University of Marburg Baldingerstrasse, 35043, Marburg, Germany
| | - Leopold Eberhart
- Department of Anaesthesia and Intensive Care, University Hospital of the Philipps-University of Marburg Baldingerstrasse, 35043, Marburg, Germany
| | - Timothy D McHugh
- UCL Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, Gower Street, WC1E 6BT, London, United Kingdom
| | - Krista Rombouts
- Division of Medicine, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Massimo Pinzani
- Division of Medicine, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Emmanouil Tsochatzis
- Division of Medicine, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Joseph W Ndieyira
- Division of Medicine, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
10
|
Maulat C, Canivet C, Cabarrou B, Pradines A, Selves J, Casanova A, Doussine A, Hanoun N, Cuellar E, Boulard P, Carrère N, Buscail L, Bournet B, Muscari F, Cordelier P. Prognostic impact of circulating tumor DNA detection in portal and peripheral blood in resected pancreatic ductal adenocarcinoma patients. Sci Rep 2024; 14:27296. [PMID: 39516243 PMCID: PMC11549393 DOI: 10.1038/s41598-024-76903-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
In PDAC patients, ctDNA detection's prognostic significance needs validation especially in resected patients. This study investigated ctDNA kinetics in portal and peripheral blood before and after resection, and whether tissue mobilization during surgery influences ctDNA detection. In this single-center prospective cohort, portal and peripheral blood were drawn during pancreaticoduodenectomy before and after tissue mobilization, during 12 postoperative months and were associated with overall survival (OS), recurrence-free survival (RFS) and CA19-9 (secondary endpoints). Tumor mutations were identified using next-generation-sequencing and ctDNA detected by digital droplet PCR. From 2018 to 2022, 34 patients were included. The 2-year RFS and OS were 47.6%(95%CI[29.5; 63.6]) and 65.7%(95%CI[46.5; 79.4]) respectively. Intraoperatively, ctDNA detection in portal or peripheral blood was associated with worse RFS (HR[95%CI]3.26[1.26; 8.45],p = 0.010) and OS (HR[95%CI]5.46[1.65;18.01],p = 0.002). Portal vein sampling did not improve ctDNA detection. CtDNA levels were increased by 2.5-fold (p = 0.031) in peripheral blood after tissue mobilization but not significantly linked to RFS or OS. Detecting ctDNA intraoperatively was correlated with poorer RFS (HR [95% CI] 3.26 [1.26;8.45], p = 0.010) and 0S (HR [95% CI] 5.46 [1.65;18.01], p = 0.002). Portal vein sampling did not improve ctDNA detection. Tissue mobilization increases ctDNA levels. Intraoperative detection of ctDNA is associated with a worse prognosis.
Collapse
Affiliation(s)
- Charlotte Maulat
- Digestive Surgery, Hepatobiliary and Pancreatic Surgery Department and Liver Transplantation Unit, Toulouse University Hospital, Toulouse, France.
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France.
- Service de Chirurgie Digestive et Transplantation , CHU Rangueil , 1, avenue Jean Poulhès, Toulouse, 31059, France.
| | - Cindy Canivet
- Gastroenterology and Pancreatology Department, Toulouse University Hospital, Toulouse, France
| | - Bastien Cabarrou
- Biostatistics and Health Data Science Unit, Institut Claudius-Regaud, IUCT-Oncopole, Toulouse, France
| | - Anne Pradines
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
- Prospective Biology Unit, Medicine Laboratory, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | - Janick Selves
- Pathology Department, IUCT-Oncopole, Toulouse University Hospital Center (CHU), Toulouse, France
| | - Anne Casanova
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
- Prospective Biology Unit, Medicine Laboratory, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | - Aurélia Doussine
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
- Prospective Biology Unit, Medicine Laboratory, Oncopole Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | - Naïma Hanoun
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
| | - Emmanuel Cuellar
- Digestive Surgery, Hepatobiliary and Pancreatic Surgery Department and Liver Transplantation Unit, Toulouse University Hospital, Toulouse, France
| | - Paul Boulard
- Digestive Surgery, Hepatobiliary and Pancreatic Surgery Department and Liver Transplantation Unit, Toulouse University Hospital, Toulouse, France
| | - Nicolas Carrère
- Digestive Surgery, Hepatobiliary and Pancreatic Surgery Department and Liver Transplantation Unit, Toulouse University Hospital, Toulouse, France
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
| | - Louis Buscail
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
- Gastroenterology and Pancreatology Department, Toulouse University Hospital, Toulouse, France
| | - Barbara Bournet
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
- Gastroenterology and Pancreatology Department, Toulouse University Hospital, Toulouse, France
| | - Fabrice Muscari
- Digestive Surgery, Hepatobiliary and Pancreatic Surgery Department and Liver Transplantation Unit, Toulouse University Hospital, Toulouse, France
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France
| | - Pierre Cordelier
- Centre de Recherches en Cancérologie de Toulouse, CRCT, Toulouse University, CNRS, InsermToulouse, France.
| |
Collapse
|
11
|
Mirandola A, Kudriavtsev A, Cofre Muñoz CI, Navarro RC, Macagno M, Daoud S, Sanchez C, Pastor B, Pisareva E, Marin MS, Ruiz JG, Piris A, Rodriguez AG, Gonzalez NS, Vivancos A, Quarà V, Mellano A, Borghi F, Corti G, Marchiò C, Sapino A, Bartolini A, Crisafulli G, Bardelli A, Di Maio M, Lossaint G, Frayssinoux F, Crapez E, Ychou M, Soler RS, Fenocchio E, Fernandez Calotti PX, Mazard T, Vivas CS, Elez E, Di Nicolantonio F, Thierry AR. Post-surgery sequelae unrelated to disease progression and chemotherapy revealed in follow-up of patients with stage III colon cancer. EBioMedicine 2024; 108:105352. [PMID: 39303668 PMCID: PMC11437914 DOI: 10.1016/j.ebiom.2024.105352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND We studied the poorly-known dynamics of circulating DNA (cir-nDNA), as monitored prospectively over an extended post-surgery period, in patients with cancer. METHODS On patients with stage III colon cancer (N = 120), using personalised molecular tags we carried out the prospective, multicenter, blinded cohort study of the post-surgery serial analysis of cir-nDNA concentration. 74 patients were included and 357 plasma samples tested. FINDINGS During post-operative follow-up, the patients' median cir-nDNA concentration was greater (P < 0.0001 in the [43-364 days range]) than both the median value in healthy individuals and the pre-surgery value. These cir-nDNA levels were highly associated with NETs markers (P-value associating MPO and cir-nDNA, and NE and cir-nDNA are 6.6 x 10-17, and 1.9 x 10-7), in accordance with previous reports which indicate that cir-nDNA are NETs by-products. Unexpectedly, in 34 out of 50 patients we found that NETs continued to be formed for an extended duration post-surgery, even in patients without disease progression. Given that this phenomenon was observed in patients without adjuvant CT, and in patients >18 months post-surgery, the data suggest that the persistence of NETs formation is not due to the adjuvant CT. INTERPRETATION (1), Given the inter-patient heterogeneity, the post-surgery cir-nDNA level cannot be considered a reliable value, and caution must be exercised when determining mutation allele frequency or the mutation status; and (2), specific studies must be undertaken to investigate the possible clinical impact of the persistent, low-grade inflammation resulting from elevated NETs levels, such as observed in these post-surgery patients, given that such levels are known to potentially induce adverse cardiovascular or thrombotic events. FUNDING This work was supported by the H2020 European ERA-NET grant on Translational Cancer Research (TRANSCAN-2).
Collapse
Affiliation(s)
- Alexia Mirandola
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier, F-34298, France
| | - Andrei Kudriavtsev
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier, F-34298, France
| | | | - Raquel Comas Navarro
- VHIO Vall d'Hebron Institute of Oncology, Medical Oncology Department, Barcelona, Spain
| | - Marco Macagno
- Istituto di Candiolo - Fondazione del Piemonte per l'Oncologia - IRCCS, Candiolo, Torino, Italy
| | - Saidi Daoud
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier, F-34298, France
| | - Cynthia Sanchez
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier, F-34298, France
| | - Brice Pastor
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier, F-34298, France
| | - Ekaterina Pisareva
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier, F-34298, France
| | - Mireia Sanchis Marin
- VHIO Vall d'Hebron Institute of Oncology, Medical Oncology Department, Barcelona, Spain
| | - Javier Gonzalo Ruiz
- VHIO Vall d'Hebron Institute of Oncology, Medical Oncology Department, Barcelona, Spain
| | - Alejandro Piris
- VHIO Vall d'Hebron Institute of Oncology, Medical Oncology Department, Barcelona, Spain
| | | | - Nadia Saoudi Gonzalez
- VHIO Vall d'Hebron Institute of Oncology, Medical Oncology Department, Barcelona, Spain
| | - Ana Vivancos
- VHIO Vall d'Hebron Institute of Oncology, Medical Oncology Department, Barcelona, Spain
| | - Virginia Quarà
- Istituto di Candiolo - Fondazione del Piemonte per l'Oncologia - IRCCS, Candiolo, Torino, Italy
| | - Alfredo Mellano
- Istituto di Candiolo - Fondazione del Piemonte per l'Oncologia - IRCCS, Candiolo, Torino, Italy
| | - Felice Borghi
- Istituto di Candiolo - Fondazione del Piemonte per l'Oncologia - IRCCS, Candiolo, Torino, Italy
| | - Giorgio Corti
- Istituto di Candiolo - Fondazione del Piemonte per l'Oncologia - IRCCS, Candiolo, Torino, Italy
| | - Caterina Marchiò
- Istituto di Candiolo - Fondazione del Piemonte per l'Oncologia - IRCCS, Candiolo, Torino, Italy; Department of Medical Sciences, University of Torino, Turin, Italy
| | - Anna Sapino
- Istituto di Candiolo - Fondazione del Piemonte per l'Oncologia - IRCCS, Candiolo, Torino, Italy; Department of Medical Sciences, University of Torino, Turin, Italy
| | - Alice Bartolini
- Istituto di Candiolo - Fondazione del Piemonte per l'Oncologia - IRCCS, Candiolo, Torino, Italy
| | - Giovanni Crisafulli
- IFOM, The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology, University of Torino, Turin, Italy
| | - Alberto Bardelli
- IFOM, The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology, University of Torino, Turin, Italy
| | | | - Gerald Lossaint
- ICM, Institut Régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Florence Frayssinoux
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier, F-34298, France
| | - Evelyne Crapez
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier, F-34298, France; ICM, Institut Régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Marc Ychou
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier, F-34298, France; ICM, Institut Régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Ramon Salazar Soler
- Medical Oncology Department, Institut Català d'Oncologia (ICO) - IDIBELL, Barcelona, Spain
| | - Elisabetta Fenocchio
- Istituto di Candiolo - Fondazione del Piemonte per l'Oncologia - IRCCS, Candiolo, Torino, Italy
| | | | - Thibault Mazard
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier, F-34298, France; ICM, Institut Régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Cristina Santos Vivas
- Medical Oncology Department, Institut Català d'Oncologia (ICO) - IDIBELL, Barcelona, Spain; Universitat de Barcelona, Barcelona, Spain
| | - Elena Elez
- VHIO Vall d'Hebron Institute of Oncology, Medical Oncology Department, Barcelona, Spain
| | - Federica Di Nicolantonio
- Istituto di Candiolo - Fondazione del Piemonte per l'Oncologia - IRCCS, Candiolo, Torino, Italy; Department of Oncology, University of Torino, Turin, Italy
| | - Alain R Thierry
- IRCM, Montpellier Cancer Research Institute, INSERM U1194, Montpellier University, Montpellier, F-34298, France; ICM, Institut Régional du Cancer de Montpellier, Montpellier, F-34298, France.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Type 1 interferons (IFN-I) are of increasing interest across a wide range of autoimmune rheumatic diseases. Historically, research into their role in rheumatoid arthritis (RA) has been relatively neglected, but recent work continues to highlight a potential contribution to RA pathophysiology. RECENT FINDINGS We emphasise the importance of disease stage when examining IFN-I in RA and provide an overview on how IFN-I may have a direct role on a variety of relevant cellular functions. We explore how clinical trajectory may be influenced by increased IFN-I signalling, and also, the limitations of scores composed of interferon response genes. Relevant environmental triggers and inheritable RA genetic risk relating to IFN-I signalling are explored with emphasis on intriguing data potentially linking IFN-I exposure, epigenetic changes, and disease relevant processes. Whilst these data cumulatively illustrate a likely role for IFN-I in RA, they also highlight the knowledge gaps, particularly in populations at risk for RA, and suggest directions for future research to both better understand IFN-I biology and inform targeted therapeutic strategies.
Collapse
Affiliation(s)
- Chung M A Lin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Faye A H Cooles
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
13
|
Lazar KM, Shetty S, Chilkoti A, Collier JH. Immune-active polymeric materials for the treatment of inflammatory diseases. Curr Opin Colloid Interface Sci 2023; 67:101726. [DOI: 10.1016/j.cocis.2023.101726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Hovhannisyan G, Harutyunyan T, Aroutiounian R, Liehr T. The Diagnostic, Prognostic, and Therapeutic Potential of Cell-Free DNA with a Special Focus on COVID-19 and Other Viral Infections. Int J Mol Sci 2023; 24:14163. [PMID: 37762464 PMCID: PMC10532175 DOI: 10.3390/ijms241814163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cell-free DNA (cfDNA) in human blood serum, urine, and other body fluids recently became a commonly used diagnostic marker associated with various pathologies. This is because cfDNA enables a much higher sensitivity than standard biochemical parameters. The presence of and/or increased level of cfDNA has been reported for various diseases, including viral infections, including COVID-19. Here, we review cfDNA in general, how it has been identified, where it can derive from, its molecular features, and mechanisms of release and clearance. General suitability of cfDNA for diagnostic questions, possible shortcomings and future directions are discussed, with a special focus on coronavirus infection.
Collapse
Affiliation(s)
- Galina Hovhannisyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Tigran Harutyunyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; (G.H.); (T.H.); (R.A.)
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
15
|
Abstract
Circulating cell-free DNA (cf-DNA) is released from dead and/or apoptotic leukocytes and due to neutrophil extracellular traps contributing to an inflammatory response. Previous clinical studies have reported that the peak concentrations and dynamic changes of cf-DNA may be used as a noninvasive biomarker of worsening kidney function as well as a guide to the management of kidney allograft rejection. We hypothesized that the pattern and dynamic changes of cf-DNA might be a plausible predictive biomarker for patients at risk of chronic kidney disease (CKD), including individuals with type 2 diabetes mellitus, heart failure, cardiovascular disease and established CKD. Along with it, pre- and posthemodialysis levels of serum cf-DNA appear to be a independent predictor for all-cause mortality in patients with end-stage kidney disease.
Collapse
Affiliation(s)
- Tetiana A Berezina
- VitaCenter, Department of Internal Medicine and Nephrology, Zaporozhye, 69000, Ukraine
| | - Alexander E Berezin
- Paracelsus Medical University, Department of Internal Medicine II, Division of Cardiology, Salzburg, 5020, Austria
| |
Collapse
|
16
|
Műzes G, Sipos F. Autoimmunity and Carcinogenesis: Their Relationship under the Umbrella of Autophagy. Biomedicines 2023; 11:biomedicines11041130. [PMID: 37189748 DOI: 10.3390/biomedicines11041130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
The immune system and autophagy share a functional relationship. Both innate and adaptive immune responses involve autophagy and, depending on the disease’s origin and pathophysiology, it may have a detrimental or positive role on autoimmune disorders. As a “double-edged sword” in tumors, autophagy can either facilitate or impede tumor growth. The autophagy regulatory network that influences tumor progression and treatment resistance is dependent on cell and tissue types and tumor stages. The connection between autoimmunity and carcinogenesis has not been sufficiently explored in past studies. As a crucial mechanism between the two phenomena, autophagy may play a substantial role, though the specifics remain unclear. Several autophagy modifiers have demonstrated beneficial effects in models of autoimmune disease, emphasizing their therapeutic potential as treatments for autoimmune disorders. The function of autophagy in the tumor microenvironment and immune cells is the subject of intensive study. The objective of this review is to investigate the role of autophagy in the simultaneous genesis of autoimmunity and malignancy, shedding light on both sides of the issue. We believe our work will assist in the organization of current understanding in the field and promote additional research on this urgent and crucial topic.
Collapse
Affiliation(s)
- Györgyi Műzes
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| | - Ferenc Sipos
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| |
Collapse
|
17
|
Sipos F, Műzes G. Cancer Stem Cell Relationship with Pro-Tumoral Inflammatory Microenvironment. Biomedicines 2023; 11:189. [PMID: 36672697 PMCID: PMC9855358 DOI: 10.3390/biomedicines11010189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Inflammatory processes and cancer stem cells (CSCs) are increasingly recognized as factors in the development of tumors. Emerging evidence indicates that CSCs are associated with cancer properties such as metastasis, treatment resistance, and disease recurrence. However, the precise interaction between CSCs and the immune microenvironment remains unexplored. Although evasion of the immune system by CSCs has been extensively studied, new research demonstrates that CSCs can also control and even profit from the immune response. This review provides an overview of the reciprocal interplay between CSCs and tumor-infiltrating immune cells, collecting pertinent data about how CSCs stimulate leukocyte reprogramming, resulting in pro-tumor immune cells that promote metastasis, chemoresistance, tumorigenicity, and even a rise in the number of CSCs. Tumor-associated macrophages, neutrophils, Th17 and regulatory T cells, mesenchymal stem cells, and cancer-associated fibroblasts, as well as the signaling pathways involved in these pro-tumor activities, are among the immune cells studied. Although cytotoxic leukocytes have the potential to eliminate CSCs, immune evasion mechanisms in CSCs and their clinical implications are also known. We intended to compile experimental findings that provide direct evidence of interactions between CSCs and the immune system and CSCs and the inflammatory milieu. In addition, we aimed to summarize key concepts in order to comprehend the cross-talk between CSCs and the tumor microenvironment as a crucial process for the effective design of anti-CSC therapies.
Collapse
Affiliation(s)
| | - Györgyi Műzes
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|