1
|
Kaimuangpak K, Lehtonen M, Rautio J, Weerapreeyakul N. Unraveled cancer cell survival-associated amino acid metabolism of HepG2 cells altered by Thai rat-tailed radish microgreen extract examined by untargeted LC-MS/MS analysis. Food Chem 2025; 474:143206. [PMID: 39954416 DOI: 10.1016/j.foodchem.2025.143206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/02/2025] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
Thai rat-tailed radish (RS) microgreens are enriched in macro- and micronutrients and phytochemicals with anticancer potential. This study investigates the antiproliferative effects of RS in the liver HepG2 cell model and untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis. RS was partitioned in water and dichloromethane (DCM). DCM was collected and evaporated to yield crude extract. The extract exhibited antiproliferation with inhibitory concentrations (IC50) of 612.5 ± 24.7 μg/ml at 24 h and 568.6 ± 11.0 μg/ml at 48 h. Metabolic pathways relevant to the anticancer effects are amino acid metabolism, including (1) alanine, aspartate, and glutamate metabolism; (2) nicotinate and nicotinamide metabolism; and (3) cysteine and methionine metabolism. Significantly, glutamine was upregulated, and aspartic acid, NAD, 5'-methylthioadenosine, cystathionine, and S-adenosylhomocysteine were downregulated. This finding suggested plausible effects of RS on liver cancer cell survival and invasion activities.
Collapse
Affiliation(s)
- Karnchanok Kaimuangpak
- Graduate School (in the program of Research and Development in Pharmaceuticals), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland.
| | - Jarkko Rautio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland.
| | - Natthida Weerapreeyakul
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
2
|
Zhang S, Zhang S. Successful Liver Transplantation After Achieving Complete Clinical Remission of Hepatocellular Carcinoma With Combination Therapy of Immune Checkpoint Inhibitors and Targeted Agents: A Case Report. Transplant Proc 2025; 57:580-584. [PMID: 40087050 DOI: 10.1016/j.transproceed.2025.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/26/2025] [Indexed: 03/16/2025]
Abstract
Immunotherapy, primarily with immune checkpoint inhibitors, has become pivotal in the treatment of advanced hepatocellular carcinoma (HCC), leading to significant tumor burden reduction. However, its applicability in liver transplantation remains controversial. Due to the potential risks of rejection limiting large-scale clinical trials and the incomplete understanding of underlying mechanisms, whether transplant recipients can benefit from immunotherapy remains uncertain. This report describes the application of immunotherapy in liver transplantation, wherein two patients achieved complete tumor remission after receiving immunotherapy combined with other treatments before transplantation, enabling successful liver transplantation surgeries. Additionally, one patient received combination therapy with tislelizumab and lenvatinib before transplantation (Case 2), representing the first reported case utilizing this combination therapy as a bridging treatment before LT.
Collapse
Affiliation(s)
- Shaobo Zhang
- Graduate School of Bengbu Medical University, Bengbu Medical University, Bengbu, Anhui, China; Department of Liver Transplantation, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shugeng Zhang
- Graduate School of Bengbu Medical University, Bengbu Medical University, Bengbu, Anhui, China; Department of Liver Transplantation, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
3
|
Ghosh D, Guin A, Kumar A, Das A, Paul S. Comprehensive insights of etiological drivers of hepatocellular carcinoma: Fostering targeted nano delivery to anti-cancer regimes. Biochim Biophys Acta Rev Cancer 2025; 1880:189318. [PMID: 40222420 DOI: 10.1016/j.bbcan.2025.189318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/05/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Hepatocellular carcinoma (HCC) stands as one of the most prevalent and deadliest malignancies on a global scale. Its complex pathogenesis arises from multifactorial etiologies, including viral infections, metabolic syndromes, and environmental carcinogens, all of which drive genetic and molecular aberrations in hepatocytes. This intricate condition is associated with multiple causative factors, resulting in the abnormal activation of various cellular and molecular pathways. Given that HCC frequently manifests within the context of a compromised or cirrhotic liver, coupled with the tendency of late-stage diagnoses, the overall prognosis tends to be unfavorable. Systemic therapy, especially conventional cytotoxic drugs, generally proves ineffective. Despite advancements in therapeutic interventions, conventional treatments such as chemotherapy often exhibit limited efficacy and substantial systemic toxicity. In this context, nanomedicine, particularly lipid-based nanoparticles (LNPs), has emerged as a promising strategy for enhancing drug delivery specificity and reducing adverse effects. This review provides a comprehensive overview of the molecular and metabolic underpinnings of HCC. Furthermore, we explored the role of lipid-based nano-formulations including liposomes, solid lipid nanoparticles, and nanostructured lipid carriers in targeted drug delivery for HCC. We have highlighted recent advances in LNP-based delivery approaches, FDA-approved drugs, and surface modification strategies to improve liver-specific delivery and therapeutic efficacy. It will provide a comprehensive summary of various treatment strategies, recent clinical advances, receptor-targeting strategies and the role of lipid composition in cellular uptake. The review concludes with a critical assessment of existing challenges and future prospects in nanomedicines-driven HCC therapy.
Collapse
Affiliation(s)
- Dipanjan Ghosh
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Aharna Guin
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, Andhra Pradesh, India
| | - Aryan Kumar
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, Andhra Pradesh, India
| | - Amlan Das
- Department of Microbiology & Department of Biochemistry, Royal School of Biosciences, The Assam Royal Global University, Guwahati 781035, Assam, India.
| | - Santanu Paul
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, Andhra Pradesh, India.
| |
Collapse
|
4
|
Tang M, Liu T, Zhang Y, Ding J. Efficacy and safety of pembrolizumab in the treatment of advanced hepatocellular carcinoma: a systematic review and meta-analysis. Eur J Clin Pharmacol 2025:10.1007/s00228-025-03829-3. [PMID: 40172662 DOI: 10.1007/s00228-025-03829-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND The efficacy and safety of pembrolizumab in treating advanced hepatocellular carcinoma (HCC) are inconsistent across studies. This study sheds light on the efficacy and safety of pembrolizumab in advanced HCC patients. METHODS Several databases were comprehensively searched up to January 13, 2025, to identify studies assessing pembrolizumab for advanced HCC. Outcome indicators included overall survival (OS), progression-free survival (PFS), objective response rate (ORR), rash, adverse events (AEs), and severe adverse events (SAEs). Pooled effects were estimated through hazard ratios (HRs) and odds ratios (ORs) with 95% confidence intervals (CIs). R 4.4.1. was employed for statistical analyses. RESULTS Twenty-two studies involving 2964 patients were encompassed. Meta-analysis indicated that pembrolizumab demonstrated an ORR of 28% in single-arm analyses. Pembrolizumab significantly improved ORR in comparison to placebo (OR = 2.57, 95% CI: 1.32-5.03) but showed no significant advantage over nivolumab. Pembrolizumab markedly enhanced PFS (HR = 0.76, 95% CI: 0.69-0.85) and OS (HR = 0.78, 95% CI: 0.70-0.88) compared to placebo, but no significant differences were observed when compared to nivolumab. Pembrolizumab significantly raised the risk of rash in comparison to placebo (OR = 2.27, 95% CI: 1.55-3.31) but showed no significant difference versus nivolumab. The pembrolizumab group showed a higher incidence of AEs (OR = 1.94, 95% CI: 1.42-2.64) and SAEs (OR = 2.10, 95% CI: 1.04-4.25) than the placebo group, with no significant difference between pembrolizumab and nivolumab. CONCLUSIONS This study proves that pembrolizumab may have promising therapeutic effects in patients with advanced HCC, although no clear advantage over nivolumab was observed. The occurrence of AEs warrants attention in clinical practice.
Collapse
Affiliation(s)
- Mingyang Tang
- Health Science Center, Hubei Minzu University, Enshi Hubei, 445000, China
| | - Tao Liu
- Hepatobiliary Pancreatic Spleen Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, No. 158 Wuyang Avenue, Wuyangba Street, Enshi Hubei, Hubei Province, 445000, China
| | - Yukun Zhang
- Abdominal Oncology Department, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Hubei, 445000, China
| | - Jun Ding
- Hepatobiliary Pancreatic Spleen Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, No. 158 Wuyang Avenue, Wuyangba Street, Enshi Hubei, Hubei Province, 445000, China.
| |
Collapse
|
5
|
Cao L, Lin J, Fang Y, Yu J, Du S, Chen J, Xu S, Xu B, Zhao J. Dihydroartemisinin suppresses COX-2-mediated apoptosis resistance in hepatocellular carcinoma under endoplasmic reticulum stress. Cytotechnology 2025; 77:59. [PMID: 39959787 PMCID: PMC11825429 DOI: 10.1007/s10616-025-00717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/14/2025] [Indexed: 02/18/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, and its treatment still faces numerous challenges. Dihydroartemisinin (DHA), a derivative of artemisinin, has shown significant antitumor activity in preclinical research. Our study seeks to uncover the molecular mechanisms of DHA in HCC, potentially providing scientific evidence for its use as a supportive therapy in clinical settings. This study was conducted using various experimental approaches to systematically analyze the effects of DHA in HCC. Cell viability was evaluated by CCK-8 to determine the IC50 of DHA in HCC cells. Flow cytometry was used to measure the rates of apoptosis and reactive oxygen species (ROS) levels. Colony formation assays were performed to examine the inhibitory effects of DHA on HCC cell proliferation. The toxicity of DHA on HCC cells was evaluated through the lactate dehydrogenase release assay. Western blot was conducted to examine expression levels of proteins related to endoplasmic reticulum (ER) and apoptosis. Fluo-3 AM was utilized to label calcium ions (Ca2+), allowing for the detection of intracellular Ca2+ level changes. Additionally, ER tracker was employed to label the ER, with its morphological changes observed via immunofluorescence. DHA notably inhibited the vitality and proliferation of HCC cells and promoted cell apoptosis. Following DHA exposure, there were notable increases in ER stress markers, ROS, and Ca2+ levels. The morphology of the ER exhibited a loose and expanded state. The use of ER stress inhibitors attenuated these effects. Additionally, ER stress inducers facilitated the upregulation of COX-2, mediating apoptosis in HCC cells. Upon COX-2 knockdown, the apoptotic effect of DHA was markedly amplified. In HCC, DHA induces apoptosis in tumor cells by curbing the COX-2-mediated apoptotic resistance that arises during ER stress. This breakthrough reveals the molecular pathways through which DHA can aid in HCC treatment, offering valuable experimental data to support its clinical use as an adjuvant drug.
Collapse
Affiliation(s)
- Lulu Cao
- Department of Pathology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, No.100 Minjiang Avenue, Wisdom New City, Quzhou City, 324000 Zhejiang Province China
| | - Jun Lin
- Department of Pathology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, No.100 Minjiang Avenue, Wisdom New City, Quzhou City, 324000 Zhejiang Province China
| | - Yun Fang
- Department of Ultrasound, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou City, 324000 Zhejiang Province China
| | - Junhua Yu
- Department of Gastrointestinal Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou City, 324000 Zhejiang Province China
| | - Shengwei Du
- Department of Pathology, Zhejiang Provincial People’s Hospital, Hangzhou City, 310014 Zhejiang Province China
| | - Jianxin Chen
- Department of Medical Oncology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou City, 324000 Zhejiang Province China
| | - Shufeng Xu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou City, 324000 Zhejiang Province China
| | - Bolun Xu
- Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou City, 324000 Zhejiang Province China
| | - Jian Zhao
- Department of Pathology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, No.100 Minjiang Avenue, Wisdom New City, Quzhou City, 324000 Zhejiang Province China
| |
Collapse
|
6
|
Zhao L, Peng X, Xiong J, Zhu Y, Song M. Microwave ablation for small papillary thyroid carcinomas: clinical outcomes and thyroid function preservation. Endocr Connect 2025; 14:e240628. [PMID: 39952234 PMCID: PMC11896648 DOI: 10.1530/ec-24-0628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/26/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Purpose This study explores the impact of microwave ablation (MWA) on thyroid function in patients with small papillary thyroid carcinomas (SPTCs) using a specific energy/volume model to optimize treatment and evaluate clinical efficacy. Methods A cohort of 70 patients with confirmed SPTCs underwent MWA tailored to individual nodule characteristics. Pre- and post-ablation assessments included ultrasound imaging for nodule size and thyroid function tests (thyroid-stimulating hormone, free thyroxine and free triiodothyronine levels) were conducted at baseline, 1, 3, 6 and 12 months post-treatment. The main results are the complete ablation rate of nodules and the stability of thyroid function after treatment. Secondary outcomes include the incidence of complications and other clinical parameters. Results The complete ablation rate was achieved in 95% of the nodules, with most patients (90%) requiring a single ablation session. Nodule size reduced significantly from an average of 174.0 ± 259.1 to 3.2 ± 11.3 mm3, with a mean volume reduction rate of 98.47 (5.82%) at the 18-month follow-up. Stable thyroid function and minimal fluctuations in hormone levels were observed in 90% of patients, demonstrating the effectiveness of MWA in preserving thyroid function. Notably, lower energy/volume ratios were linked to a reduced risk of complications and preservation of thyroid function. Only 5% of patients reported minor complications, with no major adverse events. Conclusions The study's results validate the clinical utility of MWA in energy/volume setting as an effective, minimally invasive treatment for SPTCs.
Collapse
Affiliation(s)
| | | | | | | | - Mu Song
- Department of Thyroid, Breast and Hernia Surgery, The Seventh Affiliated Hospital of Southern Medical University, Foshan, China
| |
Collapse
|
7
|
Rhyou SY, Yoo JC. Automated ultrasonography of hepatocellular carcinoma using discrete wavelet transform based deep-learning neural network. Med Image Anal 2025; 101:103453. [PMID: 39818008 DOI: 10.1016/j.media.2025.103453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/02/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
This study introduces HCC-Net, a novel wavelet-based approach for the accurate diagnosis of hepatocellular carcinoma (HCC) from abdominal ultrasound (US) images using artificial neural networks. The HCC-Net integrates the discrete wavelet transform (DWT) to decompose US images into four sub-band images, a lesion detector for hierarchical lesion localization, and a pattern-augmented classifier for generating pattern-enhanced lesion images and subsequent classification. The lesion detection uses a hierarchical coarse-to-fine approach to minimize missed lesions. CoarseNet performs initial lesion localization, while FineNet identifies any lesions that were missed. In the classification phase, the wavelet components of detected lesions are synthesized to create pattern-augmented images that enhance feature distinction, resulting in highly accurate classifications. These augmented images are classified into 'Normal,' 'Benign,' or 'Malignant' categories according to their morphologic features on sonography. The experimental results demonstrate the significant effectiveness of the proposed coarse-to-fine detection framework and pattern-augmented classifier in lesion detection and classification. We achieved an accuracy of 96.2 %, a sensitivity of 97.6 %, and a specificity of 98.1 % on the Samsung Medical Center dataset, indicating HCC-Net's potential as a reliable tool for liver cancer screening.
Collapse
Affiliation(s)
- Se-Yeol Rhyou
- Department of Electrical and Computer Engineering, College of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Jae-Chern Yoo
- Department of Electrical and Computer Engineering, College of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746, South Korea.
| |
Collapse
|
8
|
Skok K, Stift J, Schirmacher P, Kashofer K, Stauber R, Ranković B, Lackner K. Molecular Landscape and Treatment Paradigms of Hepatocellular and Cholangiocarcinoma: A Multinational Review. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2025. [PMID: 40164125 DOI: 10.1055/a-2548-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) represent the most prevalent primary liver cancers and pose significant challenges in oncology. While their etiology and incidence vary globally, the molecular landscape of these tumors is increasingly understood, offering new opportunities for precision medicine. In this joint multinational review, we present a comprehensive analysis of the key molecular pathways involved in the pathogenesis of HCC and CCA, highlighting actionable targets for emerging therapies. Recent advances in molecular diagnostics have significantly influenced treatment paradigms for both cancers. In HCC, while genetic alterations have not yet led to established diagnostic or therapeutic applications, targeting vascular endothelial growth factor (VEGF), immune checkpoints, and tyrosine kinase pathways has demonstrated considerable therapeutic potential. In CCA, genetic profiling has uncovered actionable alterations, such as FGFR2 fusions and IDH1 mutations, driving the development of targeted therapies. The growing complexity of precision oncology underscores the need for standardized molecular testing and streamlined diagnostic workflows to ensure timely and effective treatment. This review also emphasizes the importance of collaborative efforts between clinicians, pathologists, and oncologists to optimize outcomes. By synthesizing the latest molecular insights and treatment trends, this review provides a valuable resource to guide the personalized management of HCC and CCA.
Collapse
Affiliation(s)
- Kristijan Skok
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- Insitute of Biomedical Sciences, Faculty of Medicine University of Maribor in Slovenia, Maribor, Slovenia
| | - Judith Stift
- Institute of Pathology, Versorgungspathologie of the University Clinic of Innsbruck, INNPATH GmbH, Innsbruck, Austria
- ADK Diagnostics, Center for Liver and Pancreatic Pathology, Vienna, Austria
| | - Peter Schirmacher
- Heidelberg University Hospital Institute of Pathology, Heidelberg, Germany
| | - Karl Kashofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Rudolf Stauber
- Internal Medicine, Medical University of Graz, Graz, Austria
| | - Branislava Ranković
- Institute of Pathology, University of Ljubljana Faculty of Medicine, Ljubljana, Slovenia
| | - Karoline Lackner
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- ADK Diagnostics, Center for Liver and Pancreatic Pathology, Vienna, Austria
| |
Collapse
|
9
|
Wan Q, Zhao C, Zhao R. Progress of Pyruvate Kinase M2 in Hepatocellular Carcinoma-Associated Signaling Pathway. Tissue Eng Part C Methods 2025; 31:101-107. [PMID: 40105913 DOI: 10.1089/ten.tec.2024.0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive liver tumor with a unique metabolic profile and a shift to glycolytic metabolism. This review discusses the contribution of pyruvate kinase M2 (PKM2) to HCC development and its potential as a target for therapy. We carried out a broad literature review on PKM2, focusing on its role in the glycolytic pathway and special interactions with key signaling pathways like Phosphoinositide 3-kinase/Protein kinase B/Mammalian target of rapamycin (PI3K/AKT/mTOR) and Mitogen-activated protein kinase (MAPK). PKM2 also performs a dual role in energy metabolism and signal transduction in HCC. PKM2 is paramount in the induction of HCC by regulating cellular metabolism and oncogenic signaling pathways. It promotes tumor growth, survival, and metastasis through interaction with the PI3K/AKT/mTOR and MAPK pathways. PKM2 is a key factor in HCC pathogenesis, with a dual impact on metabolism and signaling. Its properties may open the way for developing novel therapeutic interventions against HCC. Thus, PKM2 inhibition may offer further opportunities for tumor growth blockade, which could meaningfully improve patients' clinical outcomes.
Collapse
Affiliation(s)
- Qi Wan
- Second Hospital of Lanzhou University, Lanzhou, China
| | - Chunlian Zhao
- Second Hospital of Lanzhou University, Lanzhou, China
| | - Rui Zhao
- Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Haghir-Sharif-Zamini Y, Khosravi A, Hassan M, Zarrabi A, Vosough M. c-FLIP/Ku70 complex; A potential molecular target for apoptosis induction in hepatocellular carcinoma. Arch Biochem Biophys 2025; 765:110306. [PMID: 39818348 DOI: 10.1016/j.abb.2025.110306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide and the most common form of liver cancer. Despite global efforts toward early diagnosis and effective treatments, HCC is often diagnosed at advanced stages, where conventional therapies frequently lead to resistance and/or high recurrence rates. Therefore, novel biomarkers and promising medications are urgently required. Epi-drugs, or epigenetic-based medicines, have recently emerged as a promising therapeutic modality. Since the epigenome of the cancer cells is always dysregulated and this is followed by apoptosis-resistance, reprogramming the epigenome of cancer cells by epi-drugs (such as HDAC inhibitors (HDACis), and DNMT inhibitors (DNMTis)) could be an alternative approach to use in concert with established treatment protocols. C-FLIP, an anti-apoptotic protein, and Ku70, a member of the DNA repair system, bind together and make a cytoplasmic complex in certain cancers and induce resistance to apoptosis. Many epi-drugs, such as HDACis, can dissociate this complex through Ku70 acetylation and activate cellular apoptosis. The novel compounds for dissociating this complex could provide an innovative insight into molecular targeted HCC treatments. In this review, we address the innovative therapeutic potential of targeting c-FLIP/Ku70 complex by epi-drugs, particularly HDACis, to overcome apoptosis resistance of HCC cells. This review will cover the mechanisms by which the c-FLIP/Ku70 complex facilitates cancer cell survival, the impact of epigenetic alterations on the complex dissociation, and highlight HDACis potential in combination therapies, biomarker developments and mechanistic overviews. This review highlights c-FLIP ubiquitination and Ku70 acetylation levels as diagnostic and prognostic tools in HCC management.
Collapse
Affiliation(s)
- Yasamin Haghir-Sharif-Zamini
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, 34959, Turkiye
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan; Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
11
|
Rhyou SY, Yu M, Yoo JC. Mixture of Expert-Based SoftMax-Weighted Box Fusion for Robust Lesion Detection in Ultrasound Imaging. Diagnostics (Basel) 2025; 15:588. [PMID: 40075835 PMCID: PMC11899514 DOI: 10.3390/diagnostics15050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Ultrasound (US) imaging plays a crucial role in the early detection and treatment of hepatocellular carcinoma (HCC). However, challenges such as speckle noise, low contrast, and diverse lesion morphology hinder its diagnostic accuracy. Methods: To address these issues, we propose CSM-FusionNet, a novel framework that integrates clustering, SoftMax-weighted Box Fusion (SM-WBF), and padding. Using raw US images from a leading hospital, Samsung Medical Center (SMC), we applied intensity adjustment, adaptive histogram equalization, low-pass, and high-pass filters to reduce noise and enhance resolution. Data augmentation generated ten images per one raw US image, allowing the training of 10 YOLOv8 networks. The mAP@0.5 of each network was used as SoftMax-derived weights in SM-WBF. Threshold-lowered bounding boxes were clustered using Density-Based Spatial Clustering of Applications with Noise (DBSCAN), and outliers were managed within clusters. SM-WBF reduced redundant boxes, and padding enriched features, improving classification accuracy. Results: The accuracy improved from 82.48% to 97.58% with sensitivity reaching 100%. The framework increased lesion detection accuracy from 56.11% to 95.56% after clustering and SM-WBF. Conclusions: CSM-FusionNet demonstrates the potential to significantly improve diagnostic reliability in US-based lesion detection, aiding precise clinical decision-making.
Collapse
Affiliation(s)
| | | | - Jae-Chern Yoo
- Department of Electrical and Computer Engineering, College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea; (S.-Y.R.); (M.Y.)
| |
Collapse
|
12
|
Zhu L, Meng Q, Qian W, Shao W, Lu Y, Jin S, Zhang A, Yan SG, Lu J. LARP3 inhibits the apoptosis of hepatocellular carcinoma via the ROS/PI3K/c-Fos axis. PLoS One 2025; 20:e0317454. [PMID: 39823419 PMCID: PMC11741638 DOI: 10.1371/journal.pone.0317454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025] Open
Abstract
Primary hepatocellular carcinoma (PHC) is the sixth most common cancer and the third leading cause of cancer death worldwide. Hepatocellular carcinoma (HCC) accounts for 75%-85% of PHC. LARP3 is aberrantly expressed in multiple cancers. We found that it is significantly highly expressed in the liver cancer tissues of HCC patients, but the exact role and specific mechanism of this abnormal expression are not yet clear. In this study, through bioinformatics analysis, we concluded that LARP3 expression is associated with a poor prognosis for patients with HCC. Through cellular experiments such as gene editing and phenotypic functions, we found that LARP3 promotes the occurrence and development of HCC and inhibits apoptosis. Finally, through biological means such as RNA sequencing, flow cytometry, western blotting, and the construction of a subcutaneous tumorigenesis model in nude mice, we concluded that inhibition of HCC apoptosis by LARP3 is related to LARP3 negatively regulating ROS level and inhibiting the PI3K/c-Fos/apoptosis axis. This study will provide potential targets for the treatment of HCC.
Collapse
Affiliation(s)
- Lin Zhu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Qianqian Meng
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Weiyi Qian
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Weiting Shao
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yuyue Lu
- School of Pediatrics, Xinjiang Medical University, XinJiang, China
| | - Shuai Jin
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Afei Zhang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Shuang G. Yan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jingtao Lu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
13
|
Zhang H, Zhang L, Wu Z. Interaction of STIL with FOXM1 regulates SF3A3 transcription in the hepatocellular carcinoma development. Cell Div 2025; 20:1. [PMID: 39825314 PMCID: PMC11740530 DOI: 10.1186/s13008-025-00142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Dysregulation of SF3A3 has been related to the development of many cancers. Here, we investigated the functional role of SF3A3 in hepatocellular carcinoma (HCC). METHODS SF3A3 expression in HCC tissues and cell lines was examined using RT-qPCR. Changes in malignant behavior of HCC cells after downregulation of SF3A3 were assessed by EdU, colony formation, flow cytometry, wound healing, and Transwell invasion assays. Multiple datasets were combined to identify the upstream modifiers of SF3A3. The binding relationship between STIL and FOXM1 was explored by co-IP assay, and the effect of STIL and FOXM1 on the binding of FOXM1 at the SF3A3 promoter was detected by ChIP-qPCR assay. A xenograft tumor model was established to explore the changes of tumors in vivo, and the expression of Ki67, GPC3, and p53 in tumor tissues was detected by immunohistochemistry. RESULTS SF3A3 and STIL were overexpressed in HCC tissues and cells, and downregulation of SF3A3 or STIL inhibited the malignant behavior of HCC cells by promoting the expression of p53. An interaction between STIL and FOXM1 regulated the SF3A3 expression in HCC cells. Knockdown of FOXM1 further enhanced the anti-tumor effects of STIL loss on HCC cells in vitro and in vivo, whereas SF3A3 overexpression overturned the impact of STIL loss on HCC cells in vitro and in vivo. CONCLUSIONS Our findings indicate that STIL/FOXM1 expedites HCC development by activating SF3A3, which highlights the importance of SF3A3 as a promising prognostic marker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Haijun Zhang
- Second Department of General Surgery, the First Hospital of Qiqihar, No. 700, Pukui avenue, Long sha District, Qiqihar, Heilongjiang, 161000, P. R. China.
| | - Lin Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, 161006, P. R. China
| | - Ziqi Wu
- Second Department of General Surgery, the First Hospital of Qiqihar, No. 700, Pukui avenue, Long sha District, Qiqihar, Heilongjiang, 161000, P. R. China
| |
Collapse
|
14
|
Tang P, Wang T, Song F, Zhang Y, Zhao Y, Yarmohammadi H, Donadon M, Chen Z. Integrating T-cell inflammation features for prognosis in hepatocellular carcinoma: a novel predictive model. J Gastrointest Oncol 2024; 15:2613-2629. [PMID: 39816015 PMCID: PMC11732361 DOI: 10.21037/jgo-2024-874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death globally and accounts for 75% to 90% of primary liver cancer cases. The high mortality rate of HCC, coupled with the absence of reliable prognostic biomarkers, makes its treatment and prognosis evaluation challenging. The features of the T cell-inflamed microenvironment include active interferon (IFN)-γ signaling and the presence of cytotoxic effector molecules, antigen presentation, and T-cell activating cytokines. Although these features are closely associated with anticancer immunity, their specific roles in HCC remain unclear. This study aimed to investigate the role and prognostic significance of T-cell inflammation (TCI) in HCC patients, providing new insights for clinical diagnosis and treatment strategies. Methods We integrated single-sample gene set enrichment analysis (ssGSEA) and weighted gene coexpression network analysis (WGCNA) to identify the genes associated with TCI at both the single-cell and bulk-transcriptome levels. The HCC TCI-related score (HTCIRS) was developed and assessed with 10 different machine learning algorithms and their combinations, which was followed by validation of the key gene KLF2 in clinical samples and tissue microarrays (TMAs). Results We identified 65 genes associated with TCI, of which 36 were significantly correlated with overall survival (OS). The HTCIRS demonstrated excellent performance in prognostic prediction, revealing differences in biological functions and immune cell infiltration between different risk groups within the tumor microenvironment (TME). Furthermore, KLF2 was identified to be linked to the prognosis of patients with HCC. Conclusions The TCI-related score proposed in this study serves as an important tool for prognostic prediction and personalized treatment of patients with HCC, with KLF2 emerging as a potential biomarker for predicting the prognosis of patients with HCC.
Collapse
Affiliation(s)
- Pengju Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Tianlun Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Fei Song
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yu Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yiming Zhao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Hooman Yarmohammadi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matteo Donadon
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Department of Surgery, University Maggiore Hospital della Carità, Novara, Italy
| | - Zhong Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
15
|
Todorovic N, Martinelli S, Nannini G, Weiskirchen R, Amedei A. Etiology-Dependent Microbiome Differences in Hepatocellular Carcinoma Development. Int J Mol Sci 2024; 25:13510. [PMID: 39769276 PMCID: PMC11677376 DOI: 10.3390/ijms252413510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic liver disease is characterised by persistent inflammation, tissue damage, and regeneration, which leads to steatosis, fibrosis, and, lastly, cirrhosis and hepatocellular carcinoma (HCC). HCC, the most prevalent form of primary liver cancer, is one of the leading causes of cancer-related mortality worldwide. The gut microbiota plays a fundamental role in human physiology, and disturbances in its critical balance are widely recognised as contributors to various pathological conditions, including chronic liver diseases, both infectious and non-infectious in nature. Growing interest in microbiota research has recently shifted the focus towards the study of intratumoural microbiota, referred to as the "oncobiome", which can significantly impact the development and progression of HCC. In this review, we discuss existing research and provide an overview of the microbiota influence on viral hepatitis, particularly in shaping the progression of liver disease caused by the hepatitis B and hepatitis C viruses. We also explore microbial dysbiosis and its contribution to the silent and dangerous progression of non-alcoholic fatty liver disease. Additionally, we address the impact of alcohol on the liver and its interaction with the microbiota, tracing the pathway from inflammation to cirrhosis and cancer. The review emphasises the most common etiologies of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Nevena Todorovic
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (N.T.); (S.M.); (G.N.)
- Clinic for Infectious and Tropical Diseases, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Serena Martinelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (N.T.); (S.M.); (G.N.)
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (N.T.); (S.M.); (G.N.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (N.T.); (S.M.); (G.N.)
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
16
|
Saadh MJ, Menon SV, Verma R, Siva Prasad GV, Allela OQB, Mahdi MS, Ahmad N, Husseen B. LncRNA CRNDE and HOTAIR: Molecules behind the scenes in the progression of gastrointestinal cancers through regulating microRNAs. Pathol Res Pract 2024; 266:155778. [PMID: 39721094 DOI: 10.1016/j.prp.2024.155778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Gastrointestinal (GI) cancers, such as gastric cancer, hepatocellular carcinoma, colorectal cancer, and esophageal cancer, pose a significant medical and economic burden globally, accounting for the majority of new cancer cases and deaths each year. A lack of knowledge about the molecular mechanisms of GI cancers is reflected in the low efficacy of treatment for individuals with late stage and recurring illness. Understanding the molecular pathways that promote the growth of GI cancers may open doors for their therapy. Numerous long non-coding RNAs (lncRNAs) that are produced differently in normal and malignant tissues have been discovered by genome-wide techniques. The role of lncRNAs in the diagnosis, proliferation, metastasis, and drug resistance of different GI cancers has been investigated in recent research. LncRNAs may affect transcription, epigenetic modifications, protein/RNA stability, translation, and post-translational modifications via their interactions with DNA, RNAs, and proteins. Also, by functioning as competing endogenous RNAs (ceRNAs), they control the synthesis of certain microRNAs (miRNAs), which in turn modify the downstream target molecules of these miRNAs. Based on recent studies, lncRNAs in particular, CRNDE and HOTAIR, sponge different miRNAs and their downstream genes, which in turn regulate GI cancers development, including cell proliferation, invasion, migration, and chemoresistance. In this comprehensive review, we present an overview of the biological roles of CRNDE and HOTAIR and their associated mechanisms, miRNAs/mRNA pathways, in various GI cancers, encompassing colorectal cancer, hepatocellular carcinoma, esophageal cancer, and gastric cancer.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Rajni Verma
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Sahibzada Ajit Singh Nagar, Jhanjeri, Punjab 140307, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | | | | | - Nabeel Ahmad
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh-247341, India; Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand- 831001, India.
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
17
|
Jiang D, Qi Z, Xu ZY, Li YR. F13B regulates angiogenesis and tumor progression in hepatocellular carcinoma via the HIF-1α/VEGF pathway. BIOMOLECULES & BIOMEDICINE 2024; 25:189-209. [PMID: 39319846 PMCID: PMC11647259 DOI: 10.17305/bb.2024.10794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 09/26/2024]
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive malignant tumor with a poor prognosis. This research aimed to investigate the role of F13B in HCC and its underlying mechanisms. Through comprehensive bioinformatics analysis of the GSE120123 and The Cancer Genome Atlas (TCGA)-Liver hepatocellular carcinoma (LIHC) datasets, we identified 220 overlapping prognosis-related genes. Eight key genes, including the previously unreported CCDC170 and F13B in HCC, were identified through Least Absolute Shrinkage and Selection Operator (LASSO)-Cox regression analysis. F13B emerged as a significant prognostic factor in HCC, warranting further investigation in subsequent analyses. In vitro experiments showed that F13B expression was notably reduced in HCC cell lines and tissues, particularly in Huh-7 and SMMC-7721 cells. Overexpression of F13B inhibited cell invasion, migration, and proliferation, while its knockdown produced the opposite effect. A lactate dehydrogenase (LDH) activity assay in human umbilical vein endothelial cells (HUVECs) demonstrated that F13B overexpression reduced vascular endothelial growth factor (VEGF)-induced cytotoxicity, whereas knockdown increased it. Further analysis revealed that F13B negatively regulates VEGFA expression, affecting HUVEC proliferation. In HUVECs, F13B overexpression reversed VEGF-induced upregulation of key angiogenesis markers, including phospho-VEGF receptor 2 (p-VEGFR2), matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), as well as AKT/mTOR signaling proteins, phospho-Akt (p-AKT), and phospho-mTOR (p-mTOR). Additionally, F13B negatively regulated VEGFA and hypoxia-inducible factor 1 A (HIF1A) under hypoxic conditions, counteracting the hypoxia-induced increase in cell viability. These findings suggest that F13B regulates angiogenesis through the HIF-1α/VEGF pathway and plays a crucial role in HCC progression. Our results highlight the potential of F13B as a therapeutic target in HCC, providing novel insights into the molecular mechanisms of HCC and its prognostic significance.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor A/genetics
- Signal Transduction
- Cell Line, Tumor
- Cell Proliferation/genetics
- Gene Expression Regulation, Neoplastic
- Disease Progression
- Cell Movement/genetics
- Human Umbilical Vein Endothelial Cells
- Prognosis
- Male
- Angiogenesis
Collapse
Affiliation(s)
- Dong Jiang
- Department of Ultrasound, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhi Qi
- Department of Neurology, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhi-ying Xu
- Department of Hepatic Surgery IV, Shanghai Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yi-ran Li
- Department of Ultrasound, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
18
|
Krupa K, Fudalej M, Cencelewicz-Lesikow A, Badowska-Kozakiewicz A, Czerw A, Deptała A. Current Treatment Methods in Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:4059. [PMID: 39682245 DOI: 10.3390/cancers16234059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignant tumour worldwide. Depending on the stage of the tumour and liver function, a variety of treatment options are indicated. Traditional radiotherapy and chemotherapy are ineffective against HCC; however, the U.S. Food and Drug Administration (FDA) has approved radiofrequency ablation (RFA), surgical resection, and transarterial chemoembolization (TACE) for advanced HCC. On the other hand, liver transplantation is recommended in the early stages of the disease. Tyrosine kinase inhibitors (TKIs) like lenvatinib and sorafenib, immunotherapy and anti-angiogenesis therapy, including pembrolizumab, bevacizumab, tremelimumab, durvalumab, camrelizumab, and atezolizumab, are other treatment options for advanced HCC. Moreover, to maximize outcomes for patients with HCC, the combination of immune checkpoint inhibitors (ICIs) along with targeted therapies or local ablative therapy is being investigated. This review elaborates on the current status of HCC treatment, outlining the most recent clinical study results and novel approaches.
Collapse
Affiliation(s)
- Kamila Krupa
- Students' Scientific Organization of Cancer Cell Biology, Department of Oncological Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
| | - Marta Fudalej
- Department of Oncological Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
- Department of Oncology, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Anna Cencelewicz-Lesikow
- Department of Oncology, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | | | - Aleksandra Czerw
- Department of Health Economics and Medical Law, Medical University of Warsaw, 01-445 Warsaw, Poland
- Department of Economic and System Analyses, National Institute of Public Health NIH-National Research Institute, 00-791 Warsaw, Poland
| | - Andrzej Deptała
- Department of Oncological Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
| |
Collapse
|
19
|
Samir A, Abdeldaim A, Mohammed A, Ali A, Alorabi M, Hussein MM, Bakr YM, Ibrahim AM, Abdelhafiz AS. Analysis of four long non-coding RNAs for hepatocellular carcinoma screening and prognosis by the aid of machine learning techniques. Sci Rep 2024; 14:29582. [PMID: 39609501 PMCID: PMC11604705 DOI: 10.1038/s41598-024-80926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a significant health burden in Egypt, largely attributable to the endemic prevalence of hepatitis B and C viruses. Early identification of HCC remains a challenge due to the lack of widespread screening among at-risk populations. The objective of this study was to assess the utility of machine learning in predicting HCC by analyzing the combined expression of lncRNAs and conventional laboratory biomarkers. Plasma levels of four lncRNAs (LINC00152, LINC00853, UCA1, and GAS5) were quantified in a cohort of 52 HCC patients and 30 age-matched controls. The individual diagnostic performance of each lncRNA was assessed using ROC curve analysis. Subsequently, a machine learning model was constructed using Python's Scikit-learn platform to integrate these lncRNAs with additional clinical laboratory parameters for HCC diagnosis. Individual lncRNAs exhibited moderate diagnostic accuracy, with sensitivity and specificity ranging from 60 to 83% and 53-67%, respectively. In contrast, the machine learning model demonstrated superior performance, achieving 100% sensitivity and 97% specificity. Notably, a higher LINC00152 to GAS5 expression ratio significantly correlated with increased mortality risk. The integration of lncRNA biomarkers with conventional laboratory data within a machine learning framework demonstrates significant potential for developing a precise and cost-effective diagnostic tool for HCC. To enhance the model's robustness and prognostic capabilities, future studies should incorporate larger cohorts and explore a wider array of lncRNAs.
Collapse
Affiliation(s)
- Ahmed Samir
- Department of biochemistry, Faculty of pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt.
| | - Amira Abdeldaim
- Department of biochemistry, Faculty of pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Ammar Mohammed
- Faculty of computer science, October University for Modern Sciences and Arts (MSA), Giza, Egypt
- Department of Computer Sciences, FGSSR, Cairo University, Giza, Egypt
| | - Asmaa Ali
- Department of Chest Diseases, Abbasia Chest Hospital, Ministry of Health and Population, Cairo, Egypt
| | - Mohamed Alorabi
- Department of Clinical Oncology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Medical Oncology, Shefaa Al Orman Oncology Hospital, Luxor, Egypt
| | - Mariam M Hussein
- Department of Clinical Oncology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Medical Oncology, Shefaa Al Orman Oncology Hospital, Luxor, Egypt
| | - Yasser Mabrouk Bakr
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | | | - Ahmed Samir Abdelhafiz
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
20
|
Jin H, Meng R, Li CS, Kim SH, Chai OH, Lee YH, Park BH, Lee JS, Kim SM. HN1-mediated activation of lipogenesis through Akt-SREBP signaling promotes hepatocellular carcinoma cell proliferation and metastasis. Cancer Gene Ther 2024; 31:1669-1687. [PMID: 39251779 DOI: 10.1038/s41417-024-00827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide, with more than 800,000 deaths each year, and its 5-year survival rate is less than 12%. The role of the HN1 gene in HCC has remained elusive, despite its upregulation in various cancer types. In our investigation, we identified HN1's heightened expression in HCC tissues, which, upon overexpression, fosters cell proliferation, migration, and invasion, unveiling its role as an oncogene in HCC. In addition, silencing HN1 diminished the viability and metastasis of HCC cells, whereas HN1 overexpression stimulated their growth and invasion. Gene expression profiling revealed HN1 silencing downregulated 379 genes and upregulated 130 genes, and suppressive proteins associated with the lipogenic signaling pathway networks. Notably, suppressing HN1 markedly decreased the expression levels of SREBP1 and SREBP2, whereas elevating HN1 had the converse effect. This dual modulation of HN1 affected lipid formation, hindering it upon HN1 silencing and promoting it upon HN1 overexpression. Moreover, HN1 triggers the Akt pathway, fostering tumorigenesis via SREBP1-mediated lipogenesis and silencing HN1 effectively curbed HCC tumor growth in mouse xenograft models by deactivating SREBP-1, emphasizing the potential of HN1 as a therapeutic target, impacting both external and internal factors, it holds promise as an effective therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Hua Jin
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Ruoyu Meng
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, China
| | - Cong Shan Li
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea
| | - Seong-Hun Kim
- Division of Gastroenterology, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea
| | - Ok Hee Chai
- Department of Anatomy, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea
| | - Young-Hoon Lee
- Department of Oral Anatomy, School of Dentistry, Jeonbuk National University, Jeonju, 54907, Republic of Korea
| | - Byung-Hyun Park
- Graduate School of Medical Science and Engineering, Korean Advanced Institute of Science and Technology, Daejon, 34141, Republic of Korea
| | - Ju-Seog Lee
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, 77045, TX, USA
| | - Soo Mi Kim
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea.
| |
Collapse
|
21
|
Wang YY, Zhang J, Zhuang X, Jin QY, Liu LQ. Gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced MRI improves diagnosis and efficacy evaluation of early-stage hepatocellular carcinoma. Am J Cancer Res 2024; 14:4855-4867. [PMID: 39553216 PMCID: PMC11560834 DOI: 10.62347/wynk6968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/13/2024] [Indexed: 11/19/2024] Open
Abstract
OBJECTIVE To investigate the use of hepatocyte-specific contrast agent Gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (EOB-MRI) in the diagnosis and efficacy evaluation of patients with early-stage hepatocellular carcinoma. METHODS A retrospective clinical study was conducted on 157 patients diagnosed with stage Ia-Ib liver cancer. Of these, 100 patients underwent preoperative EOB-MRI, while 57 patients underwent contrast-enhanced computerized tomography (CECT). The study compared the accuracy, sensitivity, and specificity of these two imaging modalities in diagnosing early-stage hepatocellular carcinoma. In the EOB-MRI group, 100 patients underwent radiofrequency ablation or interventional procedures, and imaging data were collected post-scan. The following arterial and hepatobiliary phase enhancement features were analyzed: length-diameter difference (LDD), signal intensity ratio of metastases to liver parenchyma (RatioM/L), relative signal intensity difference (RSID), normalized relative enhancement (NRE), contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC) values. Based on treatment outcomes, patients were categorized into high and low response rate groups, and the imaging parameters between these two groups were compared. Univariate and multivariate analyses were performed to evaluate the significance of these parameters in predicting patient outcomes. RESULTS The accuracy of lesion detection by EOB-MRI was 97.4%, significantly higher than that of CECT (80.0%) (P < 0.05). The area under the curve (AUC) for the EOB-MRI group was 0.923 (95% CI: 0.784-1.000), with a sensitivity of 97.4% and a specificity of 83.3%. In comparison, the AUC for the CECT group was 0.712 (95% CI: 0.582-0.843), with a sensitivity of 77.2% and a specificity of 65.2%. The median response rate of patients with early-stage hepatocellular carcinoma to systemic therapy was 60% (range: 36%-81%). Using 60% as the cut-off value, patients were divided into a high response rate group (n = 53) and a low response rate group (n = 47). Univariate and multivariate logistic regression analyses of the EOB-MRI parameters in both groups identified ADC and NRE as independent predictors for assessing the treatment efficacy of early-stage hepatocellular carcinoma. CONCLUSION EOB-MRI is effective for both the diagnosis and evaluation of treatment efficacy in early-stage hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ya-Yun Wang
- Department of Imaging, Wujin Clinical College of Xuzhou Medical UniversityChangzhou 213002, Jiangsu, China
- Jiangsu Key Laboratory of Encephalopathy BioinformaticsXuzhou 221004, Jiangsu, China
| | - Jing Zhang
- Department of Imaging, The Third People’s Hospital of ChangzhouChangzhou 213000, Jiangsu, China
| | - Xiong Zhuang
- Department of Imaging, Wujin Clinical College of Xuzhou Medical UniversityChangzhou 213002, Jiangsu, China
- Jiangsu Key Laboratory of Encephalopathy BioinformaticsXuzhou 221004, Jiangsu, China
| | - Qiu-Yan Jin
- Department of Imaging, The Third People’s Hospital of ChangzhouChangzhou 213000, Jiangsu, China
| | - Liang-Qing Liu
- Department of Imaging, Wujin Clinical College of Xuzhou Medical UniversityChangzhou 213002, Jiangsu, China
- Jiangsu Key Laboratory of Encephalopathy BioinformaticsXuzhou 221004, Jiangsu, China
| |
Collapse
|
22
|
Wang XW, Tang YX, Li FX, Wang JL, Yao GP, Zeng DT, Tang YL, Chi BT, Su QY, Huang LQ, Qin DY, Chen G, Feng ZB, He RQ. Clinical significance of upregulated Rho GTPase activating protein 12 causing resistance to tyrosine kinase inhibitors in hepatocellular carcinoma. World J Gastrointest Oncol 2024; 16:4244-4263. [DOI: 10.4251/wjgo.v16.i10.4244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/17/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a major health challenge with high incidence and poor survival rates in China. Systemic therapies, particularly tyrosine kinase inhibitors (TKIs), are the first-line treatment for advanced HCC, but resistance is common. The Rho GTPase family member Rho GTPase activating protein 12 (ARHGAP12), which regulates cell adhesion and invasion, is a potential therapeutic target for overcoming TKI resistance in HCC. However, no studies on the expression of ARHGAP12 in HCC and its role in resistance to TKIs have been reported.
AIM To unveil the expression of ARHGAP12 in HCC, its role in TKI resistance and its potential associated pathways.
METHODS This study used single-cell RNA sequencing (scRNA-seq) to evaluate ARHGAP12 mRNA levels and explored its mechanisms through enrichment analysis. CellChat was used to investigate focal adhesion (FA) pathway regulation. We integrated bulk RNA data (RNA-seq and microarray), immunohistochemistry and proteomics to analyze ARHGAP12 mRNA and protein levels, correlating with clinical outcomes. We assessed ARHGAP12 expression in TKI-resistant HCC, integrated conventional HCC to explore its mechanism, identified intersecting FA pathway genes with scRNA-seq data and evaluated its response to TKI and immunotherapy.
RESULTS ARHGAP12 mRNA was found to be highly expressed in malignant hepatocytes and to regulate FA. In malignant hepatocytes in high-score FA groups, MDK-[integrin alpha 6 (ITGA6) + integrin β-1 (ITGB1)] showed specificity in ligand-receptor interactions. ARHGAP12 mRNA and protein were upregulated in bulk RNA, immunohistochemistry and proteomics, and higher expression was associated with a worse prognosis. ARHGAP12 was also found to be a TKI resistance gene that regulated the FA pathway. ITGB1 was identified as a crossover gene in the FA pathway in both scRNA-seq and bulk RNA. High expression of ARHGAP12 was associated with adverse reactions to sorafenib, cabozantinib and regorafenib, but not to immunotherapy.
CONCLUSION ARHGAP12 expression is elevated in HCC and TKI-resistant HCC, and its regulatory role in FA may underlie the TKI-resistant phenotype.
Collapse
Affiliation(s)
- Xiao-Wei Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yu-Xing Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Fu-Xi Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jia-Le Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gao-Peng Yao
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Da-Tong Zeng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Department of Pathology, Red Cross Hospital of Yulin City, Yulin 537000, Guangxi Zhuang Autonomous Region, China
| | - Yu-Lu Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Bang-Teng Chi
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Qin-Yan Su
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Lin-Qing Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Di-Yuan Qin
- Department of Computer Science and Technology, School of Computer and Electronic Information, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhen-Bo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
23
|
Takahashi K, Yan L, An N, Chida K, Tian W, Oshi M, Takabe K. RAD51 High-Expressed Hepatocellular Carcinomas Are Associated With High Cell Proliferation. J Surg Res 2024; 302:250-258. [PMID: 39111128 PMCID: PMC11490390 DOI: 10.1016/j.jss.2024.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/10/2024] [Accepted: 07/04/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION RAD51 is a pivotal DNA repair gene managing double-stranded DNA break recognition and repair. RAD51 high expression was associated with adverse outcomes in other cancer types. This study aims to investigate the tumor microenvironment and immune landscape in the RAD51 high-expressed Hepatocellular Carcinoma (HCCs). METHODS A total of 467 patients from two large independent cohorts with clinical and transcriptomic data were obtained. The cohort was dichotomized based on the median RAD51 gene expression. xCell and Gene Set Enrichment Analysis (GSEA) were used. RESULTS RAD51 high-expressed HCCs were associated with worse recurrence-free, progression-free, disease-specific, and overall survival (all P < 0.05). While RAD51 high-expressed HCCs were associated with intratumoral heterogeneity, homologous recombination deficiency, and fraction altered scores, mutation or neoantigens were not increased in this group. xCell analysis demonstrated inconsistent immune cell infiltration between two cohorts. Cytolytic activity as well as GSEA with immune-related gene sets also demonstrated inconsistent results between two cohorts as well. On the other hand, RAD51 expression was significantly increased in higher-grade tumors, larger tumors, and higher clinical stages. RAD51 high-expressed HCCs were found to have elevated proliferation score. Furthermore, GSEA exhibited significant enrichment of all the cell proliferation-related gene sets in the Hallmark collection, including E2F targets, G2M checkpoint, Mitotic spindle, MYC targets, and MTORC1 signaling consistently in both cohorts (all false discovery rate < 0.25). CONCLUSIONS RAD51 high-expressed HCCs were associated with worse survival and with increased cell proliferation and were not necessarily associated with immune infiltration or inflammation.
Collapse
Affiliation(s)
- Keita Takahashi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Nan An
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kohei Chida
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Wanqing Tian
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York; Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York; Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan; Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York; Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan.
| |
Collapse
|
24
|
Jiang L, Meng Q, Liu L, Li W. A Comprehensive Review on Molecular Mechanisms, Treatments, and Brief Role of Natural Products in Hepatocellular Cancer. Nat Prod Commun 2024; 19. [DOI: 10.1177/1934578x241284873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Most initial liver cancers are hepatocellular carcinomas (HCC), which make up the vast majority of cases. Hepatitis B or C virus infection as well as alcohol consumption is among the key risk factors. The significance of the most intriguing soluble factors as indicators for early diagnosis and as suggested targets for therapy in light of the increasing challenges in precision medicine. The development of HCC is influenced by a complex combination between pro-inflammatory and anti-inflammatory cytokines and their signalling cascades. Recently,researchers are aims to assess the potential of a number of distinct molecular cascade/cascade including cytokines to function as key players with particular underlying etiologies. Increasing our knowledge of the signaling network that links retro differentiation and inflammationmay help us find novel therapeutic targets and develop combined therapies or treatments that work against tumors with a significant degree of heterogeneity. With nursing processes at its center, comprehensive nursing care is a new nursing paradigm that combines the benefits of primary and group nursin g as well as a perfect synthesis of many nursing metrics like nursing philosophy, nursing plan, and nursing quality evaluation. In order to treat patients with serious liver diseases like cancer, it can conduct nursing interventions item by item in accordance with the unique disease conditions of each patient and combine efficient therapeutic approaches with high-quality nursing modes. Dietary natural products, including fruits, vegetables, and spices, may prevent and treat liver cancer by inhibiting tumor growth, protecting the liver, and enhancing chemotherapy.
Collapse
Affiliation(s)
- Linlin Jiang
- Interventional Radiology, Harbin Medical University Cancer Hospital, Harbin Heilongjiang, China
| | - Qin Meng
- Department of Nursing, Huaian Hospital of Huaian City, Huaian Jiangsu,China
| | - Lixiu Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Heilongjiang, China
| | - Weihang Li
- Interventional Radiology, Harbin Medical University Cancer Hospital, Harbin Heilongjiang, China
| |
Collapse
|
25
|
Seo DH, Park JW, Jung HW, Kang MW, Kang BY, Lee DY, Lee JJ, Yoon SK, Jang JW, Ahn JG, Sung PS. Machine learning model reveals roles of interferon‑stimulated genes in sorafenib‑resistant liver cancer. Oncol Lett 2024; 28:438. [PMID: 39081963 PMCID: PMC11287107 DOI: 10.3892/ol.2024.14571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/13/2024] [Indexed: 08/02/2024] Open
Abstract
HCC (Hepatocellular carcinoma) is the most common malignant tumor; however, the molecular pathogenesis of these tumors is not well understood. Sorafenib, an approved treatment for HCC, inhibits angiogenesis and tumor cell proliferation. However, only ~30% of patients are sensitive to sorafenib and most show disease progression, indicating resistance to sorafenib. The present study used machine learning to investigate several mechanisms related to sorafenib resistance in liver cancer cells. This revealed that unphosphorylated interferon-stimulated genes (U-ISGs) were upregulated in sorafenib-resistant liver cancer cells, and the unphosphorylated ISGF3 (U-ISGF3; unphosphorylated STAT1, unphosphorylated STAT2 and IRF9) complex was increased in sorafenib-resistant liver cancer cells. Further study revealed that the knockdown of the U-ISGF3 complex downregulated U-ISGs. In addition, inhibition of the U-ISGF3 complex downregulated cell viability in sorafenib-resistant liver cancer cells. These results suggest that U-ISGF3 induced sorafenib resistance in liver cancer cells. Also, this mechanism may also be relevant to patients with sorafenib resistance.
Collapse
Affiliation(s)
- Deok Hwa Seo
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ji Woo Park
- Department of Computer Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Hee Won Jung
- Department of Computer Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Min Woo Kang
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Byung Yoon Kang
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Dong Yeup Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jae Jun Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seung Kew Yoon
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jeong Won Jang
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jae Gyoon Ahn
- Department of Computer Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Pil Soo Sung
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
26
|
Agudile EP, Vega EA, Salirrosas O, Agudile UM, Chirban AM, Lathan C, Sorescu GP, Odisio BC, Panettieri E, Conrad C. Temporal trends of health disparity in the utilization of curative-intent treatments for hepatocellular carcinoma: are we making progress? J Gastrointest Surg 2024; 28:1392-1399. [PMID: 38754809 DOI: 10.1016/j.gassur.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/17/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Liver-directed treatments - ablative therapy (AT), surgical resection (SR), liver transplantation (LT), and transarterial chemoembolization (TACE) - improve the overall survival of patients with early-stage hepatocellular carcinoma (HCC). Although racial and socioeconomic disparities affect access to liver-directed therapies, the temporal trends for the curative-intent treatment of HCC remain to be elucidated. METHODS This study performed chi-square, logistic regression, and temporal trends analyses on data from the Nationwide Inpatient Sample from 2011 to 2019. The outcome of interest was the rate of AT, SR, LT (curative-intent treatments), and TACE utilization, and the primary predictors were racial/ethnic group and socioeconomic status (SES; insurance status). RESULTS African American and Hispanic patients had lower odds of receiving AT (African American: odds ratio [OR], 0.78; P < .001; Hispanic: OR, 0.84; P = .005) and SR (African American: OR, 0.71; P < .001; Hispanics: OR, 0.64; P < .001) than White patients. Compared with White patients, the odds of LT was lower in African American patients (OR, 0.76; P < .001) but higher in Hispanic patients (OR, 1.25; P = .001). Low SES was associated with worse odds of AT (OR, 0.79; P = .001), SR (OR, 0.66; P < .001), and LT (OR, 0.84; P = .028) compared with high SES. Although curative-intent treatments showed significant upward temporal trends among White patients (10.6%-13.9%; P < .001) and Asian and Pacific Islander/other patients (14.4%-15.7%; P = .007), there were nonsignificant trends among African American patients (10.9%-10.1%; P = .825) or Hispanic patients (12.2%-13.7%; P = .056). CONCLUSION Our study demonstrated concerning disparities in the utilization of curative-intent treatment for HCC based on race/ethnicity and SES. Moreover, racial/ethnic disparities have widened rather than improved over time.
Collapse
Affiliation(s)
- Emeka P Agudile
- Department of Medicine, Steward Carney Hospital, Dorchester, Massachusetts, United States; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Eduardo A Vega
- Department of Surgery, St. Elizabeth's Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Oscar Salirrosas
- Department of Surgery, St. Elizabeth's Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Ukamaka M Agudile
- Department of Medicine, Steward Carney Hospital, Dorchester, Massachusetts, United States
| | - Ariana M Chirban
- Department of Surgery, St. Elizabeth's Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States; Department of Surgery, School of Medicine, University of California San Diego, La Jolla, California, United States
| | - Christopher Lathan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard School of Medicine, Boston, Massachusetts, United States
| | - George P Sorescu
- Department of Medicine, Lemuel Shattuck Hospital, Boston, Massachusetts, United States
| | - Bruno C Odisio
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Elena Panettieri
- Department of Surgery, St. Elizabeth's Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States; Hepatobiliary Surgery Unit, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudius Conrad
- Division of Surgical Oncology, Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Illinois, United States.
| |
Collapse
|
27
|
Tümen D, Heumann P, Huber J, Hahn N, Macek C, Ernst M, Kandulski A, Kunst C, Gülow K. Unraveling Cancer's Wnt Signaling: Dynamic Control through Protein Kinase Regulation. Cancers (Basel) 2024; 16:2686. [PMID: 39123414 PMCID: PMC11312265 DOI: 10.3390/cancers16152686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Since the initial identification of oncogenic Wnt in mice and Drosophila, the Wnt signaling pathway has been subjected to thorough and extensive investigation. Persistent activation of Wnt signaling exerts diverse cancer characteristics, encompassing tumor initiation, tumor growth, cell senescence, cell death, differentiation, and metastasis. Here we review the principal signaling mechanisms and the regulatory influence of pathway-intrinsic and extrinsic kinases on cancer progression. Additionally, we underscore the divergences and intricate interplays of the canonical and non-canonical Wnt signaling pathways and their critical influence in cancer pathophysiology, exhibiting both growth-promoting and growth-suppressing roles across diverse cancer types.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Karsten Gülow
- Department of Internal Medicine I Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (D.T.); (N.H.)
| |
Collapse
|
28
|
Zhu Y, Gu J, Lu Y, Tao Q, Cao X, Zhu Y, Yang MQ, Liang X. IL-6 Released from Hepatic Stellate Cells Promotes Glycolysis and Migration of HCC Through the JAK1/vWF/TGFB1 Axis. J Hepatocell Carcinoma 2024; 11:1295-1310. [PMID: 38983936 PMCID: PMC11232958 DOI: 10.2147/jhc.s464880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Purpose The crosstalk between hepatocellular carcinoma (HCC) cells and hepatic stellate cells (HSCs) is one of the important mechanisms of liver cancer metastasis. The relationship between liver cancer metastasis and glycolysis has been extensively studied recently. However, the role of von Willebrand factor (vWF) mediated glycolysis mechanism in liver cancer metastasis is currently unknown. Methods Western blot was used to verify the expression of vWF in HCC cells. PAS staining, glycogen and L-lactate content assays were used to reflect cellular glycolysis levels. The ability of cell migration was explored by Wound-healing and Transwell assays. Besides, the effect of vWF on the progression of HCC in vivo was also studied using subcutaneous xenograft model. Results vWF derived from HCC cells promoted tumor migration by mediating glycolysis. Besides, vWF participated in the crosstalk between HCC cells and HSCs. HCC cells activated HSCs through vWF-mediated TGFB1 expression and secretion, and activated HSCs upregulated vWF expression in HCC cells through IL-6 secretion feedback. Further, in vitro and in vivo experiments also confirmed the importance of the JAK1/vWF/TGFB1 axis in regulating HSCs-derived IL-6 mediated HCC migration and growth. Conclusion In summary, this article demonstrated that IL-6 released from hepatic stellate cells enhanced glycolysis and migration ability of liver cancer cells by activating JAK1/vWF/TGFB1 axis which may also be a potential target for inhibiting liver cancer metastasis.
Collapse
Affiliation(s)
- Yifei Zhu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jiayi Gu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yuxin Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Qianying Tao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xinliang Cao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yanqing Zhu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Mu-Qing Yang
- Department of Hepatobiliary Surgical Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xin Liang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
29
|
Pu W, Ma C, Wang B, Zhu W, Chen H. The "Heater" of "Cold" Tumors-Blocking IL-6. Adv Biol (Weinh) 2024; 8:e2300587. [PMID: 38773937 DOI: 10.1002/adbi.202300587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/13/2024] [Indexed: 05/24/2024]
Abstract
The resolution of inflammation is not simply the end of the inflammatory response but rather a complex process that involves various cells, inflammatory factors, and specialized proresolving mediators following the occurrence of inflammation. Once inflammation cannot be cleared by the body, malignant tumors may be induced. Among them, IL-6, as an immunosuppressive factor, activates a variety of signal transduction pathways and induces tumorigenesis. Monitoring IL-6 can be used for the diagnosis, efficacy evaluation and prognosis of tumor patients. In terms of treatment, improving the efficacy of targeted and immunotherapy remains a major challenge. Blocking IL-6 and its mediated signaling pathways can regulate the tumor immune microenvironment and enhance immunotherapy responses by activating immune cells. Even transform "cold" tumors that are difficult to respond to immunotherapy into immunogenic "hot" tumors, acting as a "heater" for "cold" tumors, restarting the tumor immune cycle, and reducing immunotherapy-related toxic reactions and drug resistance. In clinical practice, the combined application of IL-6 inhibition with targeted therapy and immunotherapy may produce synergistic results. Nevertheless, additional clinical trials are imperative to further validate the safety and efficacy of this therapeutic approach.
Collapse
Affiliation(s)
- Weigao Pu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Department of Tumour Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Chenhui Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Department of Tumour Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Bofang Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Department of Tumour Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Weidong Zhu
- General Surgery Department of Lintao County People's Hospital in Gansu Province, Lanzhou, Gansu, 730030, China
| | - Hao Chen
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
- Department of Tumour Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou, Gansu, 730030, China
| |
Collapse
|
30
|
Bauso LV, La Fauci V, Munaò S, Bonfiglio D, Armeli A, Maimone N, Longo C, Calabrese G. Biological Activity of Natural and Synthetic Peptides as Anticancer Agents. Int J Mol Sci 2024; 25:7264. [PMID: 39000371 PMCID: PMC11242495 DOI: 10.3390/ijms25137264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer is one of the leading causes of morbidity and death worldwide, making it a serious global health concern. Chemotherapy, radiotherapy, and surgical treatment are the most used conventional therapeutic approaches, although they show several side effects that limit their effectiveness. For these reasons, the discovery of new effective alternative therapies still represents an enormous challenge for the treatment of tumour diseases. Recently, anticancer peptides (ACPs) have gained attention for cancer diagnosis and treatment. ACPs are small bioactive molecules which selectively induce cancer cell death through a variety of mechanisms such as apoptosis, membrane disruption, DNA damage, immunomodulation, as well as inhibition of angiogenesis, cell survival, and proliferation pathways. ACPs can also be employed for the targeted delivery of drugs into cancer cells. With over 1000 clinical trials using ACPs, their potential for application in cancer therapy seems promising. Peptides can also be utilized in conjunction with imaging agents and molecular imaging methods, such as MRI, PET, CT, and NIR, improving the detection and the classification of cancer, and monitoring the treatment response. In this review we will provide an overview of the biological activity of some natural and synthetic peptides for the treatment of the most common and malignant tumours affecting people around the world.
Collapse
Affiliation(s)
- Luana Vittoria Bauso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Valeria La Fauci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Serena Munaò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Desirèe Bonfiglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Alessandra Armeli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Noemi Maimone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Clelia Longo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| |
Collapse
|
31
|
Singh S, Delungahawatta T, Wolff M, Haas CJ. Tumor Growth in Overdrive: Detailing an Aggressive Course of Hepatocellular Carcinoma. Case Reports Hepatol 2024; 2024:4950398. [PMID: 38974801 PMCID: PMC11226333 DOI: 10.1155/2024/4950398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
Hepatocellular carcinoma ranks as the third leading cause of cancer-related mortality globally. We present a case of a rapidly progressive hepatocellular carcinoma in an 81-year-old female with metabolic abnormalities. The patient initially presented with non-specific signs and symptoms and was managed for sepsis of suspected urinary source. Unresolving laboratory markers led to repeat abdominal imaging demonstrating new hepatic lesions within six days. Biopsy confirmed moderately differentiated hepatocellular carcinoma. The patient received conservative inpatient treatment with recommendation for nutritional and performance status optimization prior to oncologic therapies, however continued to decline and passed away three months later.
Collapse
Affiliation(s)
| | | | - Marcos Wolff
- MedStar Franklin Square Medical Center, Baltimore, MD, USA
| | | |
Collapse
|
32
|
Peng H, Feng K, Jia W, Li Y, Lv Q, Zhang Y. An integrated investigation of sulfotransferases (SULTs) in hepatocellular carcinoma and identification of the role of SULT2A1 on stemness. Apoptosis 2024; 29:898-919. [PMID: 38411862 DOI: 10.1007/s10495-024-01938-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 02/28/2024]
Abstract
The cytosolic sulfotransferases (SULTs) are phase II conjugating enzymes, which are widely expressed in the liver and mainly mediate the sulfation of numerous xenobiotics and endogenous compounds. However, the role of various SULTs genes has not been reported in hepatocellular carcinoma (HCC). This study aims to analyze the expression and potential functional roles of SULTs genes in HCC and to identify the role of SULT2A1 in HCC stemness as well as the possible mechanism. We found that all of the 12 SULTs genes were differentially expressed in HCC. Moreover, clinicopathological features and survival rates were also investigated. Multivariate regression analysis showed that SULT2A1 and SULT1C2 could be used as independent prognostic factors in HCC. SULT1C4, SULT1E1, and SULT2A1 were significantly associated with immune infiltration. SULT2A1 deficiency in HCC promoted chemotherapy resistance and stemness maintenance. Mechanistically, silencing of SULT2A1 activated the AKT signaling pathway, on the one hand, promoted the expression of downstream stemness gene c-Myc, on the other hand, facilitated the NRF2 expression to reduce the accumulation of ROS, and jointly increased HCC stemness. Moreover, knockdown NR1I3 was involved in the transcriptional regulation of SULT2A1 in stemness maintenance. In addition, SULT2A1 knockdown HCC cells promoted the proliferation and activation of hepatic stellate cells (HSCs), thereby exerting a potential stroma remodeling effect. Our study revealed the expression and role of SULTs genes in HCC and identified the contribution of SULT2A1 to the initiation and progression of HCC.
Collapse
Affiliation(s)
- Hao Peng
- Medical School, Southeast University, Nanjing, 210009, China
| | - Kun Feng
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Weilu Jia
- Medical School, Southeast University, Nanjing, 210009, China
| | - Yunxin Li
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Qingpeng Lv
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Yewei Zhang
- Medical School, Southeast University, Nanjing, 210009, China.
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
33
|
Tang S, Sun R, Tang K, Wei X, Liu M, Zhang H. A novel prognostic model for predicting patient survival and immunotherapy responsiveness in hepatocellular carcinoma: insights into the involvement of T-cell proliferation. Clin Transl Oncol 2024; 26:1368-1383. [PMID: 38123874 PMCID: PMC11108937 DOI: 10.1007/s12094-023-03363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND The cancer-associated biological mechanisms and the implementation of immunotherapy are heavily impacted by the activities of T cells, consequently influencing the effectiveness of therapeutic interventions. Nevertheless, the mechanistic actions of T-cell proliferation in response to immunotherapy and the overall prognosis of individuals diagnosed with hepatocellular carcinoma (HCC) remains insufficiently understood. The present work seeks to present a comprehensive analysis immune landscape in the context of HCC. METHODS To achieve this objective, both clinical data and RNA sequencing data were acquired from authoritative databases such as The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). RESULTS Through the utilization of consensus clustering techniques, distinct molecular subtypes associated with T-cell proliferation were delineated. Following this, seven genes of prognostic significance were identified via a combination of Cox and Lasso regression analyses. By integrating these genes into a prognostic signature, the predictive capability of the model was verified through an examination of internal and external datasets. Moreover, immunohistochemistry and qRT-PCR tests have verified the reliability of prognostic markers. Notably, the high-risk group exhibited elevated expression of immune checkpoint genes as well as higher benefit in terms of drug sensitivity testing, as determined by the Chi-square test (P < 0.001). The risk score derived from the prognostic signature depicted considerable efficacy in predicting the survival outcomes of HCC cases. CONCLUSIONS Overall, prognostic markers may become valuable predictive tool for individuals diagnosed with HCC, allowing for the prediction of their prognosis as well as the assessment of their immunological condition and response to immunotherapy.
Collapse
Affiliation(s)
- Shengjie Tang
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, China
| | - Rui Sun
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Kechao Tang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xiang Wei
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Ming Liu
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
| | - Huabing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
34
|
Tang Y, Cui G, Liu H, Han Y, Cai C, Feng Z, Shen H, Zeng S. Converting "cold" to "hot": epigenetics strategies to improve immune therapy effect by regulating tumor-associated immune suppressive cells. Cancer Commun (Lond) 2024; 44:601-636. [PMID: 38715348 PMCID: PMC11194457 DOI: 10.1002/cac2.12546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 06/26/2024] Open
Abstract
Significant developments in cancer treatment have been made since the advent of immune therapies. However, there are still some patients with malignant tumors who do not benefit from immunotherapy. Tumors without immunogenicity are called "cold" tumors which are unresponsive to immunotherapy, and the opposite are "hot" tumors. Immune suppressive cells (ISCs) refer to cells which can inhibit the immune response such as tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), regulatory T (Treg) cells and so on. The more ISCs infiltrated, the weaker the immunogenicity of the tumor, showing the characteristics of "cold" tumor. The dysfunction of ISCs in the tumor microenvironment (TME) may play essential roles in insensitive therapeutic reaction. Previous studies have found that epigenetic mechanisms play an important role in the regulation of ISCs. Regulating ISCs may be a new approach to transforming "cold" tumors into "hot" tumors. Here, we focused on the function of ISCs in the TME and discussed how epigenetics is involved in regulating ISCs. In addition, we summarized the mechanisms by which the epigenetic drugs convert immunotherapy-insensitive tumors into immunotherapy-sensitive tumors which would be an innovative tendency for future immunotherapy in "cold" tumor.
Collapse
Affiliation(s)
- Yijia Tang
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Guangzu Cui
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Haicong Liu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Ying Han
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Changjing Cai
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Ziyang Feng
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Hong Shen
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Resaerch Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Shan Zeng
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| |
Collapse
|
35
|
Todorović N, Amedei A. Metadherin-driven promotion of cancer stem cell phenotypes and its effect on immunity in hepatocellular carcinoma. World J Gastroenterol 2024; 30:2624-2628. [PMID: 38855151 PMCID: PMC11154677 DOI: 10.3748/wjg.v30.i20.2624] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/24/2024] [Accepted: 05/09/2024] [Indexed: 05/27/2024] Open
Abstract
In this editorial we provide commentary on the article published by Wang et al, featured in the recent issue of the World Journal of Gastroenterology in 2024. We focus on the metadherin (MTDH), also known as astrocyte elevated gene-1 or lysine rich CEACAM1, and its effects on cancer stem cells (CSCs) and immunity in hepatocellular carcinoma (HCC). HCC is the most common primary liver cancer and one of the leading causes of cancer-related deaths worldwide. Most HCC cases develop in the context of liver cirrhosis. Among the pivotal mechanisms of carcinogenesis are gene mutations, dysregulation of diverse signaling pathways, epigenetic alterations, hepatitis B virus-induced hepatocarcinogenesis, chronic inflammation, impact of tumor microenvironment, oxidative stress. Over the years, extensive research has been conducted on the MTDH role in various tumor pathologies, such as lung, breast, ovarian, gastric, hepatocellular, colorectal, renal carcinoma, neuroblastoma, melanoma, and leukemias. Specifically, its involvement in tumor development processes including transformation, apoptosis evasion, angiogenesis, invasion, and metastasis via multiple signaling pathways. It has been demonstrated that knockdown or knockout of MTDH disrupt tumor development and metastasis. In addition, numerous reports have been carried out regarding the MTDH influence on HCC, demonstrating its role as a predictor of poor prognosis, aggressive tumor phenotypes prone to metastasis and recurrence, and exhibiting significant potential for therapy resistance. Finally, more studies finely investigated the influence of MTDH on CSCs. The CSCs are a small subpopulation of tumor cells that sharing traits with normal stem cells like self-renewal and differentiation abilities, alongside a high plasticity that alters their phenotype. Beyond their presumed role in tumor initiation, they can drive also disease relapse, metastasis, and resistance to chemo and radiotherapy.
Collapse
Affiliation(s)
- Nevena Todorović
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
- Clinic for Infectious and Tropical Diseases, University Clinical Centre of Serbia, Belgrade 11000, Serbia
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| |
Collapse
|
36
|
Sabaghian A, Shamsabadi S, Momeni S, Mohammadikia M, Mohebbipour K, Sanami S, Ahmad S, Akhtar N, Sharma NR, Kushwah RBS, Gupta Y, Prakash A, Pazoki-Toroudi H. The role of PD-1/PD-L1 signaling pathway in cancer pathogenesis and treatment: a systematic review. JOURNAL OF CANCER METASTASIS AND TREATMENT 2024. [DOI: 10.20517/2394-4722.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Aim: Cancer as a complex disease poses significant challenges for both diagnosis and treatment. Researchers have been exploring various avenues to find effective therapeutic strategies, with a particular emphasis on cellular signaling pathways and immunotherapy. One such pathway that has recently been suggested is the PD-1/PD-L1 pathway, which is an immune checkpoint signaling system that plays an important role in regulating the immune system and maintaining tissue homeostasis. Cancer cells exploit this pathway by producing PD-L1, which attaches to PD-1 on T cells, thus inhibiting immune responses and enabling the cancer cells to escape detection by the immune system. This study aimed to evaluate the role of the PD-1/PD-L1 pathway in cancer pathogenesis and treatment. Method: This study was performed based on the principles of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). All in vitro , in vivo , and clinical studies that were published in English have been considered during a thorough search of the Scopus, Web of Science, and PubMed databases without date restriction until March 2024. Results: According to the studies reviewed, the PD-1/PD-L1 signaling axis suggests promising therapeutic effects on various types of cancers such as non-small cell lung cancer, melanoma, breast cancer, hepatocellular carcinoma, squamous cell carcinoma, and colorectal cancer, among others. Additionally, research suggests that immune checkpoint inhibitors that block PD1/PD-L1, such as pembrolizumab, atezolizumab, nivolumab, durvalumab, cemiplimab, avelumab, etc. , can effectively prevent tumor cells from escaping the immune system. Moreover, there might be a possible interaction between microbiome, obesity, etc. on immune mechanisms and on the immune checkpoint inhibitors (ICIs). Conclusion: Although we have gained considerable knowledge about ICIs, we are still facing challenges in effectively prescribing the appropriate ICIs for individual patients. This is largely due to the complex interactions between different intracellular pathways, which need to be thoroughly studied. To resolve this issue, it is necessary to conduct more reliable clinical trials that can produce a scientific consensus.
Collapse
|
37
|
Chen W, Guo L, Xu H, Dai Y, Yao J, Wang L. NAC1 transcriptional activation of LDHA induces hepatitis B virus immune evasion leading to cirrhosis and hepatocellular carcinoma development. Oncogenesis 2024; 13:15. [PMID: 38704368 PMCID: PMC11069585 DOI: 10.1038/s41389-024-00515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Our study aimed to elucidate the molecular mechanisms underlying NAC1 (nucleus accumbens associated 1) transcriptional regulation of LDHA and its role in HBV immune evasion, thus contributing to the development of cirrhosis and hepatocellular carcinoma (HCC). Utilizing public datasets, we performed differential gene expression and weighted gene co-expression network analysis (WGCNA) on HBV-induced cirrhosis/HCC data. We identified candidate genes by intersecting differentially expressed genes with co-expression modules. We validated these genes using the TCGA database, conducting survival analysis to pinpoint key genes affecting HBV-HCC prognosis. We also employed the TIMER database for immune cell infiltration data and analyzed correlations with identified key genes to uncover potential immune escape pathways. In vitro, we investigated the impact of NAC1 and LDHA on immune cell apoptosis and HBV immune evasion. In vivo, we confirmed these findings using an HBV-induced cirrhosis model. Bioinformatics analysis revealed 676 genes influenced by HBV infection, with 475 genes showing differential expression in HBV-HCC. NAC1 emerged as a key gene, potentially mediating HBV immune escape through LDHA transcriptional regulation. Experimental data demonstrated that NAC1 transcriptionally activates LDHA, promoting immune cell apoptosis and HBV immune evasion. Animal studies confirmed these findings, linking NAC1-mediated LDHA activation to cirrhosis and HCC development. NAC1, highly expressed in HBV-infected liver cells, likely drives HBV immune escape by activating LDHA expression, inhibiting CD8 + T cells, and promoting cirrhosis and HCC development.
Collapse
Affiliation(s)
- Wenbiao Chen
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Liliangzi Guo
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Huixuan Xu
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Yong Dai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China.
| | - Lisheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China.
| |
Collapse
|
38
|
She M, Wu Y, Cheng M, Feng S, Li G, Rong H. Efficacy and safety of PD-1/PD-L1 inhibitor-based immune combination therapy versus sorafenib in the treatment of advanced hepatocellular carcinoma: a meta-analysis. Front Med (Lausanne) 2024; 11:1401139. [PMID: 38756940 PMCID: PMC11096553 DOI: 10.3389/fmed.2024.1401139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Objective To systematically evaluate the safety and efficacy of PD-1/PD-L1 inhibitor-based immunotherapy (hereafter referred to as "combination immunotherapy") compared with that of sorafenib in the treatment of hepatocellular carcinoma (HCC). Methods Databases such as PubMed, Embase, and the Cochrane Library were searched from the date of their establishment to September 2023 to identify randomized controlled trials (RCTs) of combination immunotherapy versus sorafenib for the treatment of advanced HCC. Two reviewers independently evaluated the quality of the included studies, extracted the data, and cross-checked the information. The meta-analysis was performed using RevMan 5.3 software. Results A total of 5 RCTs were included. The results of the meta-analysis showed the following: (1) Effectiveness. Compared to sorafenib, combination immunotherapy significantly improved overall survival (OS, HR = 0.69, 95% CI: 0.58 ~ 0.82, p < 0.01) and progression-free survival (PFS, HR = 0.62, 95% CI: 0.50 ~ 0.78, p < 0.001) in patients with advanced HCC. (2) Safety. Both groups had comparatively high incidences of adverse events (AEs), but the difference in any treatment-related adverse events was not significant between the two arms (OR = 0.98, 95% CI: 0.95 ~ 1.02, p = 0.34). The difference in the incidence of grade 1-2 adverse reactions was statistically significant (OR = 0.66, 95% CI = 0.49-0.90, p = 0.001). There were no differences in grade 3/4 TRAEs or grade 5 TRAEs (OR = 1.46, 95% CI = 0.78 ~ 2.71, p = 0.24; OR = 1.08, 95% CI = 0.73 ~ 1.58, p = 0.71). Conclusion Combined immunotherapy can significantly prolong the OS and PFS of patients with advanced HCC without increasing the incidence of adverse effects in terms of safety, but the incidence of AEs in different systems is different.
Collapse
Affiliation(s)
- Mingjin She
- Department of Oncology, The Anhui Provincial Corps Hospital of Chinese People’s Armed Police Forces, Hefei, China
| | | | | | | | | | | |
Collapse
|
39
|
Emilius L, Bremm F, Binder AK, Schaft N, Dörrie J. Tumor Antigens beyond the Human Exome. Int J Mol Sci 2024; 25:4673. [PMID: 38731892 PMCID: PMC11083240 DOI: 10.3390/ijms25094673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
With the advent of immunotherapeutics, a new era in the combat against cancer has begun. Particularly promising are neo-epitope-targeted therapies as the expression of neo-antigens is tumor-specific. In turn, this allows the selective targeting and killing of cancer cells whilst healthy cells remain largely unaffected. So far, many advances have been made in the development of treatment options which are tailored to the individual neo-epitope repertoire. The next big step is the achievement of efficacious "off-the-shelf" immunotherapies. For this, shared neo-epitopes propose an optimal target. Given the tremendous potential, a thorough understanding of the underlying mechanisms which lead to the formation of neo-antigens is of fundamental importance. Here, we review the various processes which result in the formation of neo-epitopes. Broadly, the origin of neo-epitopes can be categorized into three groups: canonical, noncanonical, and viral neo-epitopes. For the canonical neo-antigens that arise in direct consequence of somatic mutations, we summarize past and recent findings. Beyond that, our main focus is put on the discussion of noncanonical and viral neo-epitopes as we believe that targeting those provides an encouraging perspective to shape the future of cancer immunotherapeutics.
Collapse
Affiliation(s)
- Lisabeth Emilius
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Amanda Katharina Binder
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
40
|
Smith K, Beach D, Silva R, Balazs G, Salani F, Crea F. Comprehensive analysis of differentially expressed miRNAs in hepatocellular carcinoma: Prognostic, predictive significance and pathway insights. PLoS One 2024; 19:e0296198. [PMID: 38635644 PMCID: PMC11025735 DOI: 10.1371/journal.pone.0296198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Robust prognostic and predictive factors for hepatocellular carcinoma, a leading cause of cancer-related deaths worldwide, have not yet been identified. Previous studies have identified potential HCC determinants such as genetic mutations, epigenetic alterations, and pathway dysregulation. However, the clinical significance of these molecular alterations remains elusive. MicroRNAs are major regulators of protein expression. MiRNA functions are frequently altered in cancer. In this study, we aimed to explore the prognostic value of differentially expressed miRNAs in HCC, to elucidate their associated pathways and their impact on treatment response. To this aim, bioinformatics techniques and clinical dataset analyses were employed to identify differentially expressed miRNAs in HCC compared to normal hepatic tissue. We validated known associations and identified a novel miRNA signature with potential prognostic significance. Our comprehensive analysis identified new miRNA-targeted pathways and showed that some of these protein coding genes predict HCC patients' response to the tyrosine kinase inhibitor sorafenib.
Collapse
Affiliation(s)
- Kayleigh Smith
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Dan Beach
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Roger Silva
- Department of Medicine, Cancer Research Program Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| | - Gyorffy Balazs
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- Research Centre for Natural Sciences, Institute of Molecular Life Sciences, Budapest, Hungary
| | - Francesca Salani
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Institute of Interdisciplinary Research “Health Science”, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
41
|
Andrade AAR, Pauli F, Pressete CG, Zavan B, Hanemann JAC, Miyazawa M, Fonseca R, Caixeta ES, Nacif JLM, Aissa AF, Barreiro EJ, Ionta M. Antiproliferative Activity of N-Acylhydrazone Derivative on Hepatocellular Carcinoma Cells Involves Transcriptional Regulation of Genes Required for G2/M Transition. Biomedicines 2024; 12:892. [PMID: 38672246 PMCID: PMC11048582 DOI: 10.3390/biomedicines12040892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Liver cancer is the second leading cause of cancer-related death in males. It is estimated that approximately one million deaths will occur by 2030 due to hepatic cancer. Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer subtype and is commonly diagnosed at an advanced stage. The drug arsenal used in systemic therapy for HCC is very limited. Multikinase inhibitors sorafenib (Nexavar®) and lenvatinib (Lenvima®) have been used as first-line drugs with modest therapeutic effects. In this scenario, it is imperative to search for new therapeutic strategies for HCC. Herein, the antiproliferative activity of N-acylhydrazone derivatives was evaluated on HCC cells (HepG2 and Hep3B), which were chemically planned on the ALL-993 scaffold, a potent inhibitor of vascular endothelial growth factor 2 (VEGFR2). The substances efficiently reduced the viability of HCC cells, and the LASSBio-2052 derivative was the most effective. Further, we demonstrated that LASSBio-2052 treatment induced FOXM1 downregulation, which compromises the transcriptional activation of genes required for G2/M transition, such as AURKA and AURKB, PLK1, and CDK1. In addition, LASSBio-2052 significantly reduced CCNB1 and CCND1 expression in HCC cells. Our findings indicate that LASSBio-2052 is a promising prototype for further in vivo studies.
Collapse
Affiliation(s)
| | - Fernanda Pauli
- Institute of Chemistry, Fluminense Federal University, Niterói 24020-140, RJ, Brazil
| | - Carolina Girotto Pressete
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| | - Bruno Zavan
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| | | | - Marta Miyazawa
- School of Dentistry, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Rafael Fonseca
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| | - Ester Siqueira Caixeta
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| | | | - Alexandre Ferro Aissa
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| | - Eliezer J. Barreiro
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| |
Collapse
|
42
|
Niu C, Zhang J, Okolo PI. Liver cancer wars: plant-derived polyphenols strike back. Med Oncol 2024; 41:116. [PMID: 38625672 DOI: 10.1007/s12032-024-02353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/06/2024] [Indexed: 04/17/2024]
Abstract
Liver cancer currently represents the leading cause of cancer-related death worldwide. The majority of liver cancer arises in the context of chronic inflammation and cirrhosis. Surgery, radiation therapy, and chemotherapy have been the guideline-recommended treatment options for decades. Despite enormous advances in the field of liver cancer therapy, an effective cure is yet to be found. Plant-derived polyphenols constitute a large family of phytochemicals, with pleiotropic effects and little toxicity. They can drive cellular events and modify multiple signaling pathways which involves initiation, progression and metastasis of liver cancer and play an important role in contributing to anti-liver cancer drug development. The potential of plant-derived polyphenols for treating liver cancer has gained attention from research clinicians and pharmaceutical scientists worldwide in the last decades. This review overviews hepatic carcinogenesis and briefly discusses anti-liver cancer mechanisms associated with plant-derived polyphenols, specifically involving cell proliferation, apoptosis, autophagy, angiogenesis, oxidative stress, inflammation, and metastasis. We focus on plant-derived polyphenols with experiment-based chemopreventive and chemotherapeutic properties against liver cancer and generalize their basic molecular mechanisms of action. We also discuss potential opportunities and challenges in translating plant-derived polyphenols from preclinical success into clinical applications.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA.
| | - Jing Zhang
- Rainier Springs Behavioral Health Hospital, 2805 NE 129th St, Vancouver, WA, 98686, USA
| | - Patrick I Okolo
- Division of Gastroenterology, Rochester General Hospital, Rochester, NY, 14621, USA
| |
Collapse
|
43
|
Ursu CP, Ciocan A, Ursu Ș, Ciocan RA, Gherman CD, Cordoș AA, Vălean D, Pop RS, Furcea LE, Procopeț B, Ștefănescu H, Moiș EI, Al Hajjar N, Graur F. Prognostic Indicators of Overall Survival in Hepatocellular Carcinoma Patients Undergoing Liver Resection. Cancers (Basel) 2024; 16:1427. [PMID: 38611104 PMCID: PMC11010842 DOI: 10.3390/cancers16071427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer and the third contributor to malignancy-related deaths worldwide. The hepatic venous pressure gradient (HVPG), transient elastography-liver stiffness measurement (TE-LSM), and the association between TBS (tumor burden score), alpha-fetoprotein levels, and the Child-Pugh classification (TAC score) can serve as valuable prognostic indicators for these patients. Therefore, the main objective of our research was to analyze the prognostic value of the HVPG, TE-LSM, TBS, and TAC scores. An observational and survival study was conducted on 144 subjects. Our findings indicated that HVPG greater than 10 mmHg, AFP surpassing 400 ng/mL, an advanced C-P class, and low TAC score are independent predictors of overall survival. During the multivariate analysis, AFP serum levels and C-P class proved statistically significant. The present study revealed significant differences in overall survival between the two groups divided upon HVPG values and settled by the cutoff of 10 mmHg (p = 0.02). Moreover, by dividing the cohort into three groups based on the TAC score (very low, low, and moderate), statistically significant differences in overall survival were observed across the groups (p = 0.004).
Collapse
Affiliation(s)
- Cristina-Paula Ursu
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (C.-P.U.); (Ș.U.); (D.V.); (L.E.F.); (E.I.M.); (N.A.H.); (F.G.)
- “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (B.P.)
| | - Andra Ciocan
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (C.-P.U.); (Ș.U.); (D.V.); (L.E.F.); (E.I.M.); (N.A.H.); (F.G.)
- “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (B.P.)
| | - Ștefan Ursu
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (C.-P.U.); (Ș.U.); (D.V.); (L.E.F.); (E.I.M.); (N.A.H.); (F.G.)
- “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (B.P.)
| | - Răzvan Alexandru Ciocan
- Department of Surgery-Practical Abilities, “Iuliu Hațieganu” University of Medicine and Pharmacy, Marinescu Street, No. 23, 400337 Cluj-Napoca, Romania; (R.A.C.); (C.D.G.); (A.-A.C.)
| | - Claudia Diana Gherman
- Department of Surgery-Practical Abilities, “Iuliu Hațieganu” University of Medicine and Pharmacy, Marinescu Street, No. 23, 400337 Cluj-Napoca, Romania; (R.A.C.); (C.D.G.); (A.-A.C.)
| | - Ariana-Anamaria Cordoș
- Department of Surgery-Practical Abilities, “Iuliu Hațieganu” University of Medicine and Pharmacy, Marinescu Street, No. 23, 400337 Cluj-Napoca, Romania; (R.A.C.); (C.D.G.); (A.-A.C.)
- Romanian Society of Medical Informatics, 300041 Timișoara, Romania
| | - Dan Vălean
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (C.-P.U.); (Ș.U.); (D.V.); (L.E.F.); (E.I.M.); (N.A.H.); (F.G.)
- “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (B.P.)
| | - Rodica Sorina Pop
- Department of Community Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Avram Iancu Street, No. 31, 400347 Cluj-Napoca, Romania;
| | - Luminița Elena Furcea
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (C.-P.U.); (Ș.U.); (D.V.); (L.E.F.); (E.I.M.); (N.A.H.); (F.G.)
- “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (B.P.)
| | - Bogdan Procopeț
- “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (B.P.)
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania
| | - Horia Ștefănescu
- “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (B.P.)
| | - Emil Ioan Moiș
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (C.-P.U.); (Ș.U.); (D.V.); (L.E.F.); (E.I.M.); (N.A.H.); (F.G.)
- “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (B.P.)
| | - Nadim Al Hajjar
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (C.-P.U.); (Ș.U.); (D.V.); (L.E.F.); (E.I.M.); (N.A.H.); (F.G.)
- “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (B.P.)
| | - Florin Graur
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (C.-P.U.); (Ș.U.); (D.V.); (L.E.F.); (E.I.M.); (N.A.H.); (F.G.)
- “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (B.P.)
| |
Collapse
|
44
|
Jabri A, Khan J, Taftafa B, Alsharif M, Mhannayeh A, Chinnappan R, Alzhrani A, Kazmi S, Mir MS, Alsaud AW, Yaqinuddin A, Assiri AM, AlKattan K, Vashist YK, Broering DC, Mir TA. Bioengineered Organoids Offer New Possibilities for Liver Cancer Studies: A Review of Key Milestones and Challenges. Bioengineering (Basel) 2024; 11:346. [PMID: 38671768 PMCID: PMC11048289 DOI: 10.3390/bioengineering11040346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatic cancer is widely regarded as the leading cause of cancer-related mortality worldwide. Despite recent advances in treatment options, the prognosis of liver cancer remains poor. Therefore, there is an urgent need to develop more representative in vitro models of liver cancer for pathophysiology and drug screening studies. Fortunately, an exciting new development for generating liver models in recent years has been the advent of organoid technology. Organoid models hold huge potential as an in vitro research tool because they can recapitulate the spatial architecture of primary liver cancers and maintain the molecular and functional variations of the native tissue counterparts during long-term culture in vitro. This review provides a comprehensive overview and discussion of the establishment and application of liver organoid models in vitro. Bioengineering strategies used to construct organoid models are also discussed. In addition, the clinical potential and other relevant applications of liver organoid models in different functional states are explored. In the end, this review discusses current limitations and future prospects to encourage further development.
Collapse
Affiliation(s)
- Abdullah Jabri
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Jibran Khan
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Bader Taftafa
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Mohamed Alsharif
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Abdulaziz Mhannayeh
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Alaa Alzhrani
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21423, Saudi Arabia
| | - Shadab Kazmi
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- Pathology and laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohammad Shabab Mir
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh 147301, Punjab, India;
| | - Aljohara Waleed Alsaud
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
| | - Abdullah M. Assiri
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Khaled AlKattan
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Yogesh K. Vashist
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Dieter C. Broering
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Tanveer Ahmad Mir
- College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia (R.C.); (A.W.A.); (K.A.)
- Tissue/Organ Bioengineering and BioMEMS Lab, Organ Transplant Centre of Excellence (TR&I Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
45
|
Ayaz H, Ahmad F, Ahmad S, Arfan Q, Alasmari AF, Siddique F, Rehman B, Zeb A, Crovella S, Ali SS, Waheed Y, Suleman M. Network-base approaches to identify therapeutic biomarkers in hepatocellular carcinoma and search for drug hunting utilizing molecular dynamics simulations. J Biomol Struct Dyn 2024:1-17. [PMID: 38486461 DOI: 10.1080/07391102.2024.2326197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/27/2024] [Indexed: 12/06/2024]
Abstract
The presence of conditions like Alpha-1 antitrypsin deficiency, hemochromatosis, non-alcoholic fatty liver diseases and metabolic syndrome can elevate the susceptibility to hepatic cellular carcinoma (HCC). Utilizing network-based gene expression profiling via network analyst tools, presents a novel approach for drug target discovery. The significance level (p-score) obtained through Cytoscape in the intended center gene survival assessment confirms the identification of all target center genes, which play a fundamental role in disease formation and progression in HCC. A total of 1064 deferential expression genes were found. These include MCM2 with the highest degree, followed by 4917 MCM6 and MCM4 with a 3944-degree score. We investigated the regulatory kinases involved in establishing the protein-protein interactions network using X2K web tool. The docking approach yields a favorable binding affinity of -8.7 kcal/mol against the target MCM2 using Auto-Dock Vina. Interestingly after simulating the complex system via AMBER16 package, results showed that the root mean square deviation values remained within 4.74 Å for a protein and remains stable throughout the time intervals. Additionally, the ligand's fit to the protein exhibited fluctuations at some intervals but remains stable. Finally, Gibbs free energy was found to be at its lowest at 1 kcal/mol which presents the real time interactive binding of the atomic residues among inhibitor and protein. The displacement of the ligand was measured showing stable movement and displacement along the active site. These findings increased our understanding for potential biomarkers in hepatocellular carcinoma and an experimental approach will further enhance our outcomes in future.
Collapse
Affiliation(s)
- Hassan Ayaz
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Pakistan
- Department of Biotechnology, Quaid-I-Azam University, Islamabad, Pakistan
| | - Faisal Ahmad
- Foundation University Medical College, Foundation University Islamabad, DHA-I, Islamabad, Pakistan
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
| | - Qaiser Arfan
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakriya University Multan, Multan, Pakistan
| | - Bushra Rehman
- Institute of Biotechnology and Microbiology, Bacha khan University, Charsadda, Pakistan
| | - Adnan Zeb
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Pakistan
| | - Sergio Crovella
- Laboratory Animal Research Centre, Qatar University, Doha, Qatar
| | - Syed Shujait Ali
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Pakistan
| | - Yasir Waheed
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Bridging Health Foundation, Rawalpindi, Pakistan
| | - Muhammad Suleman
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Pakistan
- Institute of Biotechnology and Microbiology, Bacha khan University, Charsadda, Pakistan
| |
Collapse
|
46
|
Kimura T. Advancements in the Treatment Landscape of Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:1054. [PMID: 38473409 DOI: 10.3390/cancers16051054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The landscape of hepatocellular carcinoma (HCC) treatment has expanded significantly with the advent of multi-kinase inhibitors and immune checkpoint inhibitors [...].
Collapse
Affiliation(s)
- Takefumi Kimura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto 390-8621, Japan
- Consultation Center for Liver Diseases, Shinshu University Hospital, Matsumoto 390-8621, Japan
| |
Collapse
|
47
|
Kawanaka H, Tajiri K, Muraishi N, Murayama A, Nukui T, Yasuda I. A Case of Immune-Related Aseptic Meningitis during Atezolizumab plus Bevacizumab for Hepatocellular Carcinoma. Case Rep Gastroenterol 2024; 18:8-13. [PMID: 38188593 PMCID: PMC10766420 DOI: 10.1159/000535476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Immune checkpoint inhibitors are sometimes associated with immune-related adverse events during or after treatment. Among these, aseptic meningitis is a rare and serious complication. We report the first case of atezolizumab-induced aseptic meningitis, which occurred during treatment for advanced hepatocellular carcinoma (HCC). Case Presentation A 74-year-old woman diagnosed with advanced HCC and treated with first-line atezolizumab plus bevacizumab developed anorexia, fatigue, and fever, after three treatment cycles. Cerebrospinal fluid examination showed slightly increased cell count and protein level but no infection or malignancy. Contrast enhancement along the cerebral sulcus was evident in contrast-enhanced magnetic resonance imaging, and the patient was diagnosed with aseptic meningitis associated with atezolizumab. Steroid therapy soon improved her clinical symptoms, and the contrast enhancement along the cerebral sulcus disappeared. Conclusion Clinicians should monitor to avoid serious immune-related adverse events, such as aseptic meningitis, in patients during treatment of HCC with immune checkpoint inhibitors and make the diagnosis as soon as possible.
Collapse
Affiliation(s)
- Hiroki Kawanaka
- Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Kazuto Tajiri
- Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Nozomu Muraishi
- Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Aiko Murayama
- Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Takamasa Nukui
- Department of Neurology, University of Toyama, Toyama, Japan
| | - Ichiro Yasuda
- Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
48
|
Muglia R, Marra P, Pinelli D, Dulcetta L, Carbone FS, Barbaro A, Celestino A, Colledan M, Sironi S. Technical and Clinical Outcomes of Laparoscopic-Laparotomic Hepatocellular Carcinoma Thermal Ablation with Microwave Technology: Case Series and Review of Literature. Cancers (Basel) 2023; 16:92. [PMID: 38201536 PMCID: PMC10778313 DOI: 10.3390/cancers16010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
PURPOSE To evaluate technical and clinical outcomes of intraoperative (laparoscopic/laparotomic) microwave ablation on HCC. MATERIALS AND METHODS This is a retrospective single-center study evaluating consecutive patients treated for very early/early-stage HCC with intraoperative microwave ablation from 1 July 2017 to 30 June 2023. In these patients, a percutaneous US-guided approach was excluded due to the nodule's suboptimal visibility or harmful location and liver resection for a deep position or adherences. Data about the clinical stage, surgical approach, liver pathology and nodules characteristics, technical success, complications, and follow-up were collected. Technical success was intended as the absence of locoregional persistence at follow-up CT/MRI controls. RESULTS A total of 36 cirrhotic patients (M:F = 30:6, median age 67 years) were enrolled; 18/36 (50%) had a single nodule, 13/36 (36%) had two, 4/36 had three (11%), and 1/36 had four (3%). Among the patients, 24 (67%) were treated with laparoscopy, and 12/36 (33%) with a laparotomic approach. Sixty HCCs of 16.5 mm (6-50 mm) were treated for 7 min (2-30 min) with 100 W of power. A total of 55 nodules (92%) were treated successfully and showed no residual enhancement at the first postoperative follow-up; the other 5/60 (8%) underwent chemo/radioembolization. There was one complication (3%): a biliary fistula treated with percutaneous drainage and glue embolization. The average hospital stay was 3.5 days (1-51 days), and patients were followed up on average for 238 days (13-1792 days). During follow-up, 5/36 patients (14%) underwent liver transplantation, 1/36 (2%) died during hospitalization and 1 after discharge. CONCLUSIONS Laparoscopic/laparotomic intraoperative HCC MW ablation is feasible in patients unsuitable for percutaneous approach or hepatic resection, with rare complications and with good technical and clinical outcomes.
Collapse
Affiliation(s)
- Riccardo Muglia
- Department of Radiology, Papa Giovanni XXIII Hospital, 24127 Bergamo, Italy; (P.M.); (L.D.); (F.S.C.)
- School of Medicine, University of Milano-Bicocca, 20126 Milano, Italy (A.C.)
| | - Paolo Marra
- Department of Radiology, Papa Giovanni XXIII Hospital, 24127 Bergamo, Italy; (P.M.); (L.D.); (F.S.C.)
- School of Medicine, University of Milano-Bicocca, 20126 Milano, Italy (A.C.)
| | - Domenico Pinelli
- Department of General Surgery, Papa Giovanni XXIII Hospital, 24127 Bergamo, Italy; (D.P.); (M.C.)
| | - Ludovico Dulcetta
- Department of Radiology, Papa Giovanni XXIII Hospital, 24127 Bergamo, Italy; (P.M.); (L.D.); (F.S.C.)
| | - Francesco Saverio Carbone
- Department of Radiology, Papa Giovanni XXIII Hospital, 24127 Bergamo, Italy; (P.M.); (L.D.); (F.S.C.)
| | - Alessandro Barbaro
- School of Medicine, University of Milano-Bicocca, 20126 Milano, Italy (A.C.)
| | - Antonio Celestino
- School of Medicine, University of Milano-Bicocca, 20126 Milano, Italy (A.C.)
| | - Michele Colledan
- Department of General Surgery, Papa Giovanni XXIII Hospital, 24127 Bergamo, Italy; (D.P.); (M.C.)
| | - Sandro Sironi
- Department of Radiology, Papa Giovanni XXIII Hospital, 24127 Bergamo, Italy; (P.M.); (L.D.); (F.S.C.)
- School of Medicine, University of Milano-Bicocca, 20126 Milano, Italy (A.C.)
| |
Collapse
|
49
|
Xiang Z, Xie Q, Yu Z. Exosomal DNA: Role in Reflecting Tumor Genetic Heterogeneity, Diagnosis, and Disease Monitoring. Cancers (Basel) 2023; 16:57. [PMID: 38201485 PMCID: PMC10778000 DOI: 10.3390/cancers16010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs), with exosomes at the forefront, are key in transferring cellular information and assorted biological materials, including nucleic acids. While exosomal RNA has been thoroughly examined, exploration into exosomal DNA (exoDNA)-which is stable and promising for cancer diagnostics-lags behind. This hybrid genetic material, combining contributions from both nuclear and mitochondrial DNA (mtDNA), is rooted in the cytoplasm. The enigmatic process concerning its cytoplasmic encapsulation continues to captivate researchers. Covering the entire genetic landscape, exoDNA encases significant oncogenic alterations in genes like TP53, ALK, and IDH1, which is vital for clinical assessment. This review delves into exosomal origins, the ins and outs of DNA encapsulation, and exoDNA's link to tumor biology, underscoring its superiority to circulating tumor DNA in the biomarker arena for both detection and therapy. Amidst scientific progress, there are complexities in the comprehension and practical application of the exoDNA surface. Reflecting on these nuances, we chart the prospective research terrain and potential pitfalls, forging a path for future inquiry. By illuminating both the known and unknown facets of exoDNA, the objective of this review is to provide guidance to the field of liquid biopsy (LB) while minimizing the occurrence of avoidable blind spots and detours.
Collapse
Affiliation(s)
- Ziyi Xiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Qihui Xie
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Zili Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
50
|
Xu L, Zhao D, Tian P, Ding J, Jiang Z, Ni G, Hou Z, Ni C. Development and Validation of a Prognostic Model for Transarterial Chemoembolization in Unresectable Hepatocellular Carcinoma Based on Preoperative Serum Prealbumin. J Hepatocell Carcinoma 2023; 10:2239-2250. [PMID: 38107543 PMCID: PMC10725684 DOI: 10.2147/jhc.s433245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose We aimed to develop a prognostic nomogram utilizing preoperative serum prealbumin levels to predict the overall survival (OS) in patients undergoing transarterial chemoembolization (TACE) for unresectable hepatocellular carcinoma (HCC). Patients and Methods A total of 768 individuals with unresectable HCC who underwent TACE at three medical facilities in Suzhou between January 2007 December 2018 were included. The patient cohort was assigned to a training set (n = 461) and a validation set (n = 307). Cox regression analysis identified independent prognostic factors, which were then used to construct a prognostic nomogram. Internal validation was performed in the testing group, and its effectiveness and capability were evaluated with reference to the concordance index (C-index), area under the curve (AUC), calibration curve, and decision curve analysis (DCA). Results Independent risk factors identified through Cox regression analyses included the BCLC stage, cirrhosis, invasion, tumor number, preoperative serum PALB, performance status (PS), and tumor size. The nomogram demonstrated a C-index of 0.734 (95% confidence interval (CI): 0.710-0.758) in the training set and 0.717 (95% CI: 0.678-0.756) in the validation set, indicating strong discriminatory ability. The nomogram also demonstrated favorable discriminatory performance with AUC values of 0.873, 0.820, and 0.833 for 1-, 2-, and 3-year OS, respectively, in the training set, and 0.854, 0.765, and 0.724 in the validation set. The AUC value of the nomogram (0.843) was significantly higher than that of the four conventional staging systems. Moreover, calibration graphs confirmed a strong concordance between the predicted and observed results. Furthermore, DCA underscored the significant clinical utility of the nomogram. Additionally, the low-risk group exhibited considerably superior rates of survival compared to the high-risk group. Conclusion The developed nomogram demonstrated excellent prognostic capability, which served as a valuable tool for personalized clinical decision-making for patients with HCC.
Collapse
Affiliation(s)
- Lin Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Dongxu Zhao
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Pengcheng Tian
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Jiaan Ding
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Zhengyu Jiang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Guanyin Ni
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Zhongheng Hou
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Caifang Ni
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| |
Collapse
|