1
|
Wang B, Li D, Peng C, Hong J, Wu Y. Dietary omega-3 intake and cognitive function in older adults. Int J Psychiatry Med 2025; 60:265-279. [PMID: 39277856 DOI: 10.1177/00912174241284925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
ObjectiveDietary habits have long been known to be a critical factor influencing cognitive health, especially among older adults. Despite extensive research on various dietary supplements, the impact of omega-3 polyunsaturated fatty acids (PUFAs) on cognitive function has not yet been thoroughly investigated. This research seeks to determine whether taking more omega-3 PUFAs correlates with improved cognitive function in older adults.MethodsCross-sectional data were analyzed from the National Health and Nutrition Examination Survey (NHANES), which included 2430 elderly participants aged 60 and above in the United States. The association between omega-3 consumption and cognitive outcomes was evaluated using linear regression models. Smoothing curves and threshold effect analysis were employed to examine nonlinear associations. Subgroup studies were conducted to demonstrate the strength and reliability of the association and factors affecting it.ResultsThe fully adjusted model demonstrated significant positive correlations between omega-3 intake and scores on all 3 cognitive assessments. Specifically, in the final model, the beta coefficients for the CERAD Word Learning test, Animal Fluency Test, and Digit Symbol Substitution Test were 0.53 (95% CI: 0.33-0.72, P < 0.0001), 0.29 (95% CI: 0.12-0.47, P = 0.001), and 0.61 (95% CI: 0.19-1.03, P = 0.0045), respectively.ConclusionIncreased intake of omega-3 was positively and independently associated with cognitive function in older adults, suggesting that consumption of omega-3 PUFAs may help to prevent cognitive decline with aging. Prospective studies are needed to determine the direct of effect in this association.
Collapse
Affiliation(s)
- Bingdian Wang
- School of Nursing, Anhui Medical University, Hefei, China
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Deqin Li
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cuicui Peng
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingfang Hong
- School of Nursing, Anhui Medical University, Hefei, China
| | - Yonggui Wu
- School of Nursing, Anhui Medical University, Hefei, China
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Zaini A, Morgan PK, Cardwell B, Vlassopoulos E, Sgro M, Li CN, Salberg S, Mellett NA, Christensen J, Meikle PJ, Murphy AJ, Marsland BJ, Mychasiuk R, Yamakawa GR. Time restricted feeding alters the behavioural and physiological outcomes to repeated mild traumatic brain injury in male and female rats. Exp Neurol 2025; 385:115108. [PMID: 39662793 DOI: 10.1016/j.expneurol.2024.115108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Mild traumatic brain injury (mTBI) research has had limited success translating treatments from preclinical models to clinical application for concussion. One major factor that has been overlooked is the near 24-hour availability of food, both for experimental nocturnal rodents and patients suffering from mTBI. Here, we characterised the impact of food restriction limited to either the inactive (day) or the active phase (night), on repetitive mTBI (RmTBI) - induced outcomes in male and female rats. We found that active phase fed rats consumed more food, had increased body weight, and reduced brain weights. Behaviourally, active phase feeding increased motor coordination deficits and caused changes to thermal nociceptive processing following RmTBI. Hypothalamic transcriptomic analysis revealed minor changes in response to RmTBI, and genes associated with oxytocin-vasopressin regulation in response to inactive phase, but not active phase feeding. These transcript changes were absent in females, where the overall effect of RmTBI was minor. Prefrontal cortex lipidomics revealed an increase in sphingomyelin synthesis following injury and marked sex differences in response to feeding. Of the lipids that changed and overlapped between the prefrontal cortex and serum, dihydroceramides, sphingomyelins, and hexosylceramides, were higher in the serum but lower in the prefrontal cortex. Together, these results demonstrate that feeding time alters outcomes to RmTBI, independent of the hypothalamic transcriptome, and injury-specific lipids may serve as useful biomarkers in RmTBI diagnosis.
Collapse
Affiliation(s)
- A Zaini
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia
| | - P K Morgan
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - B Cardwell
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia
| | - E Vlassopoulos
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - M Sgro
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - C N Li
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - S Salberg
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - N A Mellett
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - J Christensen
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - P J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, Victoria, Australia
| | - A J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - B J Marsland
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia
| | - R Mychasiuk
- Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia; Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - G R Yamakawa
- Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia; Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Stanton JE, Hans S, Zabetakis I, Grabrucker AM. Zinc signaling controls astrocyte-dependent synapse modulation via the PAF receptor pathway. J Neurochem 2025; 169:e16252. [PMID: 39450676 PMCID: PMC11808829 DOI: 10.1111/jnc.16252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/17/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Astrocytes are important regulators of neuronal development and activity. Their activation plays a key role in the response to many central nervous system (CNS) pathologies. However, reactive astrocytes are a double-edged sword as their chronic or excessive activation may negatively impact CNS physiology, for example, via abnormal modulation of synaptogenesis and synapse function. Accordingly, astrocyte activation has been linked to neurodegenerative and neurodevelopmental disorders. Therefore, the attenuation of astrocyte activation may be an important approach for preventing and treating these disorders. Since zinc deficiency has been consistently linked to increased pro-inflammatory signaling, we aimed to identify cellular zinc-dependent signaling pathways that may lead to astrocyte activation using techniques such as immunocytochemistry and protein biochemistry to detect astrocyte GFAP expression, fluorescent imaging to detect oxidative stress levels in activated astrocytes, cytokine profiling, and analysis of primary neurons subjected to astrocyte secretomes. Our results reveal a so far not well-described pathway in astrocytes, the platelet activation factor receptor (PAFR) pathway, as a critical zinc-dependent signaling pathway that is sufficient to control astrocyte reactivity. Low zinc levels activate PAFR signaling-driven crosstalk between astrocytes and neurons, which alters excitatory synapse formation during development in a PAFR-dependent manner. We conclude that zinc is a crucial signaling ion involved in astrocyte activation and an important dietary factor that controls astrocytic pro-inflammatory processes. Thus, targeting zinc homeostasis may be an important approach in several neuroinflammatory conditions.
Collapse
Affiliation(s)
- Janelle E. Stanton
- Bernal InstituteUniversity of LimerickLimerickIreland
- Department of Biological SciencesUniversity of LimerickLimerickIreland
| | - Sakshi Hans
- Bernal InstituteUniversity of LimerickLimerickIreland
- Department of Biological SciencesUniversity of LimerickLimerickIreland
| | - Ioannis Zabetakis
- Bernal InstituteUniversity of LimerickLimerickIreland
- Department of Biological SciencesUniversity of LimerickLimerickIreland
- Health Research Institute (HRI)University of LimerickLimerickIreland
| | - Andreas M. Grabrucker
- Bernal InstituteUniversity of LimerickLimerickIreland
- Department of Biological SciencesUniversity of LimerickLimerickIreland
- Health Research Institute (HRI)University of LimerickLimerickIreland
| |
Collapse
|
4
|
Krishnamurthy HK, Jayaraman V, Krishna K, Wang T, Bei K, Changalath C, Rajasekaran JJ. An overview of the genes and biomarkers in Alzheimer's disease. Ageing Res Rev 2025; 104:102599. [PMID: 39612989 DOI: 10.1016/j.arr.2024.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Alzheimer's disease (AD) is the most common type of dementia and neurodegenerative disease characterized by neurofibrillary tangles (NFTs) and amyloid plaque. Familial AD is caused by mutations in the APP, PSEN1, and PSEN2 genes and these mutations result in the early onset of the disease. Sporadic AD usually affects older adults over the age of 65 years and is, therefore classified as late-onset AD (LOAD). Several risk factors associated with LOAD including the APOE gene have been identified. Moreover, GWAS studies have identified a wide array of genes and polymorphisms that are associated with LOAD risk. Currently, the diagnosis of AD involves the evaluation of memory and personality changes, cognitive impairment, and medical and family history to rule out other diseases. Laboratory tests to assess the biomarkers in the body fluids as well as MRI, CT, and PET scans to analyze the presence of plaques and NFTs are also included in the diagnosis of AD. It is important to diagnose AD before the onset of clinical symptoms, i.e. during the preclinical stage, to delay the progression and for better management of the disease. Research has been conducted to identify biomarkers of AD in the CSF, serum, saliva, and urine during the preclinical stage. Current research has identified several biomarkers and potential biomarkers in the body fluids that enhance diagnostic accuracy. Aside from genetics, other factors such as diet, physical activity, and lifestyle factors may influence the risk of developing AD. Clinical trials are underway to find potential biomarkers, diagnostic measures, and treatments for AD mainly in the preclinical stage. This review provides an overview of the genes and biomarkers of AD.
Collapse
Affiliation(s)
| | | | - Karthik Krishna
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | - Tianhao Wang
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | - Kang Bei
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | | | | |
Collapse
|
5
|
Prates JAM. The Role of Meat Lipids in Nutrition and Health: Balancing Benefits and Risks. Nutrients 2025; 17:350. [PMID: 39861480 PMCID: PMC11769531 DOI: 10.3390/nu17020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Meat lipids are determinants of the nutritional, sensory and physiological qualities of meat, encompassing triglycerides, phospholipids, cholesterol and bioactive compounds. These lipids provide essential fatty acids, including omega-3 and omega-6 polyunsaturated fatty acids, critical for metabolic regulation, inflammation control and cognitive health. However, the dual role of meat lipids as essential nutrients and potential contributors to health risks, such as cardiovascular disease and oxidative stress, necessitates a nuanced understanding. This review evaluates meat lipids' biochemical diversity, nutritional contributions and health implications, balancing their benefits and risks. It examines factors influencing lipid composition, including species, diet and processing methods, emphasising strategies such as omega-3 enrichment and antioxidant supplementation to enhance lipid quality. Advances in functional meat products, such as hybrid formulations combining plant and animal lipids, are highlighted for their potential to improve health outcomes. Emerging technologies in lipidomics provide deeper insights into lipid oxidation pathways and nutritional profiling, aiding in the development of safer, higher-quality meat products. By synthesising recent evidence, this review offers insights into dietary guidelines, optimises consumer choices and informs sustainable meat production practices aligned with public health and environmental goals.
Collapse
Affiliation(s)
- José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; or
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
6
|
Hans S, Zabetakis I, Lordan R. The potential cardioprotective bioactive compounds in fermented alcoholic beverages: Mechanisms, challenges, and opportunities in beer and wine. Nutr Res 2025; 133:108-126. [PMID: 39705911 DOI: 10.1016/j.nutres.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 12/23/2024]
Abstract
Excessive alcohol consumption is detrimental to human health, and it is implicated in the development of heart disease, stroke, and cancer. However, the last few decades have given rise to epidemiological evidence suggesting that low-to-moderate consumption of red wine and beer may reduce the risk of cardiovascular diseases. Studies have shown that moderate consumption of wine and beer protects against ischemic stroke, increases HDL plasma concentrations, and reduces platelet aggregation and insulin resistance. This cardioprotective effect has previously been attributed to phytochemicals in these beverages. This narrative review explores these potential cardioprotective phytochemicals and the underlying mechanisms responsible. Data from trials investigating the effect of alcoholic beverage consumption and in vitro analyses of the bioactive phytochemical compounds are reviewed. The potential of dealcoholized beverages is also explored. The literature shows that the cardioprotective effects observed with moderate alcohol consumption are mainly owing to the presence of anti-inflammatory polyphenolic and bioactive substances including lipophilic molecules present in low but biologically significant quantities. These phytochemicals are obtained from the raw materials and generated during the brewing processes. Studies indicate that dealcoholized variants of beer and wine also possess beneficial health effects, indicating that these effects are not alcohol dependent. There is also growing interest in dealcoholized beverages that are fortified or enhanced with cardioprotective properties. The development of such beverages is an important avenue of future research so that there are options for consumers who wish to enjoy wine and beer safely.
Collapse
Affiliation(s)
- Sakshi Hans
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Bernal Institute, University of Limerick, Limerick, Ireland
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Bernal Institute, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Lewis F, Shoieb D, Azmoun S, Colicino E, Jin Y, Chi J, Gu H, Placidi D, Padovani A, Pilotto A, Pepe F, Turla M, Crippa P, Wang X, Lucchini RG. Metabolomic and Lipidomic Analysis of Manganese-Associated Parkinsonism: a Case-Control Study in Brescia, Italy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.04.24313002. [PMID: 39281765 PMCID: PMC11398432 DOI: 10.1101/2024.09.04.24313002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Background and Objectives Excessive Manganese (Mn) exposure is neurotoxic and can cause Mn-Induced Parkinsonism (MnIP), marked by cognitive and motor dysfunction. Although metabolomic and lipidomic research in Parkinsonism (PD) patients exists, it remains limited. This study hypothesizes distinct metabolomic and lipidomic profiles based on exposure status, disease diagnosis, and their interaction. Methods We used a case-control design with a 2×2 factorial framework to investigate the metabolomic and lipidomic alterations associated with Mn exposure and their link to PD. The study population of 97 individuals was divided into four groups: non-exposed controls (n=23), exposed controls (n=25), non-exposed with PD (n=26) and exposed with PD (n=23). Cases, defined by at least two cardinal PD features (excluding vascular, iatrogenic, and traumatic origins), were recruited from movement disorder clinics in four hospitals in Brescia, Northern Italy. Controls, free from neurological or psychiatric conditions, were selected from the same hospitals. Exposed subjects resided in metallurgic regions (Val Camonica and Bagnolo Mella) for at least 8 continuous years, while non-exposed subjects lived in low-exposure areas around Lake Garda and Brescia city. We conducted untargeted analyses of metabolites and lipids in whole blood samples using ultra-high-performance liquid chromatography (UHPLC) and mass spectrometry (MS), followed by statistical analyses including Principal Component Analysis (PCA), Partial Least Squares-Discriminant Analysis (PLS-DA), and Two-Way Analysis of Covariance (ANCOVA). Results Metabolomic analysis revealed modulation of alanine, aspartate, and glutamate metabolism (Impact=0.05, p=0.001) associated with disease effect; butanoate metabolism (Impact=0.03, p=0.004) with the exposure effect; and vitamin B6 metabolism (Impact=0.08, p=0.03) with the interaction effect. Differential relative abundances in 3-sulfoxy-L-Tyrosine (β=1.12, FDR p<0.001), glycocholic acid (β=0.48, FDR p=0.03), and palmitelaidic acid (β=0.30, FDR p<0.001) were linked to disease, exposure, and interaction effects, respectively. In the lipidome, ferroptosis (Pathway Lipids=11, FDR p=0.03) associated with the disease effect and sphingolipid signaling (Pathway Lipids=9, FDR p=0.04) associated with the interaction effect were significantly altered. Lipid classes triacylglycerols, ceramides, and phosphatidylethanolamines showed differential relative abundances associated with disease, exposure, and interaction effects, respectively. Discussion These findings suggest that PD and Mn exposure induce unique metabolomic and lipidomic changes, potentially serving as biomarkers for MnIP and warranting further study.
Collapse
Affiliation(s)
- Freeman Lewis
- Environmental Health Sciences, Florida International University, 11200 SW 8th St, Miami, 33199, Florida, USA
| | - Daniel Shoieb
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Somaiyeh Azmoun
- Environmental Health Sciences, Florida International University, 11200 SW 8th St, Miami, 33199, Florida, USA
| | - Elena Colicino
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, 17 E 102nd St, New York, 10029, New York, USA
| | - Yan Jin
- Environmental Health Sciences, Florida International University, 11200 SW 8th St, Miami, 33199, Florida, USA
| | - Jinhua Chi
- Environmental Health Sciences, Florida International University, 11200 SW 8th St, Miami, 33199, Florida, USA
| | - Haiwei Gu
- Environmental Health Sciences, Florida International University, 11200 SW 8th St, Miami, 33199, Florida, USA
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, Brescia, 25123, Italy and Department of continuity of care and frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy
| | - Andrea Pilotto
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, Brescia, 25123, Italy and Department of continuity of care and frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy
| | - Fulvio Pepe
- Clinic of Neurology, Poliambulanza Foundation, Brescia, Italy
| | - Marinella Turla
- Clinic of Neurology, Esine Hospital of Valcamonica, Brescia, Italy
| | | | - Xuexia Wang
- Department of Biostatistics, Florida International University, 11200 SW 8th St, Miami, 33199, Florida, USA
| | - Roberto G Lucchini
- Environmental Health Sciences, Florida International University, 11200 SW 8th St, Miami, 33199, Florida, USA
- Department of Biomedical, Metabolic and Neurosciences, University of Modena and Reggio Emilia, Via Universitá, 4, Modena, 610101, Italy
| |
Collapse
|
8
|
Kang T, Zheng J, Jiang C, Jin L, Li C, Chen B, Shen Y. Amelioration of walnut, peony seed and camellia seed oils against D-galactose-induced cognitive impairment in mice by regulating gut microbiota. Food Funct 2024; 15:7063-7080. [PMID: 38867661 DOI: 10.1039/d4fo01409j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Diet adjustment will affect the health of gut microbiota, which in turn influences the development and function of the organism's brain through the gut-brain axis. Walnut oil (WO), peony seed oil (PSO) and camellia seed oil (CSO), as typical representatives of woody plant oils, have been shown to have the potential to improve cognitive impairment in mice, but the function mechanisms are not clear. In this study, we comparatively investigated the neuroprotective effects of these three oils on D-galactose (D-gal)-induced cognitive impairment in mice, and found that the ameliorative effect of WO was more prominent. During the behavioral experiments, supplementation with all three oils would improve spatial learning and memory functions in D-gal mice, with a significant reduction in the error times (p < 0.001) and a significant increase in step-down latency (p < 0.001); walnut oil supplementation also significantly increased the number of hidden platform traversals, the target quadrant spent times and percentage of distance (p < 0.05). The results of biomarker analysis showed that WO, in addition to significantly inhibiting D-gal-induced oxidative stress and neuroinflammation as did PSO, significantly increased the ACh content in the mouse brain (p < 0.05) and modulated neurotransmitter levels. The results of further microbiota diversity sequencing experiments also confirmed that dietary supplementation with all three oils affected the diversity and composition of the gut microbiota in mice. Among them, WO significantly restored the balance of the mouse gut microbiota by increasing the abundance of beneficial bacteria (Bacteroidetes, Actinobacteria, Firmicutes) and decreasing the abundance of harmful bacteria (Clostridium, Shigella, Serratia), which was consistent with the results of behavioral experiments and biomarker analyses. Based on the analysis of the fatty acid composition of the three oils and changes in the gut microbiota, it is hypothesized that there is a correlation between the fatty acid composition of the dietary supplement oils and neuroprotective effects. The superiority of WO over PSO and CSO in improving cognitive impairment is mainly attributed to its balanced composition of omega-6 and omega-3 fatty acids.
Collapse
Affiliation(s)
- Ting Kang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Jingyi Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Chao Jiang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Lihua Jin
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Bang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| |
Collapse
|
9
|
Hans S, Stanton JE, Sauer AK, Shiels K, Saha SK, Lordan R, Tsoupras A, Zabetakis I, Grabrucker AM. Polar lipids modify Alzheimer's Disease pathology by reducing astrocyte pro-inflammatory signaling through platelet-activating factor receptor (PTAFR) modulation. Lipids Health Dis 2024; 23:113. [PMID: 38643113 PMCID: PMC11031880 DOI: 10.1186/s12944-024-02106-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/11/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Pro-inflammatory processes triggered by the accumulation of extracellular amyloid beta (Aβ) peptides are a well-described pathology in Alzheimer's disease (AD). Activated astrocytes surrounding Aβ plaques contribute to inflammation by secreting proinflammatory factors. While astrocytes may phagocytize Aβ and contribute to Aβ clearance, reactive astrocytes may also increase Aβ production. Therefore, identifying factors that can attenuate astrocyte activation and neuroinflammation and how these factors influence pro-inflammatory pathways is important for developing therapeutic and preventive strategies in AD. Here, we identify the platelet-activating factor receptor (PTAFR) pathway as a key mediator of astrocyte activation. Intriguingly, several polar lipids (PLs) have exhibited anti-inflammatory protective properties outside the central nervous system through their inhibitory effect on the PTAFR pathway. Thus, we additionally investigated whether different PLs also exert inhibitory effects on the PAF pathway in astrocytes and whether their presence influences astrocytic pro-inflammatory signaling and known AD pathologies in vitro. METHODS PLs from salmon and yogurt were extracted using novel food-grade techniques and their fatty acid profile was determined using LC/MS. The effect of PLs on parameters such as astrocyte activation and generation of oxygen species (ROS) was assessed. Additionally, effects of the secretome of astrocytes treated with these polar lipids on aged neurons was measured. RESULTS We show that PLs obtained from salmon and yogurt lower astrocyte activation, the generation of reactive oxygen species (ROS), and extracellular Aβ accumulation. Cell health of neurons exposed to the secretome of astrocytes treated with salmon-derived PLs and Aβ was less affected than those treated with astrocytes exposed to Aβ only. CONCLUSION Our results highlight a novel underlying mechanism, why consuming PL-rich foods such as fish and dairy may reduce the risk of developing dementia and associated disorders.
Collapse
Affiliation(s)
- Sakshi Hans
- Department of Biological Sciences, University of Limerick, Limerick, V94PH61, Ireland
- Bernal Institute, University of Limerick, Analog Devices Building AD3-018, Castletroy, Limerick, V94PH61, Ireland
| | - Janelle E Stanton
- Department of Biological Sciences, University of Limerick, Limerick, V94PH61, Ireland
- Bernal Institute, University of Limerick, Analog Devices Building AD3-018, Castletroy, Limerick, V94PH61, Ireland
| | - Ann Katrin Sauer
- Department of Biological Sciences, University of Limerick, Limerick, V94PH61, Ireland
- Bernal Institute, University of Limerick, Analog Devices Building AD3-018, Castletroy, Limerick, V94PH61, Ireland
- Health Research Institute (HRI), University of Limerick, Limerick, V94PH61, Ireland
| | - Katie Shiels
- Shannon Applied Biotechnology Centre, Technological University of the Shannon, Moylish Park, Limerick, V94E8YF, Ireland
| | - Sushanta Kumar Saha
- Shannon Applied Biotechnology Centre, Technological University of the Shannon, Moylish Park, Limerick, V94E8YF, Ireland
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Systems Pharmacology and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandros Tsoupras
- Hephaestus Laboratory, Department of Chemistry, School of Science, Democritus University of Thrace, Kavala University Campus, Kavala, GR65404, Greece
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, Limerick, V94PH61, Ireland
- Bernal Institute, University of Limerick, Analog Devices Building AD3-018, Castletroy, Limerick, V94PH61, Ireland
- Health Research Institute (HRI), University of Limerick, Limerick, V94PH61, Ireland
| | - Andreas M Grabrucker
- Department of Biological Sciences, University of Limerick, Limerick, V94PH61, Ireland.
- Bernal Institute, University of Limerick, Analog Devices Building AD3-018, Castletroy, Limerick, V94PH61, Ireland.
- Health Research Institute (HRI), University of Limerick, Limerick, V94PH61, Ireland.
| |
Collapse
|
10
|
Fan C, Xu J, Tong H, Fang Y, Chen Y, Lin Y, Chen R, Chen F, Wu G. Gut-brain communication mediates the impact of dietary lipids on cognitive capacity. Food Funct 2024; 15:1803-1824. [PMID: 38314832 DOI: 10.1039/d3fo05288e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cognitive impairment, as a prevalent symptom of nervous system disorders, poses one of the most challenging aspects in the management of brain diseases. Lipids present in the cell membranes of all neurons within the brain and dietary lipids can regulate the cognition and memory function. In recent years, the advancements in gut microbiome research have enabled the exploration of dietary lipids targeting the gut-brain axis as a strategy for regulating cognition. This present review provides an in-depth overview of how lipids modulate cognition via the gut-brain axis depending on metabolic, immune, neural and endocrine pathways. It also comprehensively analyzes the effects of diverse lipids on the gut microbiota and intestinal barrier function, thereby affecting the central nervous system and cognitive capacity. Moreover, comparative analysis of the positive and negative effects is presented between beneficial and detrimental lipids. The former encompass monounsaturated fatty acids, short-chain fatty acids, omega-3 polyunsaturated fatty acids, phospholipids, phytosterols, fungal sterols and bioactive lipid-soluble vitamins, as well as lipid-derived gut metabolites, whereas the latter (detrimental lipids) include medium- or long-chain fatty acids, excessive proportions of n-6 polyunsaturated fatty acids, industrial trans fatty acids, and zoosterols. To sum up, the focus of this review is on how gut-brain communication mediates the impact of dietary lipids on cognitive capacity, providing a novel theoretical foundation for promoting brain cognitive health and scientific lipid consumption patterns.
Collapse
Affiliation(s)
- Chenhan Fan
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Jingxuan Xu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Haoxiang Tong
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yucheng Fang
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yiming Chen
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yangzhuo Lin
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Rui Chen
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Fuhao Chen
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Guoqing Wu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
11
|
Monteiro JP, Domingues MR, Calado R. Marine Animal Co-Products-How Improving Their Use as Rich Sources of Health-Promoting Lipids Can Foster Sustainability. Mar Drugs 2024; 22:73. [PMID: 38393044 PMCID: PMC10890326 DOI: 10.3390/md22020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Marine lipids are recognized for their-health promoting features, mainly for being the primary sources of omega-3 fatty acids, and are therefore critical for human nutrition in an age when the global supply for these nutrients is experiencing an unprecedent pressure due to an ever-increasing demand. The seafood industry originates a considerable yield of co-products worldwide that, while already explored for other purposes, remain mostly undervalued as sustainable sources of healthy lipids, often being explored for low-value oil production. These co-products are especially appealing as lipid sources since, besides the well-known nutritional upside of marine animal fat, which is particularly rich in omega-3 polyunsaturated fatty acids, they also have interesting bioactive properties, which may garner them further interest, not only as food, but also for other high-end applications. Besides the added value that these co-products may represent as valuable lipid sources, there is also the obvious ecological upside of reducing seafood industry waste. In this sense, repurposing these bioresources will contribute to a more sustainable use of marine animal food, reducing the strain on already heavily depleted seafood stocks. Therefore, untapping the potential of marine animal co-products as valuable lipid sources aligns with both health and environmental goals by guaranteeing additional sources of healthy lipids and promoting more eco-conscious practices.
Collapse
Affiliation(s)
- João Pedro Monteiro
- Centro de Espetrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M. Rosário Domingues
- Centro de Espetrometria de Massa, LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Calado
- ECOMARE, CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
12
|
Simão DO, Vieira VS, Tosatti JAG, Gomes KB. Lipids, Gut Microbiota, and the Complex Relationship with Alzheimer's Disease: A Narrative Review. Nutrients 2023; 15:4661. [PMID: 37960314 PMCID: PMC10649859 DOI: 10.3390/nu15214661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's Disease (AD) is a multifactorial, progressive, and chronic neurodegenerative disorder associated with the aging process. Memory deficits, cognitive impairment, and motor dysfunction are characteristics of AD. It is estimated that, by 2050, 131.5 million people will have AD. There is evidence that the gastrointestinal microbiome and diet may contribute to the development of AD or act preventively. Communication between the brain and the intestine occurs through immune cells in the mucosa and endocrine cells, or via the vagus nerve. Aging promotes intestinal dysbiosis, characterized by an increase in pro-inflammatory pathogenic bacteria and a reduction in anti-inflammatory response-mediating bacteria, thus contributing to neuroinflammation and neuronal damage, ultimately leading to cognitive decline. Therefore, the microbiota-gut-brain axis has a significant impact on neurodegenerative disorders. Lipids may play a preventive or contributory role in the development of AD. High consumption of saturated and trans fats can increase cortisol release and lead to other chronic diseases associated with AD. Conversely, low levels of omega-3 polyunsaturated fatty acids may be linked to neurodegenerative diseases. Unlike other studies, this review aims to describe, in an integrative way, the interaction between the gastrointestinal microbiome, lipids, and AD, providing valuable insights into how the relationship between these factors affects disease progression, contributing to prevention and treatment strategies.
Collapse
Affiliation(s)
- Daiane Oliveira Simão
- Faculty of Medicine, Federal University of Minas Gerais, Professor Alfredo Balena Avenue, 190, Santa Efigênia, Belo Horizonte 30130-100, MG, Brazil;
| | - Vitoria Silva Vieira
- Department of Nutrition, School of Nursing, Federal University of Minas Gerais, Professor Alfredo Balena Avenue, 190, Santa Efigênia, Belo Horizonte 30130-100, MG, Brazil;
| | - Jéssica Abdo Gonçalves Tosatti
- Department of Clinical and Toxicological Analyzes, Faculty of Pharmacy, Federal University of Minas Gerais, Presidente Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil;
| | - Karina Braga Gomes
- Faculty of Medicine, Federal University of Minas Gerais, Professor Alfredo Balena Avenue, 190, Santa Efigênia, Belo Horizonte 30130-100, MG, Brazil;
- Department of Clinical and Toxicological Analyzes, Faculty of Pharmacy, Federal University of Minas Gerais, Presidente Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil;
| |
Collapse
|