1
|
Sharma P, Bhattacharyya J, Sharma N. Phloretin and Enalapril co-administration ameliorates hyperglycemia mediated exacerbation of myocardial injury in rats. Eur J Pharmacol 2025; 995:177394. [PMID: 39978711 DOI: 10.1016/j.ejphar.2025.177394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Hyperglycemia exacerbates myocardial injury by amplifying oxidative stress, inflammation and apoptosis. This study explores the therapeutic potential of phloretin and enalapril co-administration in mitigating hyperglycemia-exacerbated myocardial damage. Using network pharmacology, 47 therapeutic targets and 10 hub genes, including albumin, insulin, prostaglandin endoperoxide synthase 2, matrix metallopeptidase 9, caspase3, tumor protein p53, insulin like growth factor 1, transforming growth factor beta 1, matrix metallopeptidase 2 and glycogen synthase kinase 3, were identified as critical to the drugs' synergistic action. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses highlighted key pathways, such as Interleukin-17 (IL-17), Advanced Glycation End Product-Receptor for Advanced Glycation End Products (AGE-RAGE), Mitogen activated protein kinase (MAPK), Phosphatidylinositol 3-kinase-protein kinase B (PI3K-Akt), Tumor necrosis factor (TNF) and Forkhead box O (FoxO), involved in angiogenesis, glucose metabolism, oxidative stress regulation and inflammation. Molecular docking confirmed strong affinities of phloretin and enalapril for key targets like insulin (INS), matrix metallopeptidase 9 (MMP9), prostaglandin endoperoxide synthase 2 (PTGS2) and insulin like growth factor 1 (IGF1). In-vivo studies using hyperglycemic rats with isoproterenol-induced myocardial ischemia validated the therapeutic efficacy of the combination. Co-treatment significantly enhanced antioxidant enzyme levels, reduced myocardial injury markers and improved histopathological features. These findings demonstrate the synergistic cardioprotective effects of phloretin and enalapril, offering a promising strategy for managing hyperglycemia and cardiac injury. The study provides a foundation for further preclinical and clinical evaluations to optimize the use of this combination in cardiovascular therapies.
Collapse
Affiliation(s)
- Prasanti Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Joydeep Bhattacharyya
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
2
|
Jiang Z, Ruan X, Zhou X, Li S, Wang C, Huang L, He Z, Zhang Y, Wen C. Phlorizin attenuates lupus nephritis via upregulating PI3K/Akt pathway-mediated Treg differentiation. Int Immunopharmacol 2025; 154:114607. [PMID: 40186900 DOI: 10.1016/j.intimp.2025.114607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/03/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Lupus nephritis (LN) leads to widespread kidney damage and nephron loss, establishing it as a major contributor to acute and chronic kidney injury, which can progress to end-stage renal disease. Phlorizin (PHZ), a major pharmacologically active constituent derived from Lithocarpus polystachyus Rehd., has been shown to exhibit significant immunomodulatory and anti-inflammatory properties. Growing evidence indicates that PHZ may exert a protective influence on kidney function. However, the therapeutic effect and mechanism of PHZ in treating LN need to be elucidated. METHODS The PHZ-associated targets were identified through tools such as PharmMapper, SwissTargetPrediction, SuperPred and Targetnet. Simultaneously, LN-associated target spots were retrieved fromOMIM, DisGeNET, GeneCards, and GEO databases. Additionally, Venny 2.1.0 was employed to analyze the overlap between drug targets and disease targets. Following this, the DAVID software was employed to perform enrichment analyses for GO terms and KEGG pathways on the shared drug-disease target sites. Following this, the construction of protein-protein interaction (PPI) networks for these intersecting targets was carried out using the STRING database and Cytoscape software, aiming to pinpoint critical targets. Ultimately, molecular docking alongside dynamic simulations was used to evaluate the binding affinity between PHZ and the critical genes. Based on these findings, PHZ or Dexamethasone (DXSM) was administered to female MRL/lpr mice, which are predisposed to lupus. The therapeutic effects of PHZ on LN were evaluated by assessing renal function and the degree of kidney inflammation. Concurrently, flow cytometry was employed to measure the percentage of CD4+ T cell subsets. Additionally, relevant signaling pathways were examined through western blot analysis. Furthermore, CD4+CD25+Foxp3+ regulatory T (Treg) cells were induced in vitro. Flow cytometry and immunoblotting were performed to confirm the role and mechanism of PHZ in Treg cell differentiation. RESULTS The PHZ compound specifically targeted 161 genes associated with LN. PPI analysis revealed that among all the target genes, Akt1, ALB, MMP9, HSP90AA1, and NF-κB1 exhibited the highest centrality. KEGG pathway analysis suggested that the phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT) signaling pathway could play a crucial role in the treatment of LN. Molecular docking revealed that PHZ exhibits a strong affinity for binding with AKT1. Experimental studies, both in vitro and in vivo, showed that PHZ might alleviate LN by promoting Treg differentiation via activation of the PI3K/AKT signaling pathway. CONCLUSIONS Integrating network pharmacology, bioinformatics, and experimental validation, our study systematically deciphers the therapeutic efficacy and molecular mechanisms of PHZ against LN. Network pharmacology analysis and bioinformatics suggested PI3K/AKT signaling as the pivotal pathway to treat LN, while subsequent in vivo and in vitro experiments confirmed that PHZ exerts its therapeutic effects through activating the PI3K/AKT signaling pathway, ultimately driving FOXP3-dependent regulatory T cell differentiation.
Collapse
Affiliation(s)
- Zhangsheng Jiang
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xinyi Ruan
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xingchen Zhou
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Suling Li
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chenxi Wang
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lin Huang
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhixing He
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yun Zhang
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Chengping Wen
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
3
|
Dmitrović S, Nestorović Živković J, Smailagić D, Trajković M, Banjac N, Ninković S, Stanišić M. Via Air or Rhizosphere: The Phytotoxicity of Nepeta Essential Oils and Malus Dihydrochalcones. PLANTS (BASEL, SWITZERLAND) 2025; 14:701. [PMID: 40094621 PMCID: PMC11902154 DOI: 10.3390/plants14050701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/22/2025] [Accepted: 02/23/2025] [Indexed: 03/19/2025]
Abstract
Many specialized metabolites found in plants have significant potential for developing environmentally friendly weed management solutions. This review focuses on the phytotoxic effects of volatile terpenes and phenolic compounds, particularly nepetalactone, an iridoid monoterpenoid from Nepeta species, and phloretin, a dihydrochalcone predominantly found in the genus Malus. We highlight current findings on their herbicidal effects, including morphological, physiological, and biochemical responses in target plants. These results underscore their potential for developing sustainable herbicides that could control weeds with minimal environmental impact. We also discuss their soil persistence and methods to enhance their solubility, chemical stability, and bioavailability. Additionally, the possible effects on non-target organisms, such as pollinators, non-pollinating insects, and soil microbiota, are considered. However, further research and a deeper understanding of their long-term ecological impact, along with a resistance development risk assessment, is essential for the potential development of bioherbicides that could be applied in sustainable weed management practices.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mariana Stanišić
- Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (J.N.Ž.); (D.S.); (M.T.); (N.B.); (S.N.)
| |
Collapse
|
4
|
Wang C, Wang Y, Teng Y, Kong J, Dong F, Du J, Zhang Y. Cooperation mechanism of flavonoid transformation by Bifidobacterium animalis subsp. lactis and Lacticaseibacillus paracasei. Int J Food Microbiol 2025; 429:111019. [PMID: 39675163 DOI: 10.1016/j.ijfoodmicro.2024.111019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Elaeagnus moorcroftii Wall. ex Schlecht (EWS) as a suitable food matrix contains abundant flavonoids for promoting human health, this study aimed to use flavonoid-targeted metabolomics and transcriptome sequencing to investigate the transformation of flavonoids in EWS juice (EWSJ) by mono- and mixed-cultures fermentations of Bifidobacterium animalis subsp. lactis HN-3 (B.an3) and Lacticaseibacillus paracasei YL-29 (L.cp29). A total of 33 flavonoids were identified in mono- and mixed-cultures fermented EWSJ. Among them, fermentation by B.an3 produced specific deglycosylation products (kaempferol (17.6 mmol/L) and luteolin (4.5 mmol/L)) and methoxylation products (syringaldehyde (59.05 mmol/L)), and fermentation by L.cp29 resulted in a specific deglycosylation product (quercetin (9.2 mmol/L)). The co-culture fermentation further increased the levels of isorhamnetin (52.3 mmol/L), and produced a specific product (homoplantaginin (0.03 mmol/L)), which significantly increased the bioactive-form flavonoids. Moreover, we analyzed changes in different flavonoid metabolites and differential genes before and after fermentation. After L.cp29 fermentation the expression of glycoside hydrolases and oxidoreductases were increased compared to other groups. After B.an3 fermentation the expression of isomerases and synthetases were increased compared to other groups. In particular, 6-phosphogluconolactonase (Pgl) and glucose-6-phosphate isomerase (Pgi) were increased in B.an3 fermentation. Thus, we validated the predicted transformation reactions by the biotransformation of flavonoids by the collected strains and crude enzyme extracts of B.an3 and L.cp29. These findings provided a basis for the development of functional plant-based foods with enhanced bioactive flavonoids.
Collapse
Affiliation(s)
- Chenxi Wang
- School of Food Science and Technology, Shihezi University, Road Beisi, Shihezi, Xinjiang Province 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (mixed-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yixuan Wang
- School of Food Science and Technology, Shihezi University, Road Beisi, Shihezi, Xinjiang Province 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (mixed-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yingdi Teng
- School of Food Science and Technology, Shihezi University, Road Beisi, Shihezi, Xinjiang Province 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (mixed-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Junkai Kong
- School of Food Science and Technology, Shihezi University, Road Beisi, Shihezi, Xinjiang Province 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (mixed-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Fujin Dong
- School of Food Science and Technology, Shihezi University, Road Beisi, Shihezi, Xinjiang Province 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (mixed-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Jie Du
- School of Food Science and Technology, Shihezi University, Road Beisi, Shihezi, Xinjiang Province 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (mixed-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yan Zhang
- School of Food Science and Technology, Shihezi University, Road Beisi, Shihezi, Xinjiang Province 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (mixed-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
5
|
Wang J, Sun L, Jiao B, Zhao P, Xu T, Gu S, Huo C, Pang J, Zhou S. Integrated metabolomic and transcriptomic analysis of anthocyanin metabolism in wheat pericarp. BMC Genom Data 2025; 26:3. [PMID: 39806276 PMCID: PMC11727400 DOI: 10.1186/s12863-024-01294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Wheat seeds display different colors due to the types and contents of anthocyanins, which is closely related to anthocyanin metabolism. In this study, a transcriptomic and metabolomic analysis between white and purple color wheat pericarp aimed to explore some key genes and metabolites involved in anthocyanin metabolism. RESULTS Two wheat cultivars, a white seed cultivar Shiluan02-1 and purple seed cultivar Hengzi151 were used to identify the variations in differentially expressed genes (DEGs) and differentially accumulated flavonoids (DAFs). Based on metabolomic data, 314 metabolites and 191 DAFs were identified. Chalcone, flavonol, pro-anthocyanidin and anthocyanidin were the most differentially accumulated flavonoid compounds in Hengzi151. 2610 up-regulated and 2668 down-regulated DEGs were identified according to transcriptomic data. The results showed that some structural genes in anthocyanin synthesis pathway were prominently activated in Hengzi151, such as PAL, CAD, CHS and so on. Transcription factors (TFs) of MYB, bHLH, WD40 and some other TFs probably involved in regulating anthocyanin biosynthesis were identified. Some genes from hormone synthetic and signaling pathways that may participate in regulating anthocyanin biosynthesis also have been identified. CONCLUSIONS Our results provide valuable information on the candidate genes and metabolites involved in the anthocyanin metabolism in wheat pericarp.
Collapse
Affiliation(s)
- Jiao Wang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang, 050000, China
| | - Lei Sun
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang, 050000, China
| | - Bo Jiao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang, 050000, China
| | - Pu Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang, 050000, China
| | - Tianyun Xu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang, 050000, China
- Hebei University of Economics and Business, Shijiazhuang, 050000, China
| | - Sa Gu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang, 050000, China
- Hebei Normal University, Shijiazhuang, 050000, China
| | - Chenmin Huo
- Hebei University of Economics and Business, Shijiazhuang, 050000, China
| | - Jianzhou Pang
- Dryland Farming Institute of Hebei Academy of Agricultural and Forestry Sciences/Key Laboratory of Crop Drought Tolerance Research of Hebei Province, Hengshui, 053000, China.
| | - Shuo Zhou
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang, 050000, China.
| |
Collapse
|
6
|
Yao Y, Zhong Q, Zhong Y, Gao Z, Zhou B, Lu C, Zheng L, Yin F, Tan M. Integrating network pharmacology and experimental verification to explore the pharmacological mechanisms of phlorizin against osteoarthritis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:903-918. [PMID: 39085510 DOI: 10.1007/s00210-024-03324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
To study the pharmacological effects and mechanisms of phlorizin in the treatment of osteoarthritis (OA) through network pharmacological analysis, molecular docking, and experimental validation. First, we screened out the relevant targets related to phlorizin and OA from the public database. The key targets, biological processes, and signaling pathways of phlorizin against OA were identified by protein-protein interaction (PPI) network, Gene Ontology (GO), and Encyclopedia of Kyoto Genes and Genomes (KEGG) pathway enrichment analysis. Subsequently, molecular docking was performed to predict the binding activity between phlorizin and key targets. Finally, we evaluated the effects of phlorizin on hydrogen peroxide-induced OA in rats and validated its possible mechanism of action based on the findings of the network pharmacology analysis. Network pharmacology revealed a total of 235 cross-targets involved in the treatment of OA. Phlorizin's anti-OA effect was found to be primarily mediated through oxidoreductase activity, with JAK-STAT and NF-κB signaling pathways playing a regulating role, according to pathway enrichment analysis. Phlorizin demonstrated a strong affinity for NF-κB1 targets through molecular docking. Moreover, in vitro experiments demonstrated that phlorizin could enhance intracellular antioxidant enzyme activities with good ROS scavenging ability and significantly reduce the expression of NF-κB1 and inflammatory cytokines. Phlorizin can inhibit the progression of OA. The potential underlying mechanism involves inhibiting the NF-κB pathway to reduce inflammation and promote intracellular antioxidant action.
Collapse
Affiliation(s)
- Yi Yao
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Qiuling Zhong
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Yanping Zhong
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Zixin Gao
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Bo Zhou
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Chun Lu
- School of Materials and Environment, Guangxi Minzu University, Nanning, Guangxi, 53000, PR China
| | - Li Zheng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| | - Feiying Yin
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| | - Manli Tan
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
7
|
Davidova S, Galabov AS, Satchanska G. Antibacterial, Antifungal, Antiviral Activity, and Mechanisms of Action of Plant Polyphenols. Microorganisms 2024; 12:2502. [PMID: 39770706 PMCID: PMC11728530 DOI: 10.3390/microorganisms12122502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
This review describes the enhanced classification of polyphenols into flavonoids, lignans, phenolic acids, stilbenes, and tannins. Its focus is the natural sources of polyphenols and an in-depth discussion of their antibacterial, antifungal, and antiviral activity. Besides a broad literature overview, this paper contains authors' experimental data according to some daily consumed vegetables such as tomatoes, different varieties of onion, garlic, parsley, and cayenne pepper and the probable relation of these activities to polyphenols. The isolation of polyphenols via conventional and ultrasonic, pressurized liquids and pulse-field extractions, as well as their methods for detection and determination, are interpreted as well. The main mechanisms by which polyphenols inhibit the growth of bacteria, fungi, and viruses, such as protein synthesis, cell membrane destabilization, and ROS production induction, are in focus. Data on polyphenol concentrations and their respective MIC or the inhibition zone diameters of different bacterial and fungal species and suppressing viral replication are depicted. The toxicity of polyphenols in vitro, ex vivo, and in vivo towards microorganisms and human/animal cells, and the safety of the polyphenols applied in clinical and industrial applications are expanded. This review also characterizes the antimicrobial effects of some chemically synthesized polyphenol derivatives. Biotechnological advances are also reported, especially the entrapment of polyphenols in biocompatible nanoparticles to enhance their bioavailability and efficacy. Polyphenols are promising for exploring molecules' novel antimicrobial substances and paving the path for effective novel antimicrobial agents' discovery, taking into consideration their positives and negatives.
Collapse
Affiliation(s)
- Slavena Davidova
- UPIZ “Educational and Research Laboratory”-MF, NBU, Department Natural Sciences, New Bulgarian University, Montevideo Blvd., 21, 1618 Sofia, Bulgaria;
| | - Angel S. Galabov
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 26, 1113 Sofia, Bulgaria;
| | - Galina Satchanska
- UPIZ “Educational and Research Laboratory”-MF, NBU, Department Natural Sciences, New Bulgarian University, Montevideo Blvd., 21, 1618 Sofia, Bulgaria;
| |
Collapse
|
8
|
Moawad F, Ruel Y, Rezaei N, Alsarraf J, Pichette A, Legault J, Pouliot R, Brambilla D. Microneedles with Implantable Tip-Accumulated Therapeutics for the Long-Term Management of Psoriasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405927. [PMID: 39375985 DOI: 10.1002/smll.202405927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 10/09/2024]
Abstract
Methotrexate is successfully used as the gold standard for managing moderate-to-severe psoriasis. However, the low bioavailability and short half-life of the oral pills and the invasiveness of the parenteral injections make these suboptimal therapeutic options. Microneedles, bridging the advantages of the former forms, are successfully used to deliver methotrexate for different therapeutic purposes. However, the utilized dissolving microneedles demand frequent administration, potentially compromising patients' compliance. Additionally, the high toxicity of methotrexate prompts a quest for safer alternatives. Phloretin, a natural compound with confirmed antipsoriatic potential, emerges as a promising candidate. Herein, microneedle patches with separable, slow-degrading tips are developed for the sustained delivery of methotrexate and phloretin, as a comprehensive solution for long-term psoriasis management. Both compounds are individually loaded at varying doses and display sustained-release profiles. The developed microneedle patches demonstrate high mechanical strength, favorable drug delivery efficiency, and remarkable antipsoriatic potential both in vitro in keratinocytes and in vivo in a psoriasis mouse model. Comparative analysis with two subcutaneous injections reveals a similar antipsoriatic efficacy with a single patch of either compound, with prominent phloretin safety. Therefore, the developed patches present a superior alternative to methotrexate's current marketed forms and provide a viable alternative (phloretin) with comparable antipsoriatic efficacy and higher safety.
Collapse
Affiliation(s)
- Fatma Moawad
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
- Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 625617, Egypt
| | - Yasmine Ruel
- Faculté de Pharmacie, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Nastaran Rezaei
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
| | - Jérôme Alsarraf
- Département des Sciences Fondamentales, Centre de Recherche sur la boréalie (CREB), Université du Québec à Chicoutimi, Chicoutimi, Québec, G7H 2B1, Canada
| | - André Pichette
- Département des Sciences Fondamentales, Centre de Recherche sur la boréalie (CREB), Université du Québec à Chicoutimi, Chicoutimi, Québec, G7H 2B1, Canada
| | - Jean Legault
- Département des Sciences Fondamentales, Centre de Recherche sur la boréalie (CREB), Université du Québec à Chicoutimi, Chicoutimi, Québec, G7H 2B1, Canada
| | - Roxane Pouliot
- Faculté de Pharmacie, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Davide Brambilla
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
| |
Collapse
|
9
|
Li Z, Gan H, Li S, Xue Y, Luo K, Huang K, Zhang Y, Wang Y, Jiang L, Zhang H. Bioinformatics Identification and Validation of Ferroptosis-Related Key Genes and Therapeutic Compounds in Septic Lung Injury. J Inflamm Res 2024; 17:9215-9230. [PMID: 39600675 PMCID: PMC11589777 DOI: 10.2147/jir.s476522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Background Septic lung injury (SLI) is a severe condition with high mortality, and ferroptosis, a form of programmed cell death, is implicated in its pathogenesis. However, the explicit mechanisms underlying this condition remain unclear. This study aimed to elucidate and validate key ferroptosis-related genes involved in the pathogenesis of SLI through bioinformatics analysis and experimental validation. Methods Microarray data related to SLI from the GSE130936 dataset were downloaded from the Gene Expression Omnibus (GEO) database. These data were then intersected with the FerrDb database to obtain ferroptosis-related differentially expressed genes (DEGs). Protein-protein interaction (PPI) networks and functional enrichment analysis were employed to identify key ferroptosis-related DEGs. The Connectivity Map (c-MAP) tool was used to search for potential compounds or drugs that may inhibit ferroptosis-related DEGs. The transcriptional levels of the key genes and potential therapeutic compounds were verified in an LPS-induced mouse model of lung injury. The expression of these key genes was further verified using the GSE60088 and GSE137342 datasets. Results 38 ferroptosis-related DEGs were identified between the septic and control mice. PPI network analysis revealed four modules, the most significant of which included eight ferroptosis-related DEGs. Functional enrichment analysis showed that these genes were enriched in the HIF-1 signaling pathway, including IL-6 (Interleukin-6), TIMP1 (Tissue Inhibitor of Metalloproteinase 1), HIF-1α (Hypoxia-Inducible Factor-1α), and HMOX1 (Heme Oxygenase-1). Phloretin, a natural compound, was identified as a potential inhibitor of these genes. Treatment with phloretin significantly reduced the expression of these genes (p < 0.05), mitigated lung injury, improved inflammatory profiles by approximately 50%, and ferroptosis profiles by nearly 30% in the SLI models. Conclusion This study elucidates the significant role of ferroptosis in SLI and identifies phloretin as a potential therapeutic agent. However, further research, particularly involving human clinical trials, is necessary to validate these findings for clinical use.
Collapse
Affiliation(s)
- Zhile Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Han Gan
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Siyuan Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yuchen Xue
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Kai Luo
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Kai Huang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yunqian Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yan Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Hui Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
10
|
Ndlovu SP, M Motaung SC, Adeyemi SA, Ubanako P, Ngema LM, Fonkui TY, Ndinteh DT, Kumar P, Choonara YE, Aderibigbe BA. Sodium alginate/carboxymethylcellulose gel formulations containing Capparis sepieria plant extract for wound healing. Ther Deliv 2024; 15:921-937. [PMID: 39529611 PMCID: PMC11583625 DOI: 10.1080/20415990.2024.2418800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Aim: Using appropriate wound dressings is crucial when treating burn wounds to promote accelerated healing.Materials & methods: Sodium alginate (SA)-based gels containing Carboxymethyl cellulose (CMC) and Pluronic F127 were prepared. The formulations. SA/CMC/Carbopol and SA/CMC/PluronicF127 were loaded with aqueous root extract of Capparis sepiaria. The formulations were characterized using appropriate techniques.Results: The gels' viscosity was in the range of 676.33 ± 121.76 to 20.00 ± 9.78 cP and in vitro whole blood kinetics showed their capability to induce a faster clotting rate. They also supported high cell viability of 80% with cellular migration and proliferation. Their antibacterial activity was significant against most bacteria strains used in the study.Conclusion: The gels' distinct features reveal their potential application as wound dressings for burn wounds.
Collapse
Affiliation(s)
- Sindi P Ndlovu
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice Eastern Cape, 5700, South Africa
| | | | - Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy & Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, 2193, South Africa
| | - Philemon Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy & Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, 2193, South Africa
| | - Lindokuhle M Ngema
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy & Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, 2193, South Africa
| | - Thierry Youmbi Fonkui
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, Gauteng, 2028, South Africa
| | - Derek Tantoh Ndinteh
- Drug Discovery and SmartMolecules Research Labs, Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy & Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy & Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, 2193, South Africa
| | - Blessing A Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice Eastern Cape, 5700, South Africa
| |
Collapse
|
11
|
Chen S, Zhu W, Zhan Y, Xia X. Antibacterial Activity of Phloretin Against Vibrio parahaemolyticus and Its Application in Seafood. Foods 2024; 13:3537. [PMID: 39593953 PMCID: PMC11592969 DOI: 10.3390/foods13223537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Although phloretin is widely utilized in the food industry as an additive, its effects on foodborne pathogens remain insufficiently investigated. This study aimed to evaluate the antimicrobial properties of phloretin (PHL) against Vibrio parahaemolyticus (V. parahaemolyticus) and to elucidate the potential mechanisms of action. After PHL treatment, alterations in the cell morphology, cell microstructure, and intracellular contents of V. parahaemolyticus were assessed. Scanning electron microscopy revealed substantial damage to cell integrity, subsequent to PHL treatment. A notable reduction in intracellular components, including proteins, ATP, and DNA, was observed in samples treated with PHL. PHL was shown to inhibit the activities of ATPase, β-galactosidase, and respiratory chain dehydrogenase in V. parahaemolyticus. Furthermore, it was demonstrated to elevate the intracellular levels of reactive oxygen species and promote cell death. After being applied to sea bass, shrimp, and oysters, PHL effectively inactivated V. parahaemolyticus in these seafoods. These findings demonstrate that PHL has potential for application in seafood to control V. parahaemolyticus.
Collapse
Affiliation(s)
| | | | | | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (S.C.); (W.Z.); (Y.Z.)
| |
Collapse
|
12
|
Ndlovu SP, Motaung KSCM, Adeyemi SA, Ubanako P, Ngema L, Fonkui TY, Ndinteh DT, Kumar P, Choonara YE, Aderibigbe BA. Sodium alginate-based nanofibers loaded with Capparis Sepiaria plant extract for wound healing. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2380-2401. [PMID: 39037962 DOI: 10.1080/09205063.2024.2381375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/01/2024] [Indexed: 07/24/2024]
Abstract
Burn wounds are associated with infections, drug resistance, allergic reactions, odour, bleeding, excess exudates, and scars, requiring prolonged hospital stay. It is crucial to develop wound dressings that can effectively combat allergic reactions and drug resistance, inhibit infections, and absorb excess exudates to accelerate wound healing. To overcome the above-mentioned problems associated with burn wounds, SA/PVA/PLGA/Capparis sepiaria and SA/PVA/Capparis sepiaria nanofibers incorporated with Capparis sepiaria plant extract were prepared using an electrospinning technique. Fourier-transform infrared spectroscopy confirmed the successful incorporation of the extract into the nanofibers without any interaction between the extract and the polymers. The nanofibers displayed porous morphology and a rough surface suitable for cellular adhesion and proliferation. SA/PVA/PLGA/Capparis sepiaria and SA/PVA/Capparis sepiaria nanofibers demonstrated significant antibacterial effects against wound infection-associated bacterial strains: Pseudomonas aeruginosa, Enterococcus faecalis, Mycobaterium smegmatis, Escherichia coli, Enterobacter cloacae, Proteus vulgaris, and Staphylococcus aureus. Cytocompatibility studies using HaCaT cells revealed the non-toxicity of the nanofibers. SA/PVA/PLGA/Capparis sepiaria and SA/PVA/Capparis sepiaria nanofibers exhibited hemostatic properties, resulting from the synergistic effect of the plant extract and polymers. The in vitro scratch wound healing assay showed that the SA/PVA/Capparis sepiaria nanofiber wound-healing capability is more than the plant extract and a commercially available wound dressing. The wound-healing potential of SA/PVA/Capparis sepiaria nanofiber is attributed to the synergistic effect of the phytochemicals present in the extract, their porosity, and the ECM-mimicking structure of the nanofibers. The findings suggest that the electrospun nanofibers loaded with Capparis sepiaria extract are promising wound dressings that should be explored for burn wounds.
Collapse
Affiliation(s)
- Sindi P Ndlovu
- Department of Chemistry, University of Fort Hare, Alice, Eastern Cape, South Africa
| | | | - Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Philemon Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lindokuhle Ngema
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Thierry Y Fonkui
- Drug Discovery and Smart Molecules Research Labs, Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Derek T Ndinteh
- Drug Discovery and Smart Molecules Research Labs, Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
13
|
Smailagić D, Dragišić Maksimović J, Marin M, Stupar S, Ninković S, Banjac N, Stanišić M. Phloretin inhibits the growth of Arabidopsis shoots by inducing chloroplast damage and programmed cell death. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154354. [PMID: 39341101 DOI: 10.1016/j.jplph.2024.154354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Phloretin is a key secondary metabolite produced by apple trees. Known for its strong antioxidant properties, this dihydrochalcone has been extensively studied in animals but less so in plants. Recently, we identified phloretin as a phytotoxic allelochemical that inhibits growth in the model plant Arabidopsis by disrupting auxin metabolism and distribution in the roots. In this study, we found that phloretin significantly hinders the growth of Arabidopsis seedlings' aerial parts after a short-term treatment (10 days) and causes their decay after long-term exposure (28 days). These effects result from ultrastructural damage in the mesophyll cells of the leaves, including chloroplast displacement and swelling, lesions, and alterations in thylakoid and cell wall organization. Interestingly, phloretin-treated plants showed a decrease in malondialdehyde levels and antioxidant enzyme activities, while hydrogen peroxide and proline levels remained unchanged. This suggests that phloretin-induced chlorosis and seedling decay are not due to oxidative stress but rather to severe chloroplast structural damage, leading to inefficient photosynthesis, starch degradation, starvation, and activation of micro- and macroautophagic processes for self-preservation. Ultimately, these processes result in programmed cell death. These new insights into the phytotoxic effects of phloretin on Arabidopsis shoots could pave the way for future research into phloretin as a potential multitarget bioherbicide and enhance our understanding of autoallelopathy in apple trees.
Collapse
Affiliation(s)
- Dijana Smailagić
- Institute for Biological Research 'Siniša Stanković' - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Marija Marin
- University of Belgrade, Faculty of Biology, Belgrade, Serbia
| | - Sofija Stupar
- Institute for Biological Research 'Siniša Stanković' - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Slavica Ninković
- Institute for Biological Research 'Siniša Stanković' - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nevena Banjac
- Institute for Biological Research 'Siniša Stanković' - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mariana Stanišić
- Institute for Biological Research 'Siniša Stanković' - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
14
|
Ferreira AF, Machado-Simões J, Moniz I, Soares M, Carvalho A, Diniz P, Ramalho-Santos J, Sousa AP, Lopes-da-Costa L, Almeida-Santos T. Chemical reversion of age-related oocyte dysfunction fails to enhance embryo development in a bovine model of postovulatory aging. J Assist Reprod Genet 2024; 41:1997-2009. [PMID: 38822989 PMCID: PMC11339206 DOI: 10.1007/s10815-024-03151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024] Open
Abstract
PURPOSE There are no clinical treatments to prevent/revert age-related alterations associated with oocyte competence decline in the context of advanced maternal age. Those alterations have been attributed to oxidative stress and mitochondrial dysfunction. Our study aimed to test the hypothesis that in vitro maturation (IVM) medium supplementation with antioxidants (resveratrol or phloretin) may revert age-related oocyte competence decline. METHODS Bovine immature oocytes were matured in vitro for 23 h (young) and 30 h (aged). Postovulatory aged oocytes (control group) and embryos obtained after fertilization were examined and compared with oocytes supplemented with either 2 μM of resveratrol or 6 μM phloretin (treatment groups) during IVM. RESULTS Aged oocytes had a significantly lower mitochondrial mass and proportion of mitochondrial clustered pattern, lower ooplasmic volume, higher ROS, lower sirtuin-1 protein level, and a lower blastocyst rate in comparison to young oocytes, indicating that postovulatory oocytes have a lower quality and developmental competence, thus validating our experimental model. Supplementation of IVM medium with antioxidants prevented the generation of ROS and restored the active mitochondrial mass and pattern characteristic of younger oocytes. Moreover, sirtuin-1 protein levels were also restored but only following incubation with resveratrol. Despite these findings, the blastocyst rate of treatment groups was not significantly different from the control group, indicating that resveratrol and phloretin could not restore the oocyte competence of postovulatory aged oocytes. CONCLUSION Resveratrol and phloretin can both revert the age-related oxidative stress and mitochondrial dysfunction during postovulatory aging but were insufficient to enhance embryo developmental rates under our experimental conditions.
Collapse
Affiliation(s)
- Ana Filipa Ferreira
- Reproductive Medicine Unit, Gynecology, Obstetrics, Reproduction and Neonatology Department, Unidade Local de Saúde de Coimbra, Praceta, R. Prof. Mota Pinto, Coimbra, 3004-561, Portugal.
- Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, Coimbra, 3000-548, Portugal.
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- EUGIN Coimbra, Filipe Hodart N° 12, 3000-185, Coimbra, Portugal.
| | - Juliana Machado-Simões
- Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Inês Moniz
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Maria Soares
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | - Alexandra Carvalho
- Reproductive Medicine Unit, Gynecology, Obstetrics, Reproduction and Neonatology Department, Unidade Local de Saúde de Coimbra, Praceta, R. Prof. Mota Pinto, Coimbra, 3004-561, Portugal
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Patrícia Diniz
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - João Ramalho-Santos
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Ana Paula Sousa
- Reproductive Medicine Unit, Gynecology, Obstetrics, Reproduction and Neonatology Department, Unidade Local de Saúde de Coimbra, Praceta, R. Prof. Mota Pinto, Coimbra, 3004-561, Portugal
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- EUGIN Coimbra, Filipe Hodart N° 12, 3000-185, Coimbra, Portugal
| | - Luís Lopes-da-Costa
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal and Veterinary Science, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Teresa Almeida-Santos
- Reproductive Medicine Unit, Gynecology, Obstetrics, Reproduction and Neonatology Department, Unidade Local de Saúde de Coimbra, Praceta, R. Prof. Mota Pinto, Coimbra, 3004-561, Portugal
- Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, Coimbra, 3000-548, Portugal
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- EUGIN Coimbra, Filipe Hodart N° 12, 3000-185, Coimbra, Portugal
| |
Collapse
|
15
|
Girotto OS, Furlan OO, Moretti Junior RC, Goulart RDA, Baldi Junior E, Barbalho-Lamas C, Fornari Laurindo L, Barbalho SM. Effects of apples ( Malus domestica) and their derivatives on metabolic conditions related to inflammation and oxidative stress and an overview of by-products use in food processing. Crit Rev Food Sci Nutr 2024:1-32. [PMID: 39049560 DOI: 10.1080/10408398.2024.2372690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Apple (Malus domestica) is the third most produced fruit worldwide. It is a well-known source of bioactive compounds mainly represented by hydroxycinnamic acids, flavan-3-ols, dihydrochalcones, dehydroascorbic acid, carotenoids, chlorogenic acid, epicatechin, and phloridzin. Due to the lack of a recent evaluation of the clinical trials associated with apple consumption, this review investigated the effects of this fruit on metabolic conditions related to inflammation and oxidative stress and reviewed the applications of apple waste on food products. Thirty-three studies showed that apples or its derivatives exhibit anti-inflammatory and antioxidant actions, improve blood pressure, body fat, insulin resistance, dyslipidemia, and reduce cardiovascular risks. Apples have a great economic impact due to its several applications in the food industry and as a food supplement since it has impressive nutritional value. Dietary fiber from the fruit pomace can be used as a substitute for fat in food products or as an improver of fiber content in meat products. It can also be used in bakery and confectionary products or be fermented to produce alcohol. Pomace phytocompounds can also be isolated and applied as antioxidants in food products. The potential for the use of apples and by-products in the food industry can reduce environmental damage.
Collapse
Affiliation(s)
- Otávio Simões Girotto
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
| | - Otávio Oliveira Furlan
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
| | | | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
| | - Edgar Baldi Junior
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
| | - Caroline Barbalho-Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, SP, Brazil
| | - Sandra M Barbalho
- Department of Biochemistry, School of Medicine, University of Marília (UNIMAR), Marília, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - UNIMAR, Marília, SP, Brazil
- School of Food and Technonolgy of Marilia (FATEC), São Paulo, Brazil
| |
Collapse
|
16
|
Wang L, Wu X, Wan Q, Yang Y, Gao C. Phloridzin reduces synovial hyperplasia and inflammation in rheumatoid arthritis rat by modulating mTOR pathway. Int Immunopharmacol 2024; 133:111727. [PMID: 38636369 DOI: 10.1016/j.intimp.2024.111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 04/20/2024]
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease and management of it still a challenge. Given report evaluates protective effect of phlorizin on RA and also postulates the molecular mechanism of its action. Bovine type II collagen (CIA) and Freund's incomplete adjuvant (1:1 and 1 mg/ml) was administered on 1st and 8th day of protocol to induce RA in rats and treatment with phlorizin 60 and 120 mg/kg was started after 4th week of protocol. Level of inflammatory cytokines and expression of proteins were estimated in phlorizin treated RA rats. Moreover in-vitro study was performed on Fibroblast-like synoviocytes (FLSs) and effect of phlorizin was estimated on proliferation, apoptosis and expression of mTOR pathway protein after stimulating these cell lines with Tumour Necrosis Factor alpha (TNF-α). Data of study suggest that phlorizin reduces inflammation and improves weight in CIA induced RA rats. Level of inflammatory cytokines in the serum and expression of Akt/PI3K/mTOR proteins in the join tissue was reduced in phlorizin treated RA rats. Phlorizin also reported to reverse the histopathological changes in the joint tissue of RA rats. In-vitro study supports that phlorizin reduces proliferation and no apoptotic effect on TNF-α stimulated FLSs. Expression of Akt/PI3K/mTOR proteins also downregulated in phlorizin treated TNF-α stimulated FLSs. In conclusion, phlorizin protects inflammation and reduces injury to the synovial tissues in RA, as it reduces autophagy by regulating Akt/PI3K/mTOR pathway.
Collapse
Affiliation(s)
- Liuyu Wang
- Department of Orthopedics, The Second People's Hospital of Nanyang City, Henan Province 473000, China.
| | - Xiangkun Wu
- Department of Orthopedics, The Second People's Hospital of Nanyang City, Henan Province 473000, China
| | - Quanhui Wan
- Department of Orthopedics, The Second People's Hospital of Nanyang City, Henan Province 473000, China
| | - Yuqiang Yang
- Department of Orthopedics, The Second People's Hospital of Nanyang City, Henan Province 473000, China
| | - Chaojie Gao
- Department of Orthopedics, The Second People's Hospital of Nanyang City, Henan Province 473000, China
| |
Collapse
|
17
|
Wang L, Wu X, Wan Q, Yang Y, Gao C. Phlorizin Regulates Synovial Hyperplasia and Inflammation in Rats With Rheumatoid Arthritis by Regulating the mTOR Pathway. In Vivo 2024; 38:1182-1191. [PMID: 38688626 PMCID: PMC11059876 DOI: 10.21873/invivo.13553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/06/2023] [Accepted: 11/13/2023] [Indexed: 05/02/2024]
Abstract
BACKGROUND/AIM Rheumatoid arthritis (RA) is an inflammatory autoimmune disease, and management of it is still a challenge. The present investigation assessed the potential preventive effect of phlorizin on rats with RA. MATERIALS AND METHODS A total of 40 healthy Wistar rats were used for this study. Bovine type II collagen and Freund's incomplete adjuvant (1:1 and 1 mg/ml) were administered on days 1 and 8 of the protocol to induce RA in rats; treatment with phlorizin at 60 or 120 mg/kg was started after the 4th week of the protocol, and its effect on inflammation, level of inflammatory cytokines, and expression of proteins were estimated in RA rats. Moreover, an in vitro study was performed on fibroblast-like synoviocytes (FLSs), and the effects of phlorizin on proliferation, apoptosis, and expression of the mechanistic target of rapamycin kinase pathway protein after stimulating these cells with tumor necrosis factor α (TNF-α) were estimated. RESULTS The data obtained from the study indicate that phlorizin has the potential to mitigate inflammation and enhance weight management in rats with RA induced by bovine type II collagen (CII). The level of inflammatory cytokines in the serum and the expression of protein kinase B (AKT), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), and mechanistic target of rapamycin kinase (mTOR) proteins in the joint tissue were reduced in phlorizin-treated rats with RA. In this investigation, phlorizin was shown to reverse the histological abnormalities in the joint tissue of rats with RA. The in-vitro study showed that phlorizin reduced proliferation and had no apoptotic effect on TNF-α-stimulated FLSs. Expression of AKT, PI3K, and mTOR proteins was also down-regulated in phlorizin-treated TNF-α-stimulated FLSs. CONCLUSION Phlorizin protects against inflammation and reduces injury to synovial tissues in RA by modulating the AKT/PI3K/mTOR pathway.
Collapse
Affiliation(s)
- Liuyu Wang
- Department of Orthopedics, Nanyang Second General Hospital, Nanyang, P.R. China
| | - Xiangkun Wu
- Department of Orthopedics, Nanyang Second General Hospital, Nanyang, P.R. China
| | - Quanhui Wan
- Department of Orthopedics, Nanyang Second General Hospital, Nanyang, P.R. China
| | - Yuqiang Yang
- Department of Orthopedics, Nanyang Second General Hospital, Nanyang, P.R. China
| | - Chaojie Gao
- Department of Orthopedics, Nanyang Second General Hospital, Nanyang, P.R. China
| |
Collapse
|
18
|
Kassym L, Kussainova A, Semenova Y, McLoone P. Antimicrobial Effect of Honey Phenolic Compounds against E. coli-An In Vitro Study. Pharmaceuticals (Basel) 2024; 17:560. [PMID: 38794130 PMCID: PMC11123796 DOI: 10.3390/ph17050560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Growing concern over antimicrobial resistance in chronic wound patients necessitates the exploration of alternative treatments from natural sources. This study suggests that honey's phenolic compounds may offer antimicrobial benefits, warranting further investigation for therapeutic development. The main aim of this study was to investigate the antimicrobial activity of phenolic compounds and to determine the effects of their sub-inhibitory concentrations against Escherichia coli (E. coli). 3-phenyllactic acid (PLA), p-coumaric acid (PCA), and phloretin were tested against the bacterial strain of E. coli ATCC 25922. Comparison of the antimicrobial activity of honey constituents in vitro was performed using a broth culture assay. Measurement of the inhibitory properties of constituents in vitro was conducted using disc and well diffusion assays. The effects of sub-inhibitory concentrations of PCA on the susceptibility of E. coli ATCC 25922 to penicillin-streptomycin were tested. The results demonstrated that PLA was the most efficient antimicrobial agent, followed by PCA, whereas phloretin, at lower (2 mg/mL) concentrations, led to an increase in the growth of E. coli. Various modifications of the agar diffusion assay did not reveal the antibacterial properties of the studied phytochemicals. The enhancing effect of a sub-inhibitory concentration of PCA in cooperation with penicillin-streptomycin was shown. These findings might be helpful for the further investigation and development of new antimicrobial agents for the treatment of skin infections and wounds.
Collapse
Affiliation(s)
- Laura Kassym
- Department of General Medical Practice with a Course of Evidence-Based Medicine, NJSC “Astana Medical University”, Astana 010000, Kazakhstan;
| | - Assiya Kussainova
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Yuliya Semenova
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Pauline McLoone
- School of Medicine, University of Kurdistan Hewler, Erbil 44001, Iraq;
| |
Collapse
|
19
|
Kappel S, Melek K, Ross-Kaschitza D, Hauert B, Gerber CE, Lochner M, Peinelt C. CBA (4-chloro-2-(2-chlorophenoxy)acetamido) benzoic acid) inhibits TMEM206 mediated currents and TMEM206 does not contribute to acid-induced cell death in colorectal cancer cells. Front Pharmacol 2024; 15:1369513. [PMID: 38515848 PMCID: PMC10955468 DOI: 10.3389/fphar.2024.1369513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/08/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction: Upon activation at low pH, TMEM206 conducts Cl- ions across plasma and vesicular membranes. In a (patho)physiological context, TMEM206 was reported to contribute to acid-induced cell death in neurons, kidney and cervical epithelial cells. We investigated the role of TMEM206 in acid-induced cell death in colorectal cancer cells. In addition, we studied CBA as a new small molecule inhibitor for TMEM206. Methods: The role of TMEM206 in acid-induced cell death was studied with CRISPR/Cas9-mediated knockout and FACS analysis. The pharmacology of TMEM206 was determined with the patch clamp technique. Results: In colorectal cancer cells, TMEM206 is not a critical mediator of acid-induced cell death. CBA is a small molecule inhibitor of TMEM206 (IC50 = 9.55 µM) at low pH, at pH 6.0 inhibition is limited. Conclusion: CBA demonstrates effective and specific inhibition of TMEM206; however, its inhibitory efficacy is limited at pH 6.0. Despite this limitation, CBA is a potent inhibitor for functional studies at pH 4.5 and may be a promising scaffold for the development of future TMEM206 inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Hasan I, Rashid T, Jaikaransingh V, Heilig C, Abdel-Rahman EM, Awad AS. SGLT2 inhibitors: Beyond glycemic control. J Clin Transl Endocrinol 2024; 35:100335. [PMID: 38525377 PMCID: PMC10957445 DOI: 10.1016/j.jcte.2024.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Multiple randomized controlled trials have extensively examined the therapeutic effectiveness of sodium-glucose cotransporter 2 (SGLT2) inhibitors, ushering in a transformative approach to treating individuals with type 2 diabetes mellitus (DM). Notably, emerging reports have drawn attention to the potential positive impacts of SGLT2 inhibitors in nondiabetic patients. In an effort to delve into this phenomenon, a comprehensive systematic literature review spanning PubMed (NLM), Medline (Ovid), and Cochrane Library, covering publications from 2000 to 2024 was undertaken. This systematic review encompassed twenty-six randomized control trials (RCTs) involving 35,317 participants. The findings unveiled a multifaceted role for SGLT2 inhibitors, showcasing their ability to enhance metabolic control and yield cardioprotective effects through a reduction in cardiovascular death (CVD) and hospitalization related to heart failure (HF). Additionally, a renalprotective effect was observed, evidenced by a slowdown in chronic kidney disease (CKD) progression and a decrease in albuminuria. Importantly, these benefits were coupled with an acceptable safety profile. The literature also points to various biological plausibility and underlying mechanistic pathways, offering insights into the association between SGLT2 inhibitors and these positive outcomes in nondiabetic individuals. Current research trends indicate a continual exploration of additional role for SGLT2 inhibitors in. Nevertheless, further research is imperative to fully elucidate the mechanisms and long-term outcomes associated with the nondiabetic use of SGLT2 inhibitors.
Collapse
Affiliation(s)
- Irtiza Hasan
- University of Florida College of Medicine-Jacksonville, FL, USA
| | - Tasnuva Rashid
- University of Florida College of Medicine-Jacksonville, FL, USA
| | | | - Charles Heilig
- University of Florida College of Medicine-Jacksonville, FL, USA
| | | | - Alaa S. Awad
- University of Florida College of Medicine-Jacksonville, FL, USA
| |
Collapse
|
21
|
Zhang S, Xu Y, Wang F, Yang L, Luo L, Jiang L. Transcriptomic and Physiological Analysis of the Effects of Exogenous Phloretin and Pterostilbene on Resistance Responses of Stylosanthes against Anthracnose. Int J Mol Sci 2024; 25:2701. [PMID: 38473948 DOI: 10.3390/ijms25052701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Anthracnose caused by Colletotrichum gloeosporioides is a destructive disease of Stylosanthes (stylo). Combination treatment of phloretin and pterostilbene (PP) has been previously shown to effectively inhibit the conidial germination and mycelial growth of C. gloeosporioides in vitro. In this study, the effects of PP treatment on the growth of C. gloeosporioides in vivo and the biocontrol mechanisms were investigated. We found that exogenous PP treatment could limit the growth of C. gloeosporioides and alleviate the damage of anthracnose in stylo. Comparative transcriptome analysis revealed that 565 genes were up-regulated and 239 genes were down-regulated upon PP treatment during the infection by C. gloeosporioides. The differentially expressed genes were mainly related to oxidative stress and chloroplast organization. Further physiological analysis revealed that application of PP after C. gloeosporioides inoculation significantly reduced the accumulation of O2•- level and increased the accumulation of antioxidants (glutathione, ascorbic acid and flavonoids) as well as the enzyme activity of total antioxidant capacity, superoxide dismutase, catalase, glutathione reductase, peroxidase and ascorbate peroxidase. PP also reduced the decline of chlorophyll a + b and increased the content of carotenoid in response to C. gloeosporioides infection. These results suggest that PP treatment alleviates anthracnose by improving antioxidant capacity and reducing the damage of chloroplasts, providing insights into the biocontrol mechanisms of PP on the stylo against anthracnose.
Collapse
Affiliation(s)
- Shizi Zhang
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Yunfeng Xu
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Fang Wang
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Liyun Yang
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Lijuan Luo
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Lingyan Jiang
- Key Laboratory of Sustainable Utilization of Tropical Biological Resources of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| |
Collapse
|
22
|
Zhang X, Li L, Chen J, Hu M, Zhang Y, Zhang X, Lu Y. Investigation of anti-depression effects and potential mechanisms of the ethyl acetate extract of Cynomorium songaricum Rupr. through the integration of in vivo experiments, LC-MS/MS chemical analysis, and a systems biology approach. Front Pharmacol 2023; 14:1239197. [PMID: 37954847 PMCID: PMC10634308 DOI: 10.3389/fphar.2023.1239197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Background: Cynomorium songaricum Rupr. has long been used as an anti-inflammatory, antidepressant, and anti-aging agent in traditional Chinese medicine in Asia. Its ethyl acetate extract (ECS) has been identified as the main antioxidant component with neuroprotective and estrogen-like effects. However, the potential of ECS in treating depression has not been explored yet. Methods: We identified the primary metabolites in ECS in this study using liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS). Network analysis was used to find the potential targets and pathways associated with the anti-neuroinflammatory depression action of the ECS. In addition, we established a corticosterone (CORT)-induced depression mouse model to assess ECS's antidepressant effects by monitoring various behavioral changes (e.g., sucrose preference, forced swimming, tail suspension, and open field tests) and biochemical indices of the hippocampus, and validating the network analysis results. Significant pathways underwent verification through western blotting based on network analysis prediction. Results: Our study demonstrates that ECS possesses significant antidepressant activity. The LC-MS/MS analysis of ECS identified 30 main metabolites, including phloridzin, phlorizin, ursolic acid, and naringenin, as well as other flavonoids, terpenoids, and phenolic acids. These metabolites were found to be associated with 64 candidate target proteins related to neuroinflammatory depression from the database, and ten hub proteins were identified through filtration: CXCL8, ICAM1, NOS2, SELP, TNF, IL6, APP, ACHE, MAOA and ADA. Functional enrichment analyses of the candidate targets revealed their primary roles in regulating cytokine production, inflammatory response, cytokine activity, and tumor necrosis factor receptor binding. In vivo, ECS improved hippocampal neuroinflammation in the mouse model. Specifically, ECS reduced the expression of inflammatory factors in the hippocampus, inhibited M1 microglial cell polarization, and alleviated depression through the regulation of the NF-κB-NLRP3 inflammation pathway. Conclusion: Based on experimental and network analysis, this study revealed for the first time that ECS exerted antidepression effect via anti-neuroinflammation. Our research provides valuable information on the use of ECS as an alternative therapeutic approach for depression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Lu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
Li J, Yang Q, Liu H, Wang M, Pan C, Han L, Lan X. Phloretin alleviates palmitic acid-induced oxidative stress in HUVEC cells by suppressing the expression of LncBAG6-AS. Food Funct 2023; 14:9350-9363. [PMID: 37782102 DOI: 10.1039/d3fo03523a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Oxidative stress (OS) is an important trigger of vascular endothelial injury (VEI), which then leads to cardiovascular disease (CVDs). Phloretin was previously investigated to alleviate OS in human umbilical vein endothelial cells (HUVECs) by activating the AMPK/Nrf2 pathway; however, whether phloretin exerts cardiovascular health benefits by targeting non-coding RNAs (ncRNAs) remains unclear. Herein, the whole transcriptome sequencing and lncRNA library building were performed on HUVECs, a commonly used cell line for CVDs study, from different groups in control (CK), palmitic acid (PA, 100 μM), and PA + phloretin (50 μM, G50). KEGG analysis demonstrated that DE-lncRNAs regulated the pathway related to OS and metabolism in HUVECs. LncBAG6-AS was highly expressed under OS stimulation, which was reversed by phloretin co-treatment. Moreover, the MMP, activities of SOD, GSH-Px, T-AOC and GR were significantly ameliorated after interference of LncBAG6-AS, which were consistent with phloretin recover group. Furthermore, the expression of DE-genes from previously reported mRNA sequencing, including MAPK10, PIK3R1, ATP2B4, AKT2, and ADCY9, were significantly changed with LncBAG6-AS interference, indicating that LncBAG6-AS may participate in the process of OS attenuation by phloretin through regulating gene expression. So, the transcriptome sequencing of HUVECs with LncBAG6-AS knockdown was subsequently performed and DE-genes for "NC vs. si-ASO-LncBAG6-AS" were significantly enriched with GO terms, such as apoptosis, response to OS, ferroptosis, and others, which were similar to those observed from KEGG analysis. Overall, this study provides new insights into the molecular mechanisms by which bioactive substances alleviate OS and potential targets for the early prevention and treatment of VEI.
Collapse
Affiliation(s)
- Jie Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China.
| | - Qing Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China.
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, P. R. China.
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjing, 300072, P. R. China
| | - Hongfei Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100089, P. R. China
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, P. R. China.
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China.
| | - Lin Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, P. R. China.
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, P. R. China.
| |
Collapse
|
24
|
Deshpande RD, Shah DS, Gurram S, Jha DK, Batabyal P, Amin PD, Sathaye S. Formulation, characterization, pharmacokinetics and antioxidant activity of phloretin oral granules. Int J Pharm 2023; 645:123386. [PMID: 37678475 DOI: 10.1016/j.ijpharm.2023.123386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/10/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
Phloretin (PHL), a flavonoid of the dihydrogen chalcone class, is reported to have low oral bioavailability due to its poor solubility and absorption. A common approach to enhance the solubility of such flavonoids is solubilization in a polymeric or lipidic matrix which would help in enhance dissolution rate and solubility. Accordingly, in the current study PHL was dissolved in Gelucire® 44/14 by melt-fusion technique and the viscous semisolid melt was adsorbed on a solid carrier to obtain free flowing granules. SeDeM-SLA (Solid-Liquid Adsorption) expert system was employed to select the most suitable carrier. This study achieved positive outcomes through the successful development of formulated oral PHL granules. The granules exhibited good stability, and favourable pharmacokinetic properties. In addition, the selected carrier effectively retained the antioxidant properties of PHL.
Collapse
Affiliation(s)
- Radni D Deshpande
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Devanshi S Shah
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Sharda Gurram
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Durgesh K Jha
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Paramita Batabyal
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Purnima D Amin
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Sadhana Sathaye
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
25
|
Wang S, Li C, Zhang L, Sun B, Cui Y, Sang F. Isolation and biological activity of natural chalcones based on antibacterial mechanism classification. Bioorg Med Chem 2023; 93:117454. [PMID: 37659218 DOI: 10.1016/j.bmc.2023.117454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
Bacterial infection, which is still one of the leading causes of death in humans, poses an enormous threat to the worldwide public health system. Antibiotics are the primary medications used to treat bacterial diseases. Currently, the discovery of antibiotics has reached an impasse, and due to the abuse of antibiotics resulting in bacterial antibiotic resistance, researchers have a critical desire to develop new antibacterial agents in order to combat the deteriorating antibacterial situation. Natural chalcones, the flavonoids consisting of two phenolic rings and a three-carbon α, β-unsaturated carbonyl system, possess a variety of biological and pharmacological properties, including anti-cancer, anti-inflammatory, antibacterial, and so on. Due to their potent antibacterial properties, natural chalcones possess the potential to become a new treatment for infectious diseases that circumvents existing antibiotic resistance. Currently, the majority of research on natural chalcones focuses on their synthesis, biological and pharmacological activities, etc. A few studies have been conducted on their antibacterial activity and mechanism. Therefore, this review focuses on the antibacterial activity and mechanisms of seventeen natural chalcones. Firstly, seventeen natural chalcones have been classified based on differences in antibacterial mechanisms. Secondly, a summary of the isolation and biological activity of seventeen natural chalcones was provided, with a focus on their antibacterial activity. Thirdly, the antibacterial mechanisms of natural chalcones were summarized, including those that act on bacterial cell membranes, biological macromolecules, biofilms, and quorum sensing systems. This review aims to lay the groundwork for the discovery of novel antibacterial agents based on chalcones.
Collapse
Affiliation(s)
- Sinan Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Chuang Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Liyan Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Bingxia Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Yuting Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China.
| | - Feng Sang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China.
| |
Collapse
|
26
|
S Ramadan N, M Fayek N, M El-Sayed M, S Mohamed R, A Wessjohann L, Farag MA. Averrhoa carambola L. fruit and stem metabolites profiling and immunostimulatory action mechanisms against cyclosporine induced toxic effects in rat model as analyzed using UHPLC/MS-MS-based chemometrics and bioassays. Food Chem Toxicol 2023; 179:114001. [PMID: 37619832 DOI: 10.1016/j.fct.2023.114001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
The Averrhoa carambola L. tree encompasses a myriad of phytochemicals contributing to its nutritional and health benefits. The current study aims at investigating the A. carambola L. the metabolite profile grown in tropical and temperate regions represented by fruit and stem, for the first time using UPLC/MS-based molecular networking and chemometrics. Asides, assessment of the immunostimulatory effect of ripe fruit and stem, was compared in relation to metabolite fingerprints. Eighty metabolites were identified, 8 of which are first-time to be reported including 3 dihydrochalcone-C-glycosides, 4 flavonoids, and one phenolic. Multivariate data analysis revealed dihydrochalcones as origin-discriminating metabolites between temperate and tropical grown fruits. Further, an in vivo immunomodulatory assay in a cyclosporine A-induced rat model revealed a potential immune-enhancing effect as manifested by down-regulation of inflammatory markers (IL-6, INF-γ, IL-1, TLR4, and ESR) concurrent with the up-regulation of CD4 level and the CD4/CD8 ratio. Moreover, both extracts suppressed elevation of liver and kidney functions in serum as well as reduction in oxidative stress with concurrent increased levels of T-protein, albumin, globulin, and A/G ratio. This study pinpoints differences in secondary metabolite profiles amongst A. carambola L. accessions from different origins and organ type and its immunomodulatory action mechanisms.
Collapse
Affiliation(s)
- Nehal S Ramadan
- Chemistry of Tanning Materials and Leather Technology Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Nesrin M Fayek
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., 11562, Cairo, Egypt
| | - Magdy M El-Sayed
- Dairy Science Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Rasha S Mohamed
- Nutrition and Food Science Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., 11562, Cairo, Egypt.
| |
Collapse
|
27
|
Mirpoor SF, Patanè GT, Corrado I, Giosafatto CVL, Ginestra G, Nostro A, Foti A, Gucciardi PG, Mandalari G, Barreca D, Gervasi T, Pezzella C. Functionalization of Polyhydroxyalkanoates (PHA)-Based Bioplastic with Phloretin for Active Food Packaging: Characterization of Its Mechanical, Antioxidant, and Antimicrobial Activities. Int J Mol Sci 2023; 24:11628. [PMID: 37511387 PMCID: PMC10380886 DOI: 10.3390/ijms241411628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/15/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
The formulation of eco-friendly biodegradable packaging has received great attention during the last decades as an alternative to traditional widespread petroleum-based food packaging. With this aim, we designed and tested the properties of polyhydroxyalkanoates (PHA)-based bioplastics functionalized with phloretin as far as antioxidant, antimicrobial, and morpho-mechanic features are concerned. Mechanical and hydrophilicity features investigations revealed a mild influence of phloretin on the novel materials as a function of the concentration utilized (5, 7.5, 10, and 20 mg) with variation in FTIR e RAMAN spectra as well as in mechanical properties. Functionalization of PHA-based polymers resulted in the acquisition of the antioxidant activity (in a dose-dependent manner) tested by DPPH, TEAC, FRAR, and chelating assays, and in a decrease in the growth of food-borne pathogens (Listeria monocytogenes ATCC 13932). Finally, apple samples were packed in the functionalized PHA films for 24, 48, and 72 h, observing remarkable effects on the stabilization of apple samples. The results open the possibility to utilize phloretin as a functionalizing agent for bioplastic formulation, especially in relation to food packaging.
Collapse
Affiliation(s)
| | - Giuseppe Tancredi Patanè
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Iolanda Corrado
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | | | - Giovanna Ginestra
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Antonia Nostro
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Antonino Foti
- CNR IPCF, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D'Alcontres 37, 98156 Messina, Italy
| | - Pietro G Gucciardi
- CNR IPCF, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D'Alcontres 37, 98156 Messina, Italy
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Teresa Gervasi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Cinzia Pezzella
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
28
|
Zhao M, Li N, Zhou H. SGLT1: A Potential Drug Target for Cardiovascular Disease. Drug Des Devel Ther 2023; 17:2011-2023. [PMID: 37435096 PMCID: PMC10332373 DOI: 10.2147/dddt.s418321] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023] Open
Abstract
SGLT1 and SGLT2 are the two main members of the sodium-glucose cotransporters (SGLTs), which are mainly responsible for glucose reabsorption in the body. In recent years, many large clinical trials have shown that SGLT2 inhibitors have cardiovascular protection for diabetic and non-diabetic patients independent of lowering blood glucose. However, SGLT2 was barely detected in the hearts of humans and animals, while SGLT1 was highly expressed in myocardium. As SGLT2 inhibitors also have a moderate inhibitory effect on SGLT1, the cardiovascular protection of SGLT2 inhibitors may be due to SGLT1 inhibition. SGLT1 expression is associated with pathological processes such as cardiac oxidative stress, inflammation, fibrosis, and cell apoptosis, as well as mitochondrial dysfunction. The purpose of this review is to summarize the protective effects of SGLT1 inhibition on hearts in various cell types, including cardiomyocytes, endothelial cells, and fibroblasts in preclinical studies, and to highlight the underlying molecular mechanisms of protection against cardiovascular diseases. Selective SGLT1 inhibitors could be considered a class of drugs for cardiac-specific therapy in the future.
Collapse
Affiliation(s)
- Mengnan Zhao
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Na Li
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Hong Zhou
- Department of Endocrinology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
29
|
Kumar S, Chhimwal J, Kumar S, Singh R, Patial V, Purohit R, Padwad YS. Phloretin and phlorizin mitigates inflammatory stress and alleviate adipose and hepatic insulin resistance by abrogating PPARγ S273-Cdk5 interaction in type 2 diabetic mice. Life Sci 2023; 322:121668. [PMID: 37023949 DOI: 10.1016/j.lfs.2023.121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
AIMS The rising prevalence of type 2 diabetes mellitus (T2DM) and accompanying insulin resistance is alarming globally. Natural and synthetic agonists of PPARγ are potentially attractive candidates for diabetics and are known to efficiently reverse adipose and hepatic insulin resistance, but related side effects and escalating costs are the causes of concern. Therefore, targeting PPARγ with natural ligands is advantageous and promising approach for the better management of T2DM. The present research aimed to assess the antidiabetic potential of phenolics Phloretin (PTN) and Phlorizin (PZN) in type 2 diabetic mice. MAIN METHODS In silico docking was performed to check the effect of PTN and PZN on PPARγ S273-Cdk5 interactions. The docking results were further validated in preclinical settings by utilizing a mice model of high fat diet-induced T2DM. KEY FINDINGS Computational docking and further MD-simulation data revealed that PTN and PZN inhibited the activation of Cdk5, thereby blocking the phosphorylation of PPARγ. Our in vivo results further demonstrated that PTN and PZN administration significantly improved the secretory functions of adipocytes by increasing adiponectin and reducing inflammatory cytokine levels, which ultimately reduced the hyperglycaemic index. Additionally, combined treatment of PTN and PZN decreased in vivo adipocyte expansion and increased Glut4 expression in adipose tissues. Furthermore, PTN and PZN treatment reduced hepatic insulin resistance by modulating lipid metabolism and inflammatory markers. SIGNIFICANCE In summary, our findings strongly imply that PTN and PZN are candidates as nutraceuticals in the management of comorbidities related to diabetes and its complications.
Collapse
Affiliation(s)
- Shiv Kumar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Jyoti Chhimwal
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Suresh Kumar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Rahul Singh
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India.
| | - Yogendra S Padwad
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India.
| |
Collapse
|
30
|
Habtemariam S. Anti-Inflammatory Therapeutic Mechanisms of Natural Products: Insight from Rosemary Diterpenes, Carnosic Acid and Carnosol. Biomedicines 2023; 11:biomedicines11020545. [PMID: 36831081 PMCID: PMC9953345 DOI: 10.3390/biomedicines11020545] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Carnosic acid (CA) and carnosol (CAR) are two major diterpenes of the rosemary plant (Rosmarinus officinalis). They possess a phenolic structural moiety and are endowed with the power to remove cellular reactive oxygen species (ROS) either through direct scavenging reaction or indirectly through upregulation of antioxidant defences. Hand in hand with these activities are their multiple biological effects and therapeutic potential orchestrated through modulating various signalling pathways of inflammation, including the NF-κB, MAPK, Nrf2, SIRT1, STAT3 and NLRP3 inflammasomes, among others. Consequently, they ameliorate the expression of pro-inflammatory cytokines (e.g., TNF-α, IL-1 and IL-6), adhesion molecules, chemokines and prostaglandins. These anti-inflammatory mechanisms of action as a therapeutic link to various effects of these compounds, as in many other natural products, are scrutinised.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|