1
|
Zhang Y, Wan Y, Guo C, Zhu Z, Qiu C, Lu J, Zhou Y, Zheng J, Dai F, Cheng X, Deng K, Wang W, Wang Y, Zhang W. Novel derivatives of brincidofovir and (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine inhibit orthopoxviruses and human adenoviruses more potently than brincidofovir. Signal Transduct Target Ther 2025; 10:114. [PMID: 40210872 PMCID: PMC11985979 DOI: 10.1038/s41392-025-02207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/26/2025] [Accepted: 03/13/2025] [Indexed: 04/12/2025] Open
Abstract
Brincidofovir (BCV) and tecovirimat are the only two chemical drugs that have been approved to treat smallpox and can be requested for monkeypox (Mpox) treatment through a single-patient Emergency Investigational New Drug (EIND) application. Disappointedly, the efficacy of tecovirimat manifested in recent clinical trials is far from being satisfactory, while the clinical efficacy of BCV is still inconclusive. Given that monkeypox virus (MPXV), variola and other emerging orthopoxviruses are posing serious threats to global health, it is urgent to develop better therapeutics. In this study, we tested the antiviral effects of three novel prodrugs, which were designed based on previously reported parent drugs, either (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine ((S)-HPMPC, cidofovir) or (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine ((S)-HPMPA). We found that one of the (S)-HPMPA-based prodrugs, ODE-(S)-HPMPA formate, exhibited significantly better anti-orthopoxvirus activity than BCV both in vitro and in vivo, which also inhibited human adenovirus type 2 and type 21 more efficiently than BCV. Most strikingly, the EC50 and EC90 of ODE-(S)-HPMPA formate against MPXV were more than 40-fold lower than those of BCV. In contrast, we observed that the anti-herpes simplex virus type 1 (HSV-1) activities of the (S)-HPMPA-based prodrugs were less effective than those of the cidofovir-based prodrugs (BCV and BCV formate), especially in vivo. Moreover, we showed for the first time that cytidine and adenine analog combined therapies could provide mice with complete protection against lethal challenges of both vaccinia and HSV-1. Collectively, we propose that both the ODE-(S)-HPMPA formate and the BCV/ODE-(S)-HPMPA formate combination are worth further investigations for their potential clinical applications.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University; Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
- Department of laboratory medicine, Shanghai Public Health Clinical Center, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yanmin Wan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University; Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China.
- Department of radiology, Shanghai Public Health Clinical Center, Shanghai, China.
| | - Cuiyuan Guo
- Department of laboratory medicine, Shanghai Public Health Clinical Center, Shanghai, China
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, China
| | - Zhaoqin Zhu
- Department of laboratory medicine, Shanghai Public Health Clinical Center, Shanghai, China
- Biosafety Level 3 Laboratory, Shanghai Public Health Clinical Center, Shanghai, China
| | - Chao Qiu
- Institutes of biomedical sciences & Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Jiasheng Lu
- School of Life Sciences, Fudan University, Shanghai, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Risen (Shanghai) Pharma Tech Co. Ltd., Shanghai, China
| | - Yanan Zhou
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jiaojiao Zheng
- Biosafety Level 3 Laboratory, Shanghai Public Health Clinical Center, Shanghai, China
| | - Fahui Dai
- Biosafety Level 3 Laboratory, Shanghai Public Health Clinical Center, Shanghai, China
| | - Xiaoyang Cheng
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University; Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
- Department of laboratory medicine, Shanghai Public Health Clinical Center, Shanghai, China
| | - Kunlu Deng
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University; Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
- Department of laboratory medicine, Shanghai Public Health Clinical Center, Shanghai, China
| | - Wanhai Wang
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, China
| | - Youchun Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China.
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University; Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China.
| |
Collapse
|
2
|
Halder SK, Sultana A, Himel MK, Shil A. Monkeypox: Origin, Transmission, Clinical Manifestations, Prevention, and Therapeutic Options. Interdiscip Perspect Infect Dis 2025; 2025:2522741. [PMID: 39950190 PMCID: PMC11824817 DOI: 10.1155/ipid/2522741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/28/2024] [Accepted: 06/19/2024] [Indexed: 02/16/2025] Open
Abstract
Monkeypox is a rapidly spreading transmissible disease induced by the monkeypox virus (MPXV), a major public health problem worldwide. The origin of monkeypox might be tracked to the continent of Africa, where it first afflicted primate species prior to spreading to the world. Severe health issues for the public have been raised as a result of the disease's current breakouts in nonendemic areas and its subsequent dissemination to several nations throughout the globe. Monkeypox spreads by having contact with infected creatures or people, as well as respiratory droplets and contaminated things. Symptoms of monkeypox in young children and adults are different. While the symptoms are similar to smallpox, monkeypox has a reduced mortality rate. Proper diagnosis, suitable care, and focused preventative efforts all depend on becoming cognizant of those distinctions. Numerous promising therapeutic approaches have been recently investigated. Antiviral drugs such as tecovirimat, cidofovir, and brincidofovir, which were initially developed to treat smallpox, were found to have been effective in treating MPXV cases. Moreover, vaccinations continue to be an important preventative step. The purpose of this article is to offer the most recent and thorough information available on monkeypox, including its possible causes, modes of transfer, and potential treatments. By identifying the distinct forms of monkeypox and exploring potential treatment options, this work contributes to the ongoing battle against MPXVs and the management of this novel viral disease. To stop the propagation of monkeypox, greater research and communication are needed to provide stronger treatments and effective vaccinations.
Collapse
Affiliation(s)
- Sajal Kumar Halder
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
- Division of Computational Biology, Padma Bioresearch, Savar, Dhaka, Bangladesh
| | - Arafin Sultana
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Mahbubul Kabir Himel
- Division of Computational Biology, Padma Bioresearch, Savar, Dhaka, Bangladesh
- Department of Botany, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Aparna Shil
- Division of Computational Biology, Padma Bioresearch, Savar, Dhaka, Bangladesh
- Department of Botany, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|
3
|
Prévost J, Sloan A, Deschambault Y, Tailor N, Tierney K, Azaransky K, Kammanadiminti S, Barker D, Kodihalli S, Safronetz D. Treatment efficacy of cidofovir and brincidofovir against clade II Monkeypox virus isolates. Antiviral Res 2024; 231:105995. [PMID: 39243894 DOI: 10.1016/j.antiviral.2024.105995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
While historically confined to endemic areas, Monkeypox virus (MPXV) infection has increasingly garnered international attention due to sporadic outbreaks in non-endemic countries in the last two decades and its potential for human-to-human transmission. In 2022, a multi-country outbreak of mpox disease was declared by the World Health Organization (WHO) and nearly 100 000 mpox cases have been reported since the beginning of this pandemic. The clade II variant of the virus appears to be responsible for the vast majority of these infections. While there are no antiviral drugs currently approved to treat mpox specifically, the use of tecovirimat (TPOXX®) and brincidofovir (Tembexa®) is recommended by the Centers for Disease Control and Prevention (CDC) for compassionate use in severe mpox cases, since both are FDA-approved for the treatment of the closely related smallpox disease. Given the emergence of multiple tecovirimat-resistant infections, we aimed to evaluate the treatment efficacy of brincidofovir and its active compound, cidofovir, against MPXV clade II strains. Following intranasal infection, we show that cidofovir and brincidofovir can strongly reduce the viral replication of MPXV clade IIa and IIb viruses in the respiratory tract of susceptible mice when administered systemically and orally, respectively. The high antiviral activity of both compounds against historical and currently circulating MPXV strains supports their therapeutic potential for clinical application.
Collapse
Affiliation(s)
- Jérémie Prévost
- Special Pathogens Program, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Angela Sloan
- Special Pathogens Program, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Yvon Deschambault
- Special Pathogens Program, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Nikesh Tailor
- Special Pathogens Program, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Kevin Tierney
- Special Pathogens Program, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Kimberly Azaransky
- Special Pathogens Program, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | | - Douglas Barker
- Emergent BioSolutions Canada Inc., Winnipeg, Manitoba, Canada
| | | | - David Safronetz
- Special Pathogens Program, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
4
|
De Clercq E, Li G, Zhang Y, Huang J, Tan L. Unachieved antiviral strategies with acyclic nucleoside phosphonates: Dedicated to the memory of dr. Salvatore "Sam" Joseph Enna. Biochem Pharmacol 2024; 228:116448. [PMID: 39043335 DOI: 10.1016/j.bcp.2024.116448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
Many acyclic nucleoside phosphonates such as cidofovir, adefovir dipivoxil, tenofovir disoproxil fumarate, and tenofovir alafenamide have been marketed for the treatment or prophylaxis of infectious diseases. Here, this review highlights potent acyclic nucleoside phosphonates for their potential in the treatment of retrovirus (e.g., human immunodeficiency virus) and DNA virus (e.g., adeno-, papilloma-, herpes- and poxvirus) infections. If properly assessed and/or optimized, some potent acyclic nucleoside phosphonates can be possibly applied in the control of current and emerging infectious diseases.
Collapse
Affiliation(s)
- Erik De Clercq
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven 3000, Belgium
| | - Guangdi Li
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Yun Zhang
- Huaihua City Maternal and Child Health Care Hospital, Huaihua 418000, China
| | - Jie Huang
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Li Tan
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Hunan Clinical Molecular Diagnosis Center, Molecular Diagnostic Technology Hunan Engineering Research Center, Clinical Medical Research Center for Molecular Diagnosis of Infectious Diseases in Hunan Province, Changsha 410011, China.
| |
Collapse
|
5
|
Sun Y, Nie W, Tian D, Ye Q. Human monkeypox virus: Epidemiologic review and research progress in diagnosis and treatment. J Clin Virol 2024; 171:105662. [PMID: 38432097 DOI: 10.1016/j.jcv.2024.105662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Monkeypox virus (MPXV) is responsible for causing a zoonotic disease called monkeypox (mpox), which sporadically infects humans in West and Central Africa. It first infected humans in 1970 and, along with the variola virus, belongs to the genus Orthopoxvirus in the poxvirus family. Since the World Health Organization declared the MPXV outbreak a "Public Health Emergency of International Concern" on July 23, 2022, the number of infected patients has increased dramatically. To control this epidemic and address this previously neglected disease, MPXV needs to be better understood and reevaluated. In this review, we cover recent research on MPXV, including its genomic and pathogenic characteristics, transmission, mutations and mechanisms, clinical characteristics, epidemiology, laboratory diagnosis, and treatment measures, as well as prevention of MPXV infection in light of the 2022 and 2023 global outbreaks. The 2022 MPXV outbreak has been primarily associated with close intimate contact, including sexual activity, with most cases diagnosed among men who have sex with men. The incubation period of MPXV infection usually lasts from 6 to 13 days, and symptoms include fever, muscle pains, headache, swollen lymph nodes, and a characteristic painful rash, including several stages, such as macules, papules, blisters, pustules, scabs, and scab shedding involving the genitals and anus. Polymerase chain reaction (PCR) is usually used to detect MPXV in skin lesion material. Treatment includes supportive care, antivirals, and intravenous vaccinia immune globulin. Smallpox vaccines have been designed with four givens emergency approval for use against MPXV infection.
Collapse
Affiliation(s)
- Yanhong Sun
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Wenjian Nie
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Dandan Tian
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Qing Ye
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
| |
Collapse
|
6
|
Lu J, Xing H, Wang C, Tang M, Wu C, Ye F, Yin L, Yang Y, Tan W, Shen L. Mpox (formerly monkeypox): pathogenesis, prevention, and treatment. Signal Transduct Target Ther 2023; 8:458. [PMID: 38148355 PMCID: PMC10751291 DOI: 10.1038/s41392-023-01675-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 12/28/2023] Open
Abstract
In 2022, a global outbreak of Mpox (formerly monkeypox) occurred in various countries across Europe and America and rapidly spread to more than 100 countries and regions. The World Health Organization declared the outbreak to be a public health emergency of international concern due to the rapid spread of the Mpox virus. Consequently, nations intensified their efforts to explore treatment strategies aimed at combating the infection and its dissemination. Nevertheless, the available therapeutic options for Mpox virus infection remain limited. So far, only a few numbers of antiviral compounds have been approved by regulatory authorities. Given the high mutability of the Mpox virus, certain mutant strains have shown resistance to existing pharmaceutical interventions. This highlights the urgent need to develop novel antiviral drugs that can combat both drug resistance and the potential threat of bioterrorism. Currently, there is a lack of comprehensive literature on the pathophysiology and treatment of Mpox. To address this issue, we conducted a review covering the physiological and pathological processes of Mpox infection, summarizing the latest progress of anti-Mpox drugs. Our analysis encompasses approved drugs currently employed in clinical settings, as well as newly identified small-molecule compounds and antibody drugs displaying potential antiviral efficacy against Mpox. Furthermore, we have gained valuable insights from the process of Mpox drug development, including strategies for repurposing drugs, the discovery of drug targets driven by artificial intelligence, and preclinical drug development. The purpose of this review is to provide readers with a comprehensive overview of the current knowledge on Mpox.
Collapse
Affiliation(s)
- Junjie Lu
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Hui Xing
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Chunhua Wang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Mengjun Tang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Changcheng Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Fan Ye
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Lijuan Yin
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for infectious disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China.
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Liang Shen
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China.
| |
Collapse
|
7
|
Bruno G, Buccoliero GB. Antivirals against Monkeypox (Mpox) in Humans: An Updated Narrative Review. Life (Basel) 2023; 13:1969. [PMID: 37895350 PMCID: PMC10608433 DOI: 10.3390/life13101969] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
As of 29 August 2023, a total of 89,596 confirmed cases of Mpox (monkeypox) have been documented across 114 countries worldwide, with 157 reported fatalities. The Mpox outbreak that transpired in 2022 predominantly affected young men who have sex with men (MSM). While most cases exhibited a mild clinical course, individuals with compromised immune systems, particularly those living with HIV infection and possessing a CD4 count below 200 cells/mm3, experienced a more severe clinical trajectory marked by heightened morbidity and mortality. The approach to managing Mpox is primarily symptomatic and supportive. However, in instances characterized by severe or complicated manifestations, the utilization of antiviral medications becomes necessary. Despite tecovirimat's lack of official approval by the FDA for treating Mpox in humans, a wealth of positive clinical experiences exists, pending the outcomes of ongoing clinical trials. Brincidofovir and cidofovir have also been administered in select cases due to the unavailability of tecovirimat. Within the scope of this narrative review, our objective was to delve into the clinical attributes of Mpox and explore observational studies that shed light on the utilization of these antiviral agents.
Collapse
Affiliation(s)
- Giuseppe Bruno
- Infectious Diseases Unit, San Giuseppe Moscati Hospital, Azienda Sanitaria Locale Taranto, 74121 Taranto, Italy;
| | | |
Collapse
|
8
|
De la Herrán-Arita AK, González-Galindo C, Inzunza-Leyva GK, Valdez-Flores MA, Norzagaray-Valenzuela CD, Camacho-Zamora A, Batiz-Beltrán JC, Urrea-Ramírez FJ, Romero-Utrilla A, Angulo-Rojo C, Guadrón-Llanos AM, Picos-Cárdenas VJ, Camberos-Barraza J, Rábago-Monzón ÁR, Osuna-Ramos JF. Clinical Predictors of Monkeypox Diagnosis: A Case-Control Study in a Nonendemic Region during the 2022 Outbreak. Microorganisms 2023; 11:2287. [PMID: 37764131 PMCID: PMC10535336 DOI: 10.3390/microorganisms11092287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Monkeypox (Mpox) is an emerging zoonotic disease with the potential for severe complications. Early identification and diagnosis are essential to prompt treatment, control its spread, and reduce the risk of human-to-human transmission. This study aimed to develop a clinical diagnostic tool and describe the clinical and sociodemographic features of 19 PCR-confirmed Mpox cases during an outbreak in a nonendemic region of northwestern Mexico. The median age of patients was 35 years, and most were male. Mpox-positive patients commonly reported symptoms such as fever, lumbago, and asthenia, in addition to experiencing painful ulcers and a high frequency of HIV infection among people living with HIV (PLWH). Two diagnostic models using logistic regression were devised, with the best model exhibiting a prediction accuracy of 0.92 (95% CI: 0.8-1), a sensitivity of 0.86, and a specificity of 0.93. The high predictive values and accuracy of the top-performing model highlight its potential to significantly improve early Mpox diagnosis and treatment in clinical settings, aiding in the control of future outbreaks.
Collapse
Affiliation(s)
- Alberto Kousuke De la Herrán-Arita
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Rosales 80019, Sinaloa, Mexico; (A.K.D.l.H.-A.); (M.A.V.-F.); (A.C.-Z.); (J.C.B.-B.); (F.J.U.-R.); (C.A.-R.); (A.M.G.-L.); (V.J.P.-C.); (Á.R.R.-M.)
| | | | - Gerardo Kenny Inzunza-Leyva
- Dirección de Prevención y Promoción de la Salud, Secretaría de Salud de Sinaloa, Culiacán Rosales 80020, Sinaloa, Mexico;
| | - Marco Antonio Valdez-Flores
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Rosales 80019, Sinaloa, Mexico; (A.K.D.l.H.-A.); (M.A.V.-F.); (A.C.-Z.); (J.C.B.-B.); (F.J.U.-R.); (C.A.-R.); (A.M.G.-L.); (V.J.P.-C.); (Á.R.R.-M.)
| | | | - Alejandro Camacho-Zamora
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Rosales 80019, Sinaloa, Mexico; (A.K.D.l.H.-A.); (M.A.V.-F.); (A.C.-Z.); (J.C.B.-B.); (F.J.U.-R.); (C.A.-R.); (A.M.G.-L.); (V.J.P.-C.); (Á.R.R.-M.)
| | - José Candelario Batiz-Beltrán
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Rosales 80019, Sinaloa, Mexico; (A.K.D.l.H.-A.); (M.A.V.-F.); (A.C.-Z.); (J.C.B.-B.); (F.J.U.-R.); (C.A.-R.); (A.M.G.-L.); (V.J.P.-C.); (Á.R.R.-M.)
- Hospital Regional Dr. Manuel Cárdenas de la Vega, ISSSTE, Culiacán Rosales 80230, Sinaloa, Mexico
| | - Francisco Javier Urrea-Ramírez
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Rosales 80019, Sinaloa, Mexico; (A.K.D.l.H.-A.); (M.A.V.-F.); (A.C.-Z.); (J.C.B.-B.); (F.J.U.-R.); (C.A.-R.); (A.M.G.-L.); (V.J.P.-C.); (Á.R.R.-M.)
- Hospital Regional Dr. Manuel Cárdenas de la Vega, ISSSTE, Culiacán Rosales 80230, Sinaloa, Mexico
| | - Alejandra Romero-Utrilla
- Departamento de Anatomía Patológica, Instituto Mexicano del Seguro Social, Culiacán Rosales 80230, Sinaloa, Mexico
| | - Carla Angulo-Rojo
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Rosales 80019, Sinaloa, Mexico; (A.K.D.l.H.-A.); (M.A.V.-F.); (A.C.-Z.); (J.C.B.-B.); (F.J.U.-R.); (C.A.-R.); (A.M.G.-L.); (V.J.P.-C.); (Á.R.R.-M.)
- Maestría en Ciencias en Biomedicina Molecular, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Rosales 80019, Sinaloa, Mexico
| | - Alma Marlene Guadrón-Llanos
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Rosales 80019, Sinaloa, Mexico; (A.K.D.l.H.-A.); (M.A.V.-F.); (A.C.-Z.); (J.C.B.-B.); (F.J.U.-R.); (C.A.-R.); (A.M.G.-L.); (V.J.P.-C.); (Á.R.R.-M.)
- Doctorado en Ciencias en Biomedicina Molecular, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Rosales 80019, Sinaloa, Mexico
| | - Verónica Judith Picos-Cárdenas
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Rosales 80019, Sinaloa, Mexico; (A.K.D.l.H.-A.); (M.A.V.-F.); (A.C.-Z.); (J.C.B.-B.); (F.J.U.-R.); (C.A.-R.); (A.M.G.-L.); (V.J.P.-C.); (Á.R.R.-M.)
| | - Josué Camberos-Barraza
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Rosales 80019, Sinaloa, Mexico; (A.K.D.l.H.-A.); (M.A.V.-F.); (A.C.-Z.); (J.C.B.-B.); (F.J.U.-R.); (C.A.-R.); (A.M.G.-L.); (V.J.P.-C.); (Á.R.R.-M.)
| | - Ángel Radamés Rábago-Monzón
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Rosales 80019, Sinaloa, Mexico; (A.K.D.l.H.-A.); (M.A.V.-F.); (A.C.-Z.); (J.C.B.-B.); (F.J.U.-R.); (C.A.-R.); (A.M.G.-L.); (V.J.P.-C.); (Á.R.R.-M.)
| | - Juan Fidel Osuna-Ramos
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Rosales 80019, Sinaloa, Mexico; (A.K.D.l.H.-A.); (M.A.V.-F.); (A.C.-Z.); (J.C.B.-B.); (F.J.U.-R.); (C.A.-R.); (A.M.G.-L.); (V.J.P.-C.); (Á.R.R.-M.)
| |
Collapse
|
9
|
Basu K, Krugliak M, Arkin IT. Viroporins of Mpox Virus. Int J Mol Sci 2023; 24:13828. [PMID: 37762131 PMCID: PMC10530900 DOI: 10.3390/ijms241813828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Mpox or monkeypox virus (MPXV) belongs to the subclass of Poxviridae and has emerged recently as a global threat. With a limited number of anti-viral drugs available for this new virus species, it is challenging to thwart the illness it begets. Therefore, characterizing new drug targets in the virus may prove advantageous to curbing the disease. Since channels as a family are excellent drug targets, we have sought to identify viral ion channels for this virus, which are instrumental in formulating channel-blocking anti-viral drugs. Bioinformatics analyses yielded eight transmembranous proteins smaller or equal to 100 amino acids in length. Subsequently, three independent bacteria-based assays have pointed to five of the eight proteins that exhibit ion channel activity. Finally, we propose a tentative structure of four ion channels from their primary amino acid sequences, employing AlphaFold2 and molecular dynamic simulation methods. These results may represent the first steps in characterizing MPXV viroporins en route to developing blockers that inhibit their function.
Collapse
Affiliation(s)
| | | | - Isaiah T. Arkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel; (K.B.); (M.K.)
| |
Collapse
|
10
|
Ghafari S, Rukerd MRZ, Bashash D, Nakhaie M, Charostad J, Zarei M, Dehghani A. Anti-Monkeypox Infection Approaches: From Prevention to Therapeutic Lines. Clin Pharmacol Drug Dev 2023; 12:659-666. [PMID: 37228175 DOI: 10.1002/cpdd.1275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Affiliation(s)
- Somayeh Ghafari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Nakhaie
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid-Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Zarei
- Renal Division, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Azam Dehghani
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
der Weid IV, de Souza Mendes CD, Fonseca PC, Viveiros Rosa SG. Patent profile for the approved and in clinical trials Mpox vaccines. Pharm Pat Anal 2023; 12:103-111. [PMID: 37671905 DOI: 10.4155/ppa-2023-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/14/2023] [Indexed: 09/07/2023]
Abstract
Mpox disease was reported in 110 countries since May 2022, with 88,026 cases and 148 deaths by 21 June 2023. Although some drugs were already approved for Mpox treatment, the available smallpox vaccines can provide 85% cross-prevention, but there are no scientific publications describing the patent portfolio for Mpox vaccines. This paper aims to contribute to the identification of the status of the smallpox vaccine patents now applied for Mpox. We retrieved ten vaccines, but only a few had a patent portfolio and one under patent litigation processes in three continents. Also, no specific Mpox vaccine was retrieved and, in this sense, technological monitoring studies should be performed to provide a future vision regarding Mpox prophylaxis.
Collapse
Affiliation(s)
- Irene von der Weid
- National Institute of Industrial Property, Division of Studies & Projects, Rio de Janeiro, Rio de Janeiro, 20090-910, Brazil
| | - Cristina d'Urso de Souza Mendes
- National Institute of Industrial Property, Division of Studies & Projects, Rio de Janeiro, Rio de Janeiro, 20090-910, Brazil
| | - Paula C Fonseca
- National Institute of Industrial Property, Patent Division IX, Rio de Janeiro, Rio de Janeiro, 20090-910, Brazil
| | - Sandro G Viveiros Rosa
- National Institute of Indrustrial Property, Patent Division I, Rio de Janeiro, Rio de Janeiro, 20090-910, Brazil
| |
Collapse
|
12
|
Hudu SA, Alshrari AS, Al Qtaitat A, Imran M. VP37 Protein Inhibitors for Mpox Treatment: Highlights on Recent Advances, Patent Literature, and Future Directions. Biomedicines 2023; 11:biomedicines11041106. [PMID: 37189724 DOI: 10.3390/biomedicines11041106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 05/17/2023] Open
Abstract
Monkeypox disease (Mpox) has threatened humankind worldwide since mid-2022. The Mpox virus (MpoxV) is an example of Orthopoxviruses (OPVs), which share similar genomic structures. A few treatments and vaccines are available for Mpox. OPV-specific VP37 protein (VP37P) is a target for developing drugs against Mpox and other OPV-induced infections such as smallpox. This review spotlights the existing and prospective VP37P inhibitors (VP37PIs) for Mpox. The non-patent literature was collected from PubMed, and the patent literature was gathered from free patent databases. Very little work has been carried out on developing VP37PIs. One VP37PI (tecovirimat) has already been approved in Europe to treat Mpox, while another drug, NIOCH-14, is under clinical trial. Developing tecovirimat/NIOCH-14-based combination therapies with clinically used drugs demonstrating activity against Mpox or other OPV infections (mitoxantrone, ofloxacin, enrofloxacin, novobiocin, cidofovir, brincidofovir, idoxuridine, trifluridine, vidarabine, fialuridine, adefovir, imatinib, and rifampicin), immunity boosters (vitamin C, zinc, thymoquinone, quercetin, ginseng, etc.), and vaccines may appear a promising strategy to fight against Mpox and other OPV infections. Drug repurposing is also a good approach for identifying clinically useful VP37PIs. The dearth in the discovery process of VP37PIs makes it an interesting area for further research. The development of the tecovirimat/NIOCH-14-based hybrid molecules with certain chemotherapeutic agents looks fruitful and can be explored to obtain new VP37PI. It would be interesting and challenging to develop an ideal VP37PI concerning its specificity, safety, and efficacy.
Collapse
Affiliation(s)
- Shuaibu A Hudu
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Ahmed S Alshrari
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Aiman Al Qtaitat
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
- Department of Anatomy and Histology, Faculty of Medicine, Mutah University, Karak 61710, Jordan
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|