1
|
Zhai Y, Li G, Pan C, Yu M, Hu H, Wang D, Shi Z, Jiang T, Zhang W. The development and potent antitumor efficacy of CD44/CD133 dual-targeting IL7Rα-armored CAR-T cells against glioblastoma. Cancer Lett 2025; 614:217541. [PMID: 39952598 DOI: 10.1016/j.canlet.2025.217541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
Tumor heterogeneity and an immunosuppressive microenvironment pose significant challenges for immunotherapy against solid tumors, particularly glioblastoma multiforme (GBM). Recent studies have highlighted the crucial role of glioma stem cells (GSCs) in tumor recurrence and therapeutic resistance. In this context, we developed a tandem chimeric antigen receptor (CAR)-T cell targeting CD44 and CD133 (PROM1), containing a truncated IL-7 receptor alpha intracellular domain (Δ7R) between the CD28 costimulatory receptor and the CD3ζ signaling chain (Tanζ-T28-Δ7R). Our target identification and validation were carried out using GSCs, samples from GBM patients, and the corresponding sequencing data. The antitumor efficacy of CAR-T cells was evaluated in patient-derived GSCs, intracranial xenograft models, patient-derived xenograft models, and glioblastoma organoids (GBOs). Single-cell RNA sequencing and mass cytometry were used to determine the immune phenotypes of CAR-T cells. We showed that locoregionally administered Tanζ-T28-Δ7R CAR-T cells induced long-term tumor regression with the desired safety outcomes. Patient-derived autologous Tanζ-T28-Δ7R CAR-T cells showed robust antitumor activity against GBOs. Our pre-clinical data has demonstrated the translational potential of Tanζ-T28-Δ7R CAR-T cell against GBM.
Collapse
Affiliation(s)
- You Zhai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China.
| | - Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Changqing Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Mingchen Yu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Huimin Hu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Di Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Zhongfang Shi
- Department of Pathophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China; China National Clinical Research Center for Neurological Diseases, Beijing, PR China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, PR China; Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors, Chinese Academy of Medical Sciences, Beijing, PR China; Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, PR China; Beijing Engineering Research Center of Targeted Drugs and Cell Therapy for CNS Tumors, Beijing, PR China.
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China; China National Clinical Research Center for Neurological Diseases, Beijing, PR China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, PR China; Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, PR China; Beijing Engineering Research Center of Targeted Drugs and Cell Therapy for CNS Tumors, Beijing, PR China.
| |
Collapse
|
2
|
Kooi EJ, Marcelis L, Wesseling P. Pathological diagnosis of central nervous system tumours in adults: what's new? Pathology 2025; 57:144-156. [PMID: 39818455 DOI: 10.1016/j.pathol.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/18/2025]
Abstract
In the course of the last decade, the pathological diagnosis of many tumours of the central nervous system (CNS) has transitioned from a purely histological to a combined histological and molecular approach, resulting in a more precise 'histomolecular diagnosis'. Unfortunately, translation of this refinement in CNS tumour diagnostics into more effective treatment strategies is lagging behind. There is hope though that incorporating the assessment of predictive markers in the pathological evaluation of CNS tumours will help to improve this situation. The present review discusses some novel aspects with regard to the pathological diagnosis of the most common CNS tumours in adults. After a brief update on recognition of clinically meaningful subgroups in adult-type diffuse gliomas and the value of assessing predictive markers in these tumours, more detailed information is provided on predictive markers of (potential) relevance for immunotherapy especially for glioblastomas, IDH-wildtype. Furthermore, recommendations for improved grading of meningiomas by using molecular markers are briefly summarised, and an overview is given on (predictive) markers of interest in metastatic CNS tumours. In the last part of this review, some 'emerging new CNS tumour types' that may occur especially in adults are presented in a table. Hopefully, this review provides useful information on 'what's new' for practising pathologists diagnosing CNS tumours in adults.
Collapse
Affiliation(s)
- Evert-Jan Kooi
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands.
| | - Lukas Marcelis
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
3
|
Rouatbi N, Walters AA, Zam A, Lim YM, Marrocu A, Liam‐Or R, Anstee JE, Arnold JN, Wang JT, Pollard SM, Al‐Jamal KT. CD47 Knock-Out Using CRISPR-Cas9 RNA Lipid Nanocarriers Results in Reduced Mesenchymal Glioblastoma Growth In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407262. [PMID: 39888280 PMCID: PMC11948039 DOI: 10.1002/advs.202407262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/08/2025] [Indexed: 02/01/2025]
Abstract
Immune checkpoint (ICP) blockade has shown limited effectiveness in glioblastoma (GBM), particularly in the mesenchymal subtype, where interactions between immune cells and glioblastoma cancer stem cells (GSCs) drive immunosuppression and therapy resistance. Tailoring ICPs specific to GSCs can enhance the antitumor immune response. This study proposes the use of lipid nanoparticles (LNPs) encapsulating CRISPR RNAs as an in vivo screening tool for ICPs in a syngeneic model of mesenchymal GSCs. Using PD-L1 and CD47 to validate the proof of concept, intratumoral administration of LNPs in orthotopic tumors achieved efficient editing of ICPs, leading to enhanced immune cell infiltration within the tumor microenvironment. Targeting CD47 reduced tumor growth, suggesting improved cancer cell sensitization to the immune system post-ICP editing. The study positions LNPs as a robust tool for in vivo validation of ICPs as therapeutic targets in clinically relevant GBM models. LNPs could serve as a screening tool in patient-derived xenografts to identify and optimize ICP combinations, potentially expediting ICP translation and enhancing personalized GBM immunotherapies.
Collapse
Affiliation(s)
- Nadia Rouatbi
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
| | - Adam A. Walters
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
| | - Alaa Zam
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
| | - Yau Mun Lim
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
- Comprehensive Cancer CentreFaculty of Life Sciences and MedicineKing's College London, Guy's HospitalLondonSE1 1ULUK
- Department of Neurodegenerative DiseaseQueen Square Institute of NeurologyUniversity College LondonLondonWC1N 3BGUK
| | - Alessia Marrocu
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
- Comprehensive Cancer CentreFaculty of Life Sciences and MedicineKing's College London, Guy's HospitalLondonSE1 1ULUK
| | - Revadee Liam‐Or
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionChina
| | - Joanne E. Anstee
- Comprehensive Cancer CentreFaculty of Life Sciences and MedicineKing's College London, Guy's HospitalLondonSE1 1ULUK
| | - James N. Arnold
- Comprehensive Cancer CentreFaculty of Life Sciences and MedicineKing's College London, Guy's HospitalLondonSE1 1ULUK
| | - Julie Tzu‐Wen Wang
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
| | - Steven M. Pollard
- Centre for Regenerative MedicineInstitute for Regeneration and Repair & Cancer Research UK Scotland CentreUniversity of Edinburgh5 Little France DriveEdinburghEH16 4UUUK
| | - Khuloud T. Al‐Jamal
- Institute of Pharmaceutical ScienceFaculty of Life Sciences and MedicineKing's College LondonFranklin‐Wilkins Building, 150 Stamford StreetLondonSE1 9NHUK
- Department of Pharmacology and PharmacyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionChina
| |
Collapse
|
4
|
Mushir SI, Chaudry SS, Azmat H, Masood A, Habib M, Sheikh AK. Unlocking the Glioblastoma Enigma: Exploring PD-L1 (Programmed Death-Ligand 1) and IDH1 (Isocitrate Dehydrogenase-1) Expression and Their Immunotherapeutic Implications. Cureus 2025; 17:e76920. [PMID: 39906459 PMCID: PMC11790344 DOI: 10.7759/cureus.76920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2025] [Indexed: 02/06/2025] Open
Abstract
Objective In order to establish a connection between programmed death-ligand 1 (PD-L1) expression and glioma grades as well as the presence of IDH1 mutations, it is necessary to investigate the expression of PD-L1 and isocitrate dehydrogenase-1 (IDH1) in glioma patients and assess their potential as predictive markers for glioblastoma multiforme (GBM) immunotherapy. We analyzed the frequency of PD-L1 expression in glioma samples. Methodology In this two-year retrospective study, 45 glioma cases of varying grades (grades 2 to 4) were examined at a tertiary care hospital. Tumor samples that were formalin-fixed, paraffin-embedded (FFPE) were obtained from the pathology archives of the hospital. According to the WHO Classification of Central Nervous System Tumors, 5th edition, tumor grading and histopathological subtyping were carried out. PD-L1 antibody (clone 28-8) and IDH1 (R132H, clone QM002, Quartett Immunodiagnostika, 1:100 dilution) markers were used for immunohistochemistry (IHC). The sections underwent deparaffinization, rehydration, and antigen retrieval using Leica bond III staining platform. Based on the tumor proportion score (TPS), which is the proportion of viable tumor cells with membranous staining, PD-L1 expression was assessed. The literature's standardized cut-off values were used to determine positive expression. Staining intensity and tumor cell location were used to determine the status of IDH1 mutations. Age, sex, and tumor location were among the clinical and demographic information gathered about the patient. The association between PD-L1 expression, glioma grades, and IDH1 (R132H) mutation status was assessed statistically using SPSS software and a Chi-square test. The threshold for statistical significance was p < 0.05. For every IHC run, positive and negative controls were used as part of the quality control procedures. To reduce bias and guarantee consistency, two pathologists and post graduate residents independently reviewed the results. Results PD-L1 expression was found in 27 out of 36 (75%) grade 4 glioblastoma multiforme cases and six out of nine (66.7%) grade 2 gliomas. Overall, 33/45 (73.3%) of the gliomas had PD-L1 expression. However, PD-L1 expression and glioma grade did not correlate in a statistically significant way. IDH1 (R132H) expression and PD-L1 were found to be inversely correlated (p < 0.05). Conclusion The findings suggest that PD-L1 may be a promising therapeutic target, even in the absence of significant grade-specific trends by demonstrating PD-L1 presence in the majority of glioma cases, highlighting its potential as a therapeutic target in GBM immunotherapy. The results provide insight into the immune landscape of gliomas and pave the way for future research into effective combination therapies for GBM, despite the lack of a significant correlation between glioma grade and PD-L1 expression.
Collapse
Affiliation(s)
- Syeda Iqra Mushir
- Histopathology, Shaheed Zulfiqar Ali Bhutto Medical University/Pakistan Institute of Medical Sciences (PIMS), Islamabad, PAK
| | - Summaya S Chaudry
- Histopathology, Shaheed Zulfiqar Ali Bhutto Medical University/Pakistan Institute of Medical Sciences (PIMS), Islamabad, PAK
| | - Henna Azmat
- Pathology, Federal Government Polyclinic, Islamabad, PAK
| | - Areeba Masood
- Histopathology, Shaheed Zulfiqar Ali Bhutto Medical University/Pakistan Institute of Medical Sciences (PIMS), Islamabad, PAK
| | - Momina Habib
- Histopathology, Shaheed Zulfiqar Ali Bhutto Medical University/Pakistan Institute of Medical Sciences (PIMS), Islamabad, PAK
| | - Ahmareen K Sheikh
- Histopathology, Shaheed Zulfiqar Ali Bhutto Medical University/Pakistan Institute of Medical Sciences (PIMS), Islamabad, PAK
| |
Collapse
|
5
|
Asioli S, Gatto L, Vardy U, Agostinelli C, Di Nunno V, Righi S, Tosoni A, Ambrosi F, Bartolini S, Giannini C, Franceschi E. Immunophenotypic Profile of Adult Glioblastoma IDH-Wildtype Microenvironment: A Cohort Study. Cancers (Basel) 2024; 16:3859. [PMID: 39594814 PMCID: PMC11592556 DOI: 10.3390/cancers16223859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/15/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Glioblastoma IDH-wildtype (GBM IDH-wt) is the most aggressive brain tumor in adults and is characterized by an immunosuppressive microenvironment. Different factors shaping its tumor microenvironment (TME) regulate tumor progression and treatment response. The aim of this study was to characterize the main immunosuppressive elements of the GBM IDH-wt TME. Methods: Immunohistochemistry for CD3, CD4, CD8, CD163, programmed death ligand 1 (PD-L1) and programmed death 1 (PD1) was performed on surgical tumor specimens from patients diagnosed with GBM IDH-wt, according to the CNS WHO 2021 criteria. The impact of categorical variables on time-dependent outcomes such as overall survival (OS) and progression-free survival (PFS) has been estimated through the Kaplan-Meier method. Results: We included 30 patients (19 males and 11 females), median age of 59.8 years (range 40.2-69.1 years). All patients underwent surgery followed by temozolomide concurrent with and adjuvant to radiotherapy. MGMT was methylated in 14 patients (47%) and unmethylated in 16 patients (53%). The overall absolute percentages of CD4+ lymphocytes, both intratumoral and perivascular, were significantly more represented than CD8+ lymphocytes in the TME (p = 0.02). A low density of CD4+ lymphocytes (≤10%) was found to be a favorable prognostic factor for GBM outcome (p = 0.02). Patients with MGMT methylated and unmethylated tumors exhibited a distinct TME composition, with a significant higher number of perivascular CD8+ lymphocytes (p = 0.002), intratumoral CD8+ lymphocytes (p = 0.0024) and perivascular CD4+ lymphocytes (p = 0.014) in MGMT unmethylated tumors. PD-L1 expression in tumor cell surface was observed in four tumors (13.3%), and PD1 expression in infiltrating T lymphocytes was observed in nine (30%) tumors, with predominantly perivascular distribution. Conclusions: MGMT methylated and unmethylated tumors exhibit different immune profiles, likely reflecting the different biology of these tumors. The expression of PD-L1 in GBM IDH-wt patients is confined to a small subpopulation. While we found a significant association between low CD4+ lymphocyte density (≤10%) and survival, given the small numbers of our cohort, the prognostic value of CD4+ lymphocyte density will need to be validated in large-scale studies.
Collapse
Affiliation(s)
- Sofia Asioli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40127 Bologna, Italy; (S.A.); (C.G.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Lidia Gatto
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.D.N.); (A.T.); (S.B.); (E.F.)
| | - Uri Vardy
- School of Medicine and Surgery, University of Bologna, 40138 Bologna, Italy;
| | - Claudio Agostinelli
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Vincenzo Di Nunno
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.D.N.); (A.T.); (S.B.); (E.F.)
| | - Simona Righi
- Pathology Unit, Maggiore Hospital-AUSL Bologna, 40133 Bologna, Italy; (S.R.); (F.A.)
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.D.N.); (A.T.); (S.B.); (E.F.)
| | - Francesca Ambrosi
- Pathology Unit, Maggiore Hospital-AUSL Bologna, 40133 Bologna, Italy; (S.R.); (F.A.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.D.N.); (A.T.); (S.B.); (E.F.)
| | - Caterina Giannini
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40127 Bologna, Italy; (S.A.); (C.G.)
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.D.N.); (A.T.); (S.B.); (E.F.)
| |
Collapse
|
6
|
Wang G, Man Y, Cao K, Zhao L, Lun L, Chen Y, Zhao X, Wang X, Zhang L, Hao C. An immune-related gene pair signature predicts the prognosis and immunotherapeutic response in glioblastoma. Heliyon 2024; 10:e39025. [PMID: 39435104 PMCID: PMC11492119 DOI: 10.1016/j.heliyon.2024.e39025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Background Glioblastoma (GBM) has the feature of aggressive growth and high rates of recurrence. Immunotherapy was not included in standard therapy for GBM due to lacking the predictive biomarkers. In the present study, we performed an immune-related gene pair (IRGP) signature to predict the prognosis and immunotherapy response of GBM. Methods A total of 160 GBM patients from TCGA were included. ssGSEA was conducted to evaluate the immune infiltration level. Univariate Cox, LASSO regression analysis, ROC analysis, and Kaplan-Meier survival analysis were applied to construct and evaluate the risk model. Moreover, the association between immune infiltration and the risk score was assessed. Finally, the expression of immune checkpoints between different risk groups was explored. Results According to the normal/tumor, high-/low-immunity group, we identified 125 differentially expressed immune-related genes. Subsequently, a prognostic model including 22 IRGPs was established. The area under the ROC curve to predict 1, 3, and 5-year was 0.811, 0.958, and 0.99 respectively. According to the optimal cut-off value of the 3-year ROC curve, patients were classified into high- and low-risk groups. The Kaplan-Meier analysis result indicated that patients in the low-risk group have longer survival time. The risk score was an independent prognostic predictor (P < 0.001). Moreover, PDCD1 was positively correlated with the risk score (P < 0.01). We also found that patients with high PDCD1 expression had worse survival. Conclusions The IRGP signature was built to predict the prognosis of GBM patients. This signature can serve as a tool to predict the response to immunotherapy in GBM.
Collapse
Affiliation(s)
- Gang Wang
- Department of Head and Neck Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Department of Radiation Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingchun Man
- Department of Medical Oncology, Beidahuang Industry Group General Hospital, Harbin, China
| | - Kui Cao
- Department of Head and Neck Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lihong Zhao
- Department of Head and Neck Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lixin Lun
- Department of Head and Neck Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yiyang Chen
- Department of Head and Neck Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xinyu Zhao
- Department of Head and Neck Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xueying Wang
- Department of Head and Neck Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lijie Zhang
- Department of Medical Oncology, Beidahuang Industry Group General Hospital, Harbin, China
| | - Chuncheng Hao
- Department of Head and Neck Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
7
|
Rocca A, Giudici F, Donofrio CA, Bottin C, Pinamonti M, Ferrari B, Schettini F, Pineda E, Panni S, Cominetti M, D’Auria P, Bianchini S, Varotti E, Ungari M, Ciccarelli S, Filippini M, Brenna S, Fiori V, Di Mambro T, Sparti A, Magnani M, Zanconati F, Generali D, Fioravanti A. CD99 Expression and Prognostic Impact in Glioblastoma: A Single-Center Cohort Study. Cells 2024; 13:597. [PMID: 38607036 PMCID: PMC11012029 DOI: 10.3390/cells13070597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Glioblastoma is the most frequent and aggressive brain tumor in adults. This study aims to evaluate the expression and prognostic impact of CD99, a membrane glycoprotein involved in cellular migration and invasion. In a cohort of patients with glioblastoma treated with surgery, radiotherapy and temozolomide, we retrospectively analyzed tumor expression of CD99 by immunohistochemistry (IHC) and by quantitative real-time polymerase chain reaction (qRT-PCR) for both the wild type (CD99wt) and the truncated (CD99sh) isoforms. The impact on overall survival (OS) was assessed with the Kaplan-Meier method and log-rank test and by multivariable Cox regression. Forty-six patients with glioblastoma entered this study. Immunohistochemical expression of CD99 was present in 83%. Only the CD99wt isoform was detected by qRT-PCR and was significantly correlated with CD99 expression evaluated by IHC (rho = 0.309, p = 0.037). CD99 expression was not associated with OS, regardless of the assessment methodology used (p = 0.61 for qRT-PCR and p = 0.73 for IHC). In an exploratory analysis of The Cancer Genome Atlas, casuistry of glioblastomas CD99 expression was not associated with OS nor with progression-free survival. This study confirms a high expression of CD99 in glioblastoma but does not show any significant impact on survival. Further preclinical studies are needed to define its role as a therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Andrea Rocca
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147 Trieste, Italy
| | - Fabiola Giudici
- Cancer Epidemiology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Carmine Antonio Donofrio
- Neurosurgery, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Cristina Bottin
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147 Trieste, Italy
| | - Maurizio Pinamonti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147 Trieste, Italy
| | - Benvenuto Ferrari
- Breast and Brain Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Francesco Schettini
- Translational Genomics and Targeted Therapies in Solid Tumors Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), C. Villaroel 170, 08036 Barcelona, Spain
- Medical Oncology Department, Hospital Clínic of Barcelona, 08036 Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Estela Pineda
- Medical Oncology Department, Hospital Clínic of Barcelona, 08036 Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Stefano Panni
- Breast and Brain Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Marika Cominetti
- Neurosurgery, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Patrizia D’Auria
- Neurosurgery, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | | | - Elena Varotti
- Pathology Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Marco Ungari
- Pathology Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Stefano Ciccarelli
- Radiotherapy Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Marzia Filippini
- Radiotherapy Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Sarah Brenna
- Radiotherapy Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | | | | | - Angelo Sparti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147 Trieste, Italy
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147 Trieste, Italy
- Breast and Brain Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | | |
Collapse
|
8
|
Stepanenko AA, Sosnovtseva AO, Valikhov MP, Chernysheva AA, Abramova OV, Pavlov KA, Chekhonin VP. Systemic and local immunosuppression in glioblastoma and its prognostic significance. Front Immunol 2024; 15:1326753. [PMID: 38481999 PMCID: PMC10932993 DOI: 10.3389/fimmu.2024.1326753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/06/2024] [Indexed: 04/07/2024] Open
Abstract
The effectiveness of tumor therapy, especially immunotherapy and oncolytic virotherapy, critically depends on the activity of the host immune cells. However, various local and systemic mechanisms of immunosuppression operate in cancer patients. Tumor-associated immunosuppression involves deregulation of many components of immunity, including a decrease in the number of T lymphocytes (lymphopenia), an increase in the levels or ratios of circulating and tumor-infiltrating immunosuppressive subsets [e.g., macrophages, microglia, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs)], as well as defective functions of subsets of antigen-presenting, helper and effector immune cell due to altered expression of various soluble and membrane proteins (receptors, costimulatory molecules, and cytokines). In this review, we specifically focus on data from patients with glioblastoma/glioma before standard chemoradiotherapy. We discuss glioblastoma-related immunosuppression at baseline and the prognostic significance of different subsets of circulating and tumor-infiltrating immune cells (lymphocytes, CD4+ and CD8+ T cells, Tregs, natural killer (NK) cells, neutrophils, macrophages, MDSCs, and dendritic cells), including neutrophil-to-lymphocyte ratio (NLR), focus on the immune landscape and prognostic significance of isocitrate dehydrogenase (IDH)-mutant gliomas, proneural, classical and mesenchymal molecular subtypes, and highlight the features of immune surveillance in the brain. All attempts to identify a reliable prognostic immune marker in glioblastoma tissue have led to contradictory results, which can be explained, among other things, by the unprecedented level of spatial heterogeneity of the immune infiltrate and the significant phenotypic diversity and (dys)functional states of immune subpopulations. High NLR is one of the most repeatedly confirmed independent prognostic factors for shorter overall survival in patients with glioblastoma and carcinoma, and its combination with other markers of the immune response or systemic inflammation significantly improves the accuracy of prediction; however, more prospective studies are needed to confirm the prognostic/predictive power of NLR. We call for the inclusion of dynamic assessment of NLR and other blood inflammatory markers (e.g., absolute/total lymphocyte count, platelet-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, systemic immune-inflammation index, and systemic immune response index) in all neuro-oncology studies for rigorous evaluation and comparison of their individual and combinatorial prognostic/predictive significance and relative superiority.
Collapse
Affiliation(s)
- Aleksei A. Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasiia O. Sosnovtseva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marat P. Valikhov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia A. Chernysheva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga V. Abramova
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Konstantin A. Pavlov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
9
|
Broggi G, Angelico G, Farina J, Tinnirello G, Barresi V, Zanelli M, Palicelli A, Certo F, Barbagallo G, Magro G, Caltabiano R. Tumor-associated microenvironment, PD-L1 expression and their relationship with immunotherapy in glioblastoma, IDH-wild type: A comprehensive review with emphasis on the implications for neuropathologists. Pathol Res Pract 2024; 254:155144. [PMID: 38277747 DOI: 10.1016/j.prp.2024.155144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Although novel knowledge has been acquired on the molecular landscape of glioblastoma (GBM), a relatively few steps forward have been made regarding its therapy. With the increasing use of novel immunotherapeutic drugs capable of stimulating the antitumor inflammatory response, in the last decades numerous studies aimed to characterize the tumor-associated microenvironment (TME) and its relationship with the immunogenicity of GBM. In this regard, although the tumor-associated microglia and macrophages (TAMs) and PD-L1/PD-1 axis have been emerged as one of the most relevant components of the GBM TME and one of the potential molecular pathways targetable with immunotherapy, respectively. It has been supposed that TAMs may acquire different phenotypes, switching from M1 to M2 phenotypes, with tumor-suppressive and tumor-stimulating role depending on the different surrounding conditions. PD-L1 is a type 1 transmembrane protein ligand expressed by T-cells, B-cells and antigen-presenting cells, with a main inhibitory checkpoint role on tumor immune regulation. While PD-L1 immunohistochemical expression has been extensively investigated in many cancers, its usefulness in the evaluation of GBM response rates to immunotherapy and its standardized evaluation by immunohistochemistry are still debated. The present review paper focuses on the current "state of the art" about the relationship between TME, PD-L1/PD-1 pathway and immunotherapy in GBM, also providing neuropathologists with an updated guide about the clinical trials conducted with PD-L1 and PD-1 inhibitors.
Collapse
Affiliation(s)
- Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy.
| | - Giuseppe Angelico
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Jessica Farina
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Giordana Tinnirello
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Valeria Barresi
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona 37134, Italy
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia 42123, Italy
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia 42123, Italy
| | - Francesco Certo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Catania 95121, Italy; Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Catania 95123, Italy
| | - Giuseppe Barbagallo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Catania 95121, Italy; Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Catania 95123, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| |
Collapse
|
10
|
Choi H, Baek IC, Park SA, Park JS, Jeun SS, Kim TG, Ahn S. Polymorphisms of Killer Ig-like Receptors and the Risk of Glioblastoma. J Clin Med 2023; 12:4780. [PMID: 37510895 PMCID: PMC10380963 DOI: 10.3390/jcm12144780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
PURPOSE The immune responses of natural killer (NK) cells against cancer cells vary by patient. Killer Ig-like receptors (KIRs), which are some of the major receptors involved in regulating NK cell activity for killing cancer cells, have significant genetic variation. Numerous studies have suggested a potential association between the genetic variation of KIR genes and the risk of development or prognosis of various cancer types. However, an association between genetic variations of KIR genes and glioblastoma (GB) remains uncertain. We sought to evaluate the association of genetic variations of KIRs and their ligand genes with the risk of GB development in Koreans. METHODS A case-control study was performed to identify the odds ratios (ORs) of KIR genes and Classes A, B, and, C of the human leukocyte antigen (HLA) for GB. The GB group was comprised of 77 patients with newly diagnosed IDH-wildtype GB at our institution, and the control group consisted of 200 healthy Korean volunteers. RESULTS There was no significant difference in the frequency of KIR genes and KIR haplotypes between the GB and control groups. Genetic variations of KIR-2DL1, 3DL1, and 3DS1 with their ligand genes (HLA-C2, HLA-Bw4/6, and Bw4, respectively) had effects on the risk of GB in Korean patients. The frequency of KIR-2DL1 with HLA-C2 (OR 2.05, CI 1.19-3.52, p = 0.009), the frequency of KIR-3DL1 without HLA-Bw4 (80I) (OR 8.36, CI 4.06-17.18, p < 0.001), and the frequency of KIR-3DL1 with Bw6 (OR 4.54, CI 2.55-8.09, p < 0.001) in the GB group were higher than in the control group. In addition, the frequency of KIR-2DL1 without HLA-C2 (OR 0.44, CI 0.26-0.75, p = 0.003), the frequency of KIR-3DL1 with HLA-Bw4 (80T) (OR 0.13, CI 0.06-0.27, p < 0.001), the frequency of KIR-3DL1 without Bw6 (OR 0.27, CI 0.15-0.49, p < 0.001), and the frequency of KIR-3DS1 with Bw4 (80I) (OR 0.03, CI 0.00-0.50, p < 0.001) in the GB group were lower than in the control group. CONCLUSIONS This study suggests that genetic variations of KIRs and their ligand genes may affect GB development in the Korean population. Further investigations are needed to demonstrate the different immune responses for GB cells according to genetic variations of KIR genes and their ligand genes.
Collapse
Affiliation(s)
- Haeyoun Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Soon A Park
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jae-Sung Park
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|