1
|
Aboudia A, Gadali KE, Rafya M, Abid K, Gahoual K, Zefzoufi M, Zehhar N, Mazoir N, Benkhalti F. Carcavrol From Thymus leptobotrys Essential Oil: Isolation, Comparative Antibacterial and Antioxidant Activities and Mechanistic Insights via Molecular Docking. Chem Biodivers 2025:e202403407. [PMID: 40047284 DOI: 10.1002/cbdv.202403407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/15/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
Carvacrol is the main compound of several medicinal and aromatic plant essential oils (EOs), such as Thymus leptobotrys Murb which is a Moroccan endemic plant. Carvacrol is a versatile scaffold that serves as a central model for the design and synthesis of new drug substances with promising biological properties. In this context, this study aimed to isolate carvacrol from T. leptobotrys EO and evaluate its biological properties compared with EO. This later was analyzed using gas chromatography-mass spectrometry. The antioxidant activity was evaluated by 2,2-diphenyl-1-picrylhydrazyl free radical scavenging and total antioxidant capacity (TAC) tests, while the antibacterial activity was determined against four pathogenic bacterial strains using the microdilution method. Carvacrol revealed a stronger antiradical capacity than EO, contrary to the TAC. Regarding the antibacterial activity, the results showed the highest activity for carvacrol against Staphylococcus aureus, Escherichia coli, and Enterococcus faecalis but lower against Pseudomonas aeruginosa. Molecular docking studies were conducted on bacterial DNA gyrase and nicotinamide adenine dinucleotide phosphate oxidase enzymes to investigate the potential mechanisms underlying carvacrol's bioactivity. The computational findings, together with antibacterial and antioxidant assays, provided complementary insights into carvacrol's interaction profile with these targets and its possible contribution to the observed biological activities.
Collapse
Affiliation(s)
- Aouatif Aboudia
- Department of biology, Bioresources and Food Safety Laboratory, Faculty of Science and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Khadija El Gadali
- Department of Chemistry, Laboratory of Sustainable Development and Health Research, Faculty of Science and Technology of Marrakech, Cadi Ayyad University, Marrakech, Morocco
| | - Meriem Rafya
- Department of Chemistry, Laboratory of Sustainable Development and Health Research, Faculty of Science and Technology of Marrakech, Cadi Ayyad University, Marrakech, Morocco
| | - Khaoula Abid
- Department of biology, Bioresources and Food Safety Laboratory, Faculty of Science and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Khaoula Gahoual
- Department of Chemistry, Laboratory of Sustainable Development and Health Research, Faculty of Science and Technology of Marrakech, Cadi Ayyad University, Marrakech, Morocco
| | - Manal Zefzoufi
- Department of Chemistry, Laboratory of Sustainable Development and Health Research, Faculty of Science and Technology of Marrakech, Cadi Ayyad University, Marrakech, Morocco
| | - Naima Zehhar
- Department of biology, Agrobiotechnology and Bioengineering Center, CNRST-labeled Research Unit (AgroBiotech-URL-CNRST-05 Center), Faculty of Science and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Noureddine Mazoir
- Department of chemistry, Bioorganic Chemistry Team, Faculty of Science, Chouaib Doukkali University, El Jadida, Morocco
| | - Fatiha Benkhalti
- Department of Chemistry, Laboratory of Sustainable Development and Health Research, Faculty of Science and Technology of Marrakech, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
2
|
Heimann D, Kohnhäuser D, Kohnhäuser AJ, Brönstrup M. Antibacterials with Novel Chemical Scaffolds in Clinical Development. Drugs 2025; 85:293-323. [PMID: 39847315 DOI: 10.1007/s40265-024-02137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/24/2025]
Abstract
The rise of antimicrobial resistance represents a significant global health threat, driven by the diminishing efficacy of existing antibiotics, a lack of novel antibacterials entering the market, and an over- or misuse of existing antibiotics, which accelerates the evolution of resistant bacterial strains. This review focuses on innovative therapies by highlighting 19 novel antibacterials in clinical development as of June 2024. These selected compounds are characterized by new chemical scaffolds, novel molecular targets, and/or unique mechanisms of action, which render their potential to break antimicrobial resistance particularly high. A detailed analysis of the scientific foundations behind each of these compounds is provided, including their pharmacodynamic profiles, current development state, and potential for overcoming existing limitations in antibiotic therapy. By presenting this subset of chemically novel antibacterials, the review highlights the ability to innovate in antibiotic drug development to counteract bacterial resistance and improve treatment outcomes.
Collapse
Affiliation(s)
- Dominik Heimann
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Daniel Kohnhäuser
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | | | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany.
- Institute of Organic Chemistry and Biomolecular Drug Research Centre (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany.
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Inhoffenstraße 7, 38124, Braunschweig, Germany.
| |
Collapse
|
3
|
Al Amin M, Hossain MS, Habib MK, Perveen FF, Sabuj SI, Imam H, Islam S, Mahmud S. Pharmacophore-guided computational modeling of quinolone-ATPase conjugate inhibitors targeting DNA GyrB subunit of Staphylococcus aureus. Comput Biol Med 2025; 186:109727. [PMID: 39967191 DOI: 10.1016/j.compbiomed.2025.109727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/20/2025]
Abstract
The rapid rise of antibiotic-resistant bacterial strains is a significant global health issue, necessitating the development of new and effective antimicrobial agents. This study focuses on designing synthetic de novo models of fluoroquinolone (FQ) descriptors by fusing the quinolone ring-a derivative of FQs-with potential ATPase inhibitors, which is identified through pharmacophore modeling targeting the DNA gyrase B (gyrB) protein of S. aureus. Initially, the pharmacophore model was generated based on the DNA gyrB protein (PDB IDs: 3TTZ, 3U2D, and 3U2K), specifically targeting their co-crystalized ATPase inhibitors to develop a shared feature pharmacophore (SFP) with key features including hydrophobic regions, hydrogen bond acceptors (HBA), hydrogen bond donors (HBD), aromatic moieties (Ar), and halogen bond donors (XBD). The map was further evaluated using the goodness-of-hit (GH) score of 0.2641, indicating the map's strength in capturing potential compounds. The SFP was used for virtual screening against 160,000 compounds from ZINCpharmer and ChEMBL, resulting in 74 hits (48 from ZINCpharmer and 26 from ChEMBL) with similar ATPase features and exhibiting the best-fit scores ranging from 73.50 to 76.80 and RMSD values from 0.1 to 0.5. These identified ligands were fused with the quinolone ring of FQs using genetic algorithms and fragment-based design to create 50 new synthetic models of FQs. Most of these models contain Pyrrole rings, average similarity of more than 55 %, and a Synthetic Accessibility Score (SAScore) ≤ 3.5 for practical syntheses in the lab. These conformers were evaluated through pharmacokinetics and molecular docking, revealing three top compounds-Molecule 13 (-9.1 kcal/mol), Molecule 20 (-9.1 kcal/mol), and Molecule 49 (-9.4 kcal/mol)-which showed greater binding affinity with the DNA gyrase protein (PDB ID: 4PLB) compare to control, Ciprofloxacin (-7.8 kcal/mol). Additionally, 200 ns Molecular Dynamics Simulations (MDS) were conducted using the Schrödinger suite for these three compounds and control, where Molecule 13 showed potential structural stability. To ensure practical feasibility, computational sequence-to-sequence retrosynthesis, and chemical scaffold comparison analysis were employed to design synthetic routes for the most promising compounds, confirming their likelihood of successful synthesis in the lab. The findings of this study contribute to the ongoing efforts to treat antibiotic resistance by providing a framework for designing and evaluating new antimicrobial agents with improved efficacy.
Collapse
Affiliation(s)
- Md Al Amin
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Md Sakhawat Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Md Kawsar Habib
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Faria Farzana Perveen
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Sahinur Islam Sabuj
- Bachelor of Medicine and Bachelor of Surgery (M.B.B.S.), Universal Medical College, Mohakhali, Dhaka-1215, Bangladesh
| | - Hasan Imam
- Department of Biochemistry and Molecular Biology, Siddheswari College, Moghbazar, Dhaka-1217, Bangladesh
| | - Sirajul Islam
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Shahin Mahmud
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh.
| |
Collapse
|
4
|
Herrera-Espejo S, Rubio A, Ceballos-Romero L, Pachón J, Cordero E, Pérez-Pulido AJ, Pachón-Ibáñez ME. Detection of Possible Resistance Mechanisms in Uropathogenic Escherichia coli Strains Isolated from Kidney Transplant Recipients Based on Whole Genome Sequencing. Biomolecules 2025; 15:260. [PMID: 40001563 PMCID: PMC11853403 DOI: 10.3390/biom15020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Urinary tract infections are a global health concern, with uropathogenic Escherichia coli (UPEC) accounting for 80-90% of cases. Given the rise in antimicrobial resistance, our aim was to elucidate the genetic mechanisms behind low-level resistance to ciprofloxacin and fosfomycin (LLCR and LLFR) in UPEC strains, using whole-genome sequencing (WGS) to identify point mutations in chromosomal and plasmid genes. METHODS A cohort UPEC was collected from kidney transplant recipients at the Virgen del Rocío University Hospital, Spain. Minimum inhibitory concentrations were determined for ciprofloxacin and fosfomycin to categorize strains into LLCR and LLFR. Twenty strains were selected for WGS, with genome annotations. Point mutations were identified and analyzed using alignment tools, and protein stability changes were predicted. RESULTS LLCR strains exhibited mutations in key quinolone resistance-determining regions of the gyrA gene, in 83% of cases. The qnrS1 plasmid gene was found in 17% of LLCR strains. LLFR strains showed mutations in the glpT and cyaA genes. Mutations in the uhp gene family were linked to the fosfomycin-resistant phenotype, suggesting a multi-step resistance evolution mechanism. CONCLUSIONS This study highlights the complex interplay between chromosomal and plasmid genes in UPEC's resistance to ciprofloxacin and fosfomycin. The findings contribute to understanding low-level resistance mechanisms and may guide the development of novel therapeutic strategies to combat multidrug-resistant strains.
Collapse
Affiliation(s)
- Soraya Herrera-Espejo
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (L.C.-R.); (M.E.P.-I.)
| | - Alejandro Rubio
- Andalusian Centre for Developmental Biology (CABD, UPO-CSIC-JA), Faculty of Experimental Sciences (Genetics Area), University Pablo de Olavide, 41013 Seville, Spain;
| | - Lucía Ceballos-Romero
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (L.C.-R.); (M.E.P.-I.)
| | - Jerónimo Pachón
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain;
- Department of Medicine, School of Medicine, University of Seville, 41004 Seville, Spain
| | - Elisa Cordero
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (L.C.-R.); (M.E.P.-I.)
- Department of Medicine, School of Medicine, University of Seville, 41004 Seville, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonio J. Pérez-Pulido
- Andalusian Centre for Developmental Biology (CABD, UPO-CSIC-JA), Faculty of Experimental Sciences (Genetics Area), University Pablo de Olavide, 41013 Seville, Spain;
| | - María Eugenia Pachón-Ibáñez
- Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (S.H.-E.); (L.C.-R.); (M.E.P.-I.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Bramki A, Barboucha G, Benslama O, Andolfi A, Makhlouf FZ, Smati M, Benouchenne D, Moussaoui M, Bensouici C, Cimmino A, Zorrilla JG, Salvatore MM, Masi M. Bioactive Potential and Chemical Composition of Vitex agnus-castus L. Leaf Extracts Collected in Algeria: A Combined In Vitro and In Silico Approach. Molecules 2025; 30:749. [PMID: 39942851 PMCID: PMC11820499 DOI: 10.3390/molecules30030749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Vitex agnus-castus L., a medicinal plant widespread in the Middle East and Europe, is traditionally used to treat various disorders. In this study, extracts from its leaves, collected in Algeria, were evaluated for their antioxidant, enzymatic, and antibacterial activities through in vitro and in silico studies. The hydroalcoholic extract was fractionated using solvents of varying polarity to isolate bioactive compounds with potential biological effects. Notable levels of total phenolics, flavonoids, and flavonols were detected in the dichloromethane (CH2Cl2) and ethyl acetate (EtOAc) extracts. NMR and GC-MS were used to identify metabolites in the extracts, which were discussed in relation to their biological activities. Antioxidant assays showed that the EtOAc extract had a remarkable effect, particularly in the DPPH• free radicals test (IC50 = 15.68 ± 1.51 μg/mL), while enzymatic assays revealed that the dichloromethane extract moderately inhibited butyrylcholinesterase (IC50 = 133.54 ± 1.45 μg/mL). Antibacterial assays showed that the extracts inhibited the growth of Staphylococcus aureus, Bacillus subtilis, and Escherichia coli strains, with the most significant effect observed for the n-hexane extract, especially against S. aureus and B. subtilis (respectively, 22.33 ± 0.47 and 18.33 ± 0.47 mm diameters). These outcomes were validated via molecular docking simulations on three DNA gyrase enzymes: 3G7E (from E. coli), 3G75 (from S. aureus), and 4DDQ (from B. subtilis), revealing that linolenic and palmitic acids, as well as phytol significantly interacted with these enzymes, showing varying binding affinities and suggesting antibacterial potential against the targeted species E. coli and S. aureus. These findings highlight the potential therapeutic use of V. agnus-castus leaves, encouraging further research into their applicability in the development of plant-derived drugs.
Collapse
Affiliation(s)
- Amina Bramki
- Higher National School of Biotechnology Taoufik KHAZNADAR, Nouveau Pôle Universitaire Ali Mendjeli, BP. E66, Constantine 25100, Algeria; (A.B.); (G.B.); (F.Z.M.); (M.S.); (D.B.)
| | - Ghozlane Barboucha
- Higher National School of Biotechnology Taoufik KHAZNADAR, Nouveau Pôle Universitaire Ali Mendjeli, BP. E66, Constantine 25100, Algeria; (A.B.); (G.B.); (F.Z.M.); (M.S.); (D.B.)
| | - Ouided Benslama
- Laboratory of Natural Substances, Biomolecules, and Biotechnological Applications, Department of Natural and Life Sciences, Larbi Ben M’Hidi University, Oum El Bouaghi 04000, Algeria;
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.A.); (A.C.); (J.G.Z.)
| | - Fatima Zohra Makhlouf
- Higher National School of Biotechnology Taoufik KHAZNADAR, Nouveau Pôle Universitaire Ali Mendjeli, BP. E66, Constantine 25100, Algeria; (A.B.); (G.B.); (F.Z.M.); (M.S.); (D.B.)
| | - Maria Smati
- Higher National School of Biotechnology Taoufik KHAZNADAR, Nouveau Pôle Universitaire Ali Mendjeli, BP. E66, Constantine 25100, Algeria; (A.B.); (G.B.); (F.Z.M.); (M.S.); (D.B.)
| | - Djamila Benouchenne
- Higher National School of Biotechnology Taoufik KHAZNADAR, Nouveau Pôle Universitaire Ali Mendjeli, BP. E66, Constantine 25100, Algeria; (A.B.); (G.B.); (F.Z.M.); (M.S.); (D.B.)
| | - Mohamed Moussaoui
- Pharmaceutical Sciences Research Center, Constantine 25100, Algeria;
| | - Chawki Bensouici
- Biotechnology Research Center, UV 03, BP. E73, Ali Mendjeli, Constantine 25016, Algeria;
| | - Alessio Cimmino
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.A.); (A.C.); (J.G.Z.)
| | - Jesús G. Zorrilla
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.A.); (A.C.); (J.G.Z.)
- Allelopathy Group, Department of Organic Chemistry, Facultad de Ciencias, Institute of Biomolecules (IN-BIO), University of Cadiz, 11510 Puerto Real, Spain
| | - Maria Michela Salvatore
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy;
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.A.); (A.C.); (J.G.Z.)
| |
Collapse
|
6
|
Aly AA, Abd El-Naby HA, Ahmed EK, Gedamy SA, Rissanen K, Nieger M, Brown AB, Shehat MG, Shaaban MM, Atta A. Microwave-assisted synthesis and in vitro and in silico studies of pyrano[3,2- c]quinoline-3-carboxylates as dual acting anti-cancer and anti-microbial agents and potential topoisomerase II and DNA-gyrase inhibitors. RSC Adv 2025; 15:1941-1956. [PMID: 39839233 PMCID: PMC11749604 DOI: 10.1039/d4ra06201a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025] Open
Abstract
A microwave-assisted method was utilized to synthesize novel pyranoquinolone derivatives as dual acting topoisomerase II/DNA gyrase inhibitors with apoptosis induction ability for halting lung cancer and staphylococcal infection. Herein, the designed rationale was directed toward mimicking the structural features of both topoisomerase II and DNA gyrase inhibitors as well as endowing them with apoptosis induction potential. The absolute configuration of the series was assigned using X-ray diffraction analysis. Cytotoxic activity against NSCLC A549 cells showed that ethyl 2-amino-9-bromo-4-(furan-2-yl)-5-oxo-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carboxylate (IC50 ≈ 35 μM) was the most potent derivative in comparison to the positive control Levofloxacin and was selected for further investigation to assess its selectivity (SI = 1.23). Furthermore, in vitro antibacterial screening revealed the potential activity of this bromo derivative against Staphylococcus aureus. Mechanistic studies showed that the aforementioned compound exhibited promising inhibitory activity against topoisomerase II (IC50 = 45.19 μM) and DNA gyrase (IC50 = 40.76 μM) compared to reference standards. In addition, the previous compound induced a A549 cell apoptosis by 38.49-fold and it also increased the total apoptosis by 20.4% compared to a 0.53% increase in the control. Docking simulations postulated its interactions and suggested well fitting into its molecular targets.
Collapse
Affiliation(s)
- Ashraf A Aly
- Chemistry Department, Faculty of Science, Minia University 61519 El-Minia Egypt
| | | | - Essam Kh Ahmed
- Chemistry Department, Faculty of Science, Minia University 61519 El-Minia Egypt
| | - Sageda A Gedamy
- Chemistry Department, Faculty of Science, Minia University 61519 El-Minia Egypt
| | - Kari Rissanen
- Department of Chemistry, University of Jyväskylä P. O. Box 35 FIN-40014 Jyväskylä Finland
| | - Martin Nieger
- Department of Chemistry, University of Helsinki P. O. Box 55, A. I. Virtasen aukio I 00014 Helsinki Finland
| | - Alan B Brown
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology Melbourne FL 32901 USA
| | - Michael G Shehat
- Department of Microbiology, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt
| | - Marwa M Shaaban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt
| | - Amal Atta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt
| |
Collapse
|
7
|
Gach-Janczak K, Piekielna-Ciesielska J, Waśkiewicz J, Krakowiak K, Wtorek K, Janecka A. Quinolin-4-ones: Methods of Synthesis and Application in Medicine. Molecules 2025; 30:163. [PMID: 39795219 PMCID: PMC11721932 DOI: 10.3390/molecules30010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Quinolinones, also called quinolones, are a group of heterocyclic compounds with a broad spectrum of biological activities. These compounds occur naturally in plants and microorganisms but can also be obtained synthetically. The first synthesis of quinolinones took place at the end of the 19th century, and the most recent methods were published just a few years ago. They allow for obtaining an unlimited number of analogs differing in biological properties. In this review, we described the plethora of methods leading to quinolin-4-ones. Several of these compounds have been used as antibiotics for over four decades, but recently, their antiproliferative effects have been of particular interest to researchers. This review summarizes the experimental progress made in the synthetic development of various routes leading to quinoline-4-ones and presents an overview of the structures, their evolution, and their relation to activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.G.-J.); (J.P.-C.); (J.W.); (K.K.); (K.W.)
| |
Collapse
|
8
|
Zhou Q, Pu N, Xu G, Liu H, Jia X, Wang X, Xu P. Rifampicin and isoniazid resistance not promote fluoroquinolone resistance in Mycobacterium smegmatis. PLoS One 2025; 20:e0315512. [PMID: 39746086 PMCID: PMC11694965 DOI: 10.1371/journal.pone.0315512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND The emergence of drug-resistant Tuberculosis (TB) has made treatment challenging. Although fluoroquinolones (FQs) are used as key drugs in the treatment of multidrug-resistant tuberculosis (MDR-TB), the problem of FQs resistance is becoming increasingly serious. Rifampicin (RIF) resistance is considered a risk factor for FQs resistance. The objective of this study was to investigate the impact of RIF and isoniazid (INH) resistance on the FQs resistance in vitro experiment. METHODS FQs resistant strains were selected in vitro from RIF and/or INH resistant Mycobacterium smegmatis (M.sm). The sequencing of the gyrA gene, and the minimum inhibitory concentration (MIC) of FQs (ciprofloxacin, levofloxacin, moxifloxacin and gatifloxacin) were performed for FQs-resistant strains. RESULTS A total of 222 FQs-resistant M.sm strains were selected, all of which had the gyrA mutation. Seven gyrA mutations were detected, with mutations at loci 90 and 94 being the most common. There were no differences in FQs resistance developed from RIF and/or INH resistant M.sm. There was a significant difference in the MIC of the gyrA mutant types to FQs. The highest resistance to FQs was observed in the Gly88Cys mutant strains. M.sm with the identical gyrA mutation showed the highest resistance to ciprofloxacin and relatively low resistance to gatifloxacin and moxifloxacin. CONCLUSIONS In this study, we found no evidence that RIF and/or INH resistance directly affects FQs resistance in M.sm in vitro experiments. Resistance profiles of different gryA mutations to the four FQs drugs were also presented. These findings provide a more comprehensive understanding of FQs resistance.
Collapse
Affiliation(s)
- Qin Zhou
- National Clinical Research Center for Infectious Diseases, Shenzhen Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Na Pu
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Ge Xu
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Hangchi Liu
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Xudong Jia
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaomin Wang
- National Clinical Research Center for Infectious Diseases, Shenzhen Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| | - Peng Xu
- National Clinical Research Center for Infectious Diseases, Shenzhen Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Walha S, Trabelsi I, Ktari N, Wahbi H, Hamdi M, Naïli H. Synthesis, structure analysis, biological activity evaluation and pharmacological aspects prediction of two newly synthesized compounds: N-methylbenzylammonium bromide and 2-amino-5-ammoniopyridinium dichloride. J Mol Struct 2025; 1319:139601. [DOI: 10.1016/j.molstruc.2024.139601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Alshammari AD, Aldhafeeri MM, Aldhafeeri AM, Alanzi MA, Almutairi MB, Alrasheedi JA, Alsurur TA, Alshammri AD. The type of infections and the use of antibiotics among patients with rheumatoid arthritis: A review. J Family Med Prim Care 2025; 14:8-14. [PMID: 39989513 PMCID: PMC11845013 DOI: 10.4103/jfmpc.jfmpc_739_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/30/2024] [Accepted: 06/29/2024] [Indexed: 02/25/2025] Open
Abstract
Patients diagnosed with rheumatoid arthritis have a heightened susceptibility to infections, which may lead to higher rates of illness and death. The heightened susceptibility may arise from the illness itself, which causes changes in the body's innate cellular defense mechanisms, or from the medications used to manage the condition. The precise level of risk for infections associated with traditional disease-modifying anti-rheumatic drugs has not been fully elucidated. This review aimed To investigate the type of infections and the use of antibiotics among patients with rheumatoid arthritis. An electronic literature search was conducted using the MEDLINE database, with the indicated search keywords: infections, antibiotics, use, patients, rheumatoid, and arthritis. To identify relevant information, the search was limited to articles published between 2017 and 2024. The researchers used suitable search terms on Google Scholar to discover and examine relevant scholarly articles. The selection of articles was determined by several inclusion criteria. The research included publications that were published from 2017 to 2024. The study was organized into many sections, each including particular categories within the analysis section.we reportrd that : Within the developing age of focused synthetic treatments for RA, severe infections persist as the primary consequence of long-term treatment. In all patients with rheumatoid arthritis, it is necessary to conduct initial screenings for hepatitis B virus and tuberculosis. Additionally, it is important to administer vaccinations for specific pathogens (such as pneumococcal, herpes zoster, and influenza) before and during treatment. Aggressive therapy should be pursued to effectively manage disease activity in RA patients, while also maintaining constant vigilance for early signs of infections. Extra care should be given to senior rheumatoid arthritis (RA) patients who are over 65 years old and have other medical conditions. These people are often more susceptible to developing infections, regardless of the medication they get. The trials conducted with different antibiotics have confirmed the effectiveness of these medications in treating rheumatoid arthritis. Thus, it is plausible that the culprit responsible for rheumatoid arthritis is a microbe, namely periodontopathic bacteria.
Collapse
Affiliation(s)
- Asma D. Alshammari
- Intensive Care Department, Maternity and Children Hospital, Hafar Albatin, Al-Qaysumah, Saudi Arabia
| | - Mona Matar Aldhafeeri
- Department of Pharmacy, College of Pharmacy, University of Hafar Albatin, Hafar Albatin, Saudi Arabia
| | - Amal M. Aldhafeeri
- Medical Laboratories Department, College of Applied Medical Sciences, University of Hafar Albatin, Hafar Albatin, Saudi Arabia
| | - Maram Asaad Alanzi
- Medical Laboratories Department, College of Applied Medical Sciences, University of Hafar Albatin, Hafar Albatin, Saudi Arabia
| | - Maha Bandar Almutairi
- Department of Pharmacy, College of Pharmacy, University of Hafar Albatin, Hafar Albatin, Saudi Arabia
| | | | - Thikra Adel Alsurur
- Department of Pharmacy, College of Pharmacy, University of Hafar Albatin, Hafar Albatin, Saudi Arabia
| | - Aeshah Dhahawi Alshammri
- Department of Pharmacy, College of Pharmacy, University of Hafar Albatin, Hafar Albatin, Al-Qaysumah, Saudi Arabia
| |
Collapse
|
11
|
Phan CM, Luu CH, Murugesan M, Nguyen TNQ, Ha NYN, Ngo HL, Nguyen NDH, Pan Z, Phan VHG, Li Y, Thambi T. Injectable gelatin-pectin hydrogel for dental tissue engineering: Enhanced angiogenesis and antibacterial efficacy for pulpitis therapy. Int J Biol Macromol 2025; 284:137939. [PMID: 39592046 DOI: 10.1016/j.ijbiomac.2024.137939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
Pulpitis is inflammation of the dental pulp, often caused by bacterial infection from untreated cavities, leading to pain. The main challenge in treatment is eliminating infection while preserving tooth vitality. This study aims to address this challenge by developing a hydrogel for convenient insertion into the root canal system, securely attaching to dentin walls. An injectable hydrogel system is developed by chemically cross-linking natural polysaccharide pectin with gelatin (GPG) through reversible Schiff base reaction. The GPG system was then used to encapsulate and release drugs, such as ciprofloxacin (CIP) for infection prevention and deferoxamine (DFO) for promoting blood vessel proliferation and reducing inflammatory reactions. The GPGs absorbed significant amounts of CIP and DFO, enabling sustained release over a nearly ten-day period. When subcutaneously implanted, the GPGs formed stable gel depots, with only 50 % of the gels degrading after 3 weeks, indicating a sustained biodegradation pattern. Additionally, the GPG system demonstrated excellent antibacterial activity against both gram-negative and gram-positive bacteria. Results from in vitro scratch healing tests and in ovo chorioallantoic membrane chick model tests showed promising biocompatibility and promotion of vascular proliferation by the GPG. This study heralds a novel frontier in endodontic therapeutics, poised to potentially enable dental pulp regeneration.
Collapse
Affiliation(s)
- Chau My Phan
- College of Materials and Textile Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, Zhejiang Province, PR China; Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Cuong Hung Luu
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia; Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Mohanapriya Murugesan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea
| | - Thi-Nhu-Quynh Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Nhu-Y Ngoc Ha
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Huong Lan Ngo
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Ngoc-Dan Ho Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Zhouyi Pan
- College of Materials and Textile Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, Zhejiang Province, PR China
| | - V H Giang Phan
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Yi Li
- College of Materials and Textile Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, Zhejiang Province, PR China.
| | - Thavasyappan Thambi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea.
| |
Collapse
|
12
|
Jojoa-Sierra SD, Serna-Galvis EA, García-Rubio I, Ormad MP, Torres-Palma RA, Mosteo R. The Photocatalytic Degradation of Enrofloxacin Using an Ecofriendly Natural Iron Mineral: The Relationship Between the Degradation Routes, Generated Byproducts, and Antimicrobial Activity of Treated Solutions. Molecules 2024; 29:5982. [PMID: 39770071 PMCID: PMC11676763 DOI: 10.3390/molecules29245982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/10/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
The use of ecofriendly natural minerals in photocatalytic processes to deal with the antimicrobial activity (AA) associated with antibiotics in aqueous systems is still incipient. Therefore, in this work, the capacity of a natural iron material (NIM) in photo-treatments, generating reactive species, to remove the antibiotic enrofloxacin and decrease its associated AA from water is presented. Initially, the fundamental composition, oxidation states, bandgap, point of zero charge, and morphological characteristics of the NIM were determined, denoting the NIM's feasibility for photocatalytic processes. Consequently, the effectiveness of different advanced processes such as using solar light with the NIM (Light-NIM) and solar light with the NIM and H2O2 (Light-NIM-H2O2) to reduce AA was evaluated. The NIM acts as a semiconductor under solar light, effectively degrading enrofloxacin (ENR) and reducing its AA, although complete elimination was not achieved. The addition of hydrogen peroxide (NIM-Light-H2O2) enhanced the generation of reactive oxygen species (ROS), thereby increasing the elimination of ENR and AA. The role of ROS, specifically O2•- and HO●, in the degradation of enrofloxacin was distinguished using scavenger species and electron paramagnetic resonance (EPR) analysis. Additionally, the five primary degradation products generated during the advanced processes were elucidated. Furthermore, the relationship between the structure of these products and the persistence or elimination of AA, which was differentiated against E. coli but not against S. aureus, was discussed. The effects of the matrix during the process and the extent of the treatments, including their capacity to promote disinfection, were also studied. The reusability of the natural iron material was examined, and it was found that the NIM-Light-H2O2 system showed an effective reduction of 5 logarithmic units in microbiological contamination in an EWWTP and can be reused for up to three cycles while maintaining 100% efficiency in reducing AA.
Collapse
Affiliation(s)
- Sindy D. Jojoa-Sierra
- Grupo de Investigación Agua y Salud Ambiental, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, 50018 Zaragoza, Spain; (S.D.J.-S.)
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellin 050010, Colombia;
| | - Efraím A. Serna-Galvis
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellin 050010, Colombia;
- Grupo Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellin 050010, Colombia
| | - Inés García-Rubio
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Maria P. Ormad
- Grupo de Investigación Agua y Salud Ambiental, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, 50018 Zaragoza, Spain; (S.D.J.-S.)
| | - Ricardo A. Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellin 050010, Colombia;
| | - Rosa Mosteo
- Grupo de Investigación Agua y Salud Ambiental, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, 50018 Zaragoza, Spain; (S.D.J.-S.)
| |
Collapse
|
13
|
Singh G, Hossain MA, Al-Fahad D, Gupta V, Tandon S, Soni H, Narasimhaji CV, Jaremko M, Emwas AH, Anwar MJ, Azam F. An in-silico approach to target multiple proteins involved in anti-microbial resistance using natural compounds produced by wild mushrooms. Biochem Biophys Rep 2024; 40:101854. [PMID: 39498442 PMCID: PMC11532805 DOI: 10.1016/j.bbrep.2024.101854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
Bacterial resistance to antibiotics and the number of patients infected by multi-drug-resistant bacteria have increased significantly over the past decade. This study follows a computational approach to identify potential antibacterial compounds from wild mushrooms. Twenty-six known compounds produced by wild mushrooms were docked to assess their affinity with drug targets of antibiotics such as penicillin-binding protein-1a (PBP1a), DNA gyrase, and isoleucyl-tRNA synthetase (ILERS). Docking scores were further validated by multiple receptor conformer (MRC)-based docking studies. Based on the MRC-based docking results, eight molecules were shortlisted for ADMET analysis. Molecular dynamics (MD) simulations were further performed to evaluate the conformational stability of the ligand-protein complexes. Binding energies were computed by the gmx_MMPBSA method. The data were obtained in terms of root-mean square deviation, and root-mean square fluctuation justified the stability of Austrocortilutein A, Austrocortirubin, and Confluentin in complex with several proteins under physiological conditions. Among these, Austrocortilutein A displayed better binding affinity with PBP1a and ILERS when compared with their respective reference ligands. This study is preliminary and aims to help drive the search for compounds that have the capacity to overcome the anti-microbial resistance of prevalent bacteria, using natural compounds produced by wild mushrooms. Further experimental validation is required to justify the clinical use of the studied compounds.
Collapse
Affiliation(s)
- Gagandeep Singh
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India, 284003
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India, 110016
| | - Md Alamgir Hossain
- Department of Pharmacy, Jagannath University, 9, 10 Chittaranjan Ave, Dhaka, 1100, Bangladesh
| | - Dhurgham Al-Fahad
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Thi-Qar, Iraq
| | - Vandana Gupta
- Departments of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | - Smriti Tandon
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India, 284003
| | - Hemant Soni
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India, 284003
| | | | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Md Jamir Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, 51542, Saudi Arabia
| | - Faizul Azam
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
| |
Collapse
|
14
|
Muhammad S, Faiz A, Bibi S, Rehman SU, Alshahrani MY. Investigation of dual inhibition of antibacterial and antiarthritic drug candidates using combined approach including molecular dynamics, docking and quantum chemical methods. Comput Biol Chem 2024; 113:108218. [PMID: 39378822 DOI: 10.1016/j.compbiolchem.2024.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Emerging antibiotic resistance in bacteria threatens immune efficacy and increases susceptibility to bone degradation and arthritic disorders. In our current study, we utilized a three-layer in-silico screening approach, employing quantum chemical methods, molecular docking, and molecular dynamic methods to explore the novel drug candidates similar in structure to floroquinolone (ciprofloxacin). We investigated the interaction of novel similar compounds of ciprofloxacin with both a bacterial protein S. aureus TyrRS (1JIJ) and a protein associated with gout arthritis Neutrophil collagenase (3DPE). UTIs and gout are interconnected through the elevation of uric acid levels. We aimed to identify compounds with dual functionality: antibacterial activity against UTIs and antirheumatic properties. Our screening based on several methods, sorted out six promising ligands. Four of these (L1, L2, L3, and L6) demonstrated favorable hydrogen bonding with both proteins and were selected for further analysis. These ligands showed binding affinities of -8.3 to -9.1 kcal/mol with both proteins, indicating strong interaction potential. Notably, L6 exhibited highest binding energies of -9.10 and -9.01 kcal/mol with S. aureus TyrRS and Neutrophil collagenase respectively. Additionally, the pkCSM online database conducted ADMET analysis on all lead ligand suggested that L6 might exhibit the highest intestinal absorption and justified total clearance rate. Moreover, L6 showed a best predicted inhibition constant with both proteins. The average RMSF values for all complex systems, namely L1, L2, L3 and L6 are 0.43 Å, 0.57 Å, 0.55 Å, and 0.51 Å, respectively where the ligand residues show maximum stability. The smaller energy gap of 3.85 eV between the HOMO and LUMO of the optimized molecule L1 and L6 suggests that these are biologically active compound. All the selected four drugs show considerable stabilization energy ranging from 44.78 to 103.87 kcal/mol, which means all four compounds are chemically and physically stable. Overall, this research opens exciting avenues for the development of new therapeutic agents with dual functionalities for antibacterial and antiarthritic drug designing.
Collapse
Affiliation(s)
- Shabbir Muhammad
- Central labs, King Khalid University, AlQura'a, P. O. Box 906, Abha, Saudi Arabia; Department of Chemistry, College of Science, King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia.
| | - Amina Faiz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Shamsa Bibi
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Shafiq Ur Rehman
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 9088, Abha 61413, Saudi Arabia
| |
Collapse
|
15
|
Ommi O, Dhopat PS, Sau S, Estharla MR, Nanduri S, Kalia NP, Yaddanapudi VM. Design, synthesis, and biological evaluation of pyrazole-ciprofloxacin hybrids as antibacterial and antibiofilm agents against Staphylococcus aureus. RSC Med Chem 2024; 16:d4md00623b. [PMID: 39493222 PMCID: PMC11528910 DOI: 10.1039/d4md00623b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024] Open
Abstract
In our continued efforts to tackle antibiotic resistance, a new series of pyrazole-ciprofloxacin hybrids were designed, synthesized, and evaluated for their antibacterial activity against Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa), and Mycobacterium tuberculosis (Mtb). Most of the compounds exhibited good to excellent activities against S. aureus, and six compounds (7a, 7b, 7d, 7g, 7k, and 7p) exhibited higher or comparable activity (MIC = 0.125-0.5 μg mL-1) to ciprofloxacin (0.125 μg mL-1). Further, these selected compounds were non-toxic (CC50 ≥ 1000 μg mL-1) when evaluated for cell viability test against the Hep-G2 cell line. Three compounds (7a, 7d, and 7g) demonstrated excellent activity against ciprofloxacin-resistant S. aureus with MIC values ranging from 0.125-0.5 μg mL-1 and good antibiofilm activity. Among them, 7g displayed remarkable antibiofilm activity with an MBIC50 value of 0.02 μg mL-1, which is 50 times lower than ciprofloxacin (MBIC50 = 1.06 μg mL-1). A time-kill kinetics study indicated that 7g showed both concentration and time-dependent bactericidal properties. In addition, 7g effectively inhibited DNA-gyrase supercoiling activity at 1 μg mL-1 (8× MIC). Two compounds 7b and 7d exhibited the highest activity against Mtb with a MIC of 0.5 μg mL-1, while 7c showed the highest activity against P. aeruginosa with a MIC value of 2 μg mL-1. Molecular docking studies revealed that 7g formed stable interactions at the DNA active site.
Collapse
Affiliation(s)
- Ojaswitha Ommi
- Work carried out at Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 Telangana India
| | - Priyanka Sudhir Dhopat
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 Telangana India
| | - Shashikanta Sau
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 Telangana India
| | - Madhu Rekha Estharla
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 Telangana India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 Telangana India
| | - Nitin Pal Kalia
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 Telangana India
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 Telangana India
| |
Collapse
|
16
|
Dalbanjan NP, Praveen Kumar SK. A Chronicle Review of In-Silico Approaches for Discovering Novel Antimicrobial Agents to Combat Antimicrobial Resistance. Indian J Microbiol 2024; 64:879-893. [PMID: 39282180 PMCID: PMC11399514 DOI: 10.1007/s12088-024-01355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/11/2024] [Indexed: 09/18/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a foremost threat to global health, necessitating innovative strategies for discovering antimicrobial agents. This review explores the role and recent advances of in-silico techniques in identifying novel antimicrobial agents and combating AMR giving few briefings of recent case studies of AMR. In-silico techniques, such as homology modeling, virtual screening, molecular docking, pharmacophore modeling, molecular dynamics simulation, density functional theory, integrated machine learning, and artificial intelligence, are systematically reviewed for their utility in discovering antimicrobial agents. These computational methods enable the rapid screening of large compound libraries, prediction of drug-target interactions, and optimization of drug candidates. The review discusses integrating in-silico approaches with traditional experimental methods and highlights their potential to accelerate the discovery of new antimicrobial agents. Furthermore, it emphasizes the significance of interdisciplinary collaboration and data-sharing initiatives in advancing antimicrobial research. Through a comprehensive discussion of the latest developments in in-silico techniques, this review provides valuable insights into the future of antimicrobial research and the fight against AMR. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01355-x.
Collapse
Affiliation(s)
| | - S K Praveen Kumar
- Protein Biology Lab, Department of Biochemistry, Karnatak University, Dharwad, Karnataka 580003 India
| |
Collapse
|
17
|
Angelini P. Plant-Derived Antimicrobials and Their Crucial Role in Combating Antimicrobial Resistance. Antibiotics (Basel) 2024; 13:746. [PMID: 39200046 PMCID: PMC11350763 DOI: 10.3390/antibiotics13080746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Antibiotic resistance emerged shortly after the discovery of the first antibiotic and has remained a critical public health issue ever since. Managing antibiotic resistance in clinical settings continues to be challenging, particularly with the rise of superbugs, or bacteria resistant to multiple antibiotics, known as multidrug-resistant (MDR) bacteria. This rapid development of resistance has compelled researchers to continuously seek new antimicrobial agents to curb resistance, despite a shrinking pipeline of new drugs. Recently, the focus of antimicrobial discovery has shifted to plants, fungi, lichens, endophytes, and various marine sources, such as seaweeds, corals, and other microorganisms, due to their promising properties. For this review, an extensive search was conducted across multiple scientific databases, including PubMed, Elsevier, ResearchGate, Scopus, and Google Scholar, encompassing publications from 1929 to 2024. This review provides a concise overview of the mechanisms employed by bacteria to develop antibiotic resistance, followed by an in-depth exploration of plant secondary metabolites as a potential solution to MDR pathogens. In recent years, the interest in plant-based medicines has surged, driven by their advantageous properties. However, additional research is essential to fully understand the mechanisms of action and verify the safety of antimicrobial phytochemicals. Future prospects for enhancing the use of plant secondary metabolites in combating antibiotic-resistant pathogens will also be discussed.
Collapse
Affiliation(s)
- Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| |
Collapse
|
18
|
Rasulov A, Torambetov B, Alimnazarov B, Kadirova S, Suyunov J, Nazarov Y, Ashurov J. Norfloxacinium nitrate. IUCRDATA 2024; 9:x240813. [PMID: 39247080 PMCID: PMC11375602 DOI: 10.1107/s2414314624008137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024] Open
Abstract
In the title salt [systematic name: 4-(3-carb-oxy-1-ethyl-6-fluoro-4-oxo-1,4-di-hydro-quin-olin-7-yl)piperazin-1-ium nitrate], C16H19FN3O3 +·NO3 -, proton transfer from nitric acid to the N atom of the piperazine ring of norfloxacin has occurred to form a mol-ecular salt. In the extended structure, N-H⋯O hydrogen bonds link alternating cations and anions into [100] chains, which are reinforced by aromatic π-π stacking inter-actions between the quinoline moieties of the norfloxacinium cations.
Collapse
Affiliation(s)
- Abdusamat Rasulov
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek St 83, Tashkent, 100125, Uzbekistan
| | - Batirbay Torambetov
- National University of Uzbekistan named after Mirzo Ulugbek 4 University St Tashkent 100174 Uzbekistan
| | | | - Shakhnoza Kadirova
- National University of Uzbekistan named after Mirzo Ulugbek 4 University St Tashkent 100174 Uzbekistan
| | - Jabbor Suyunov
- Termez State University, Barkamol Avlod St 43, Termez, 190111, Uzbekistan
| | - Yusufjon Nazarov
- Termez State University, Barkamol Avlod St 43, Termez, 190111, Uzbekistan
| | - Jamshid Ashurov
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek St 83, Tashkent, 100125, Uzbekistan
| |
Collapse
|
19
|
Sangiorgio A, Sirone M, Adravanti FM, Testa EA, Riegger M, Filardo G. Achilles tendon complications of fluoroquinolone treatment: a molecule-stratified systematic review and meta-analysis. EFORT Open Rev 2024; 9:581-588. [PMID: 38949172 PMCID: PMC11297402 DOI: 10.1530/eor-23-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Purpose The association between fluoroquinolone intake and Achilles tendinopathy (AT) or Achilles tendon rupture (ATR) is widely documented. However, it is not clear whether different molecules have the same effect on these complications. The purpose of this study was to document Achilles tendon complications for the most prescribed fluoroquinolones molecules. Methods A literature search was performed on Pubmed, Cochrane, Embase, and Web of Science databases up to April 2023. Inclusion criteria: studies of any level of evidence, written in English, documenting the prevalence of AT/ATR after fluoroquinolone consumption and stratifying the results for each type of molecule. The Downs and Black's 'Checklist for Measuring Quality' was used to evaluate the risk of bias. Results Twelve studies investigating 439,299 patients were included (59.7% women, 40.3% men, mean age: 53.0 ± 15.6 years). The expected risk of AT/ATR was 0.17% (95% CI: 0.15-0.19, standard error (s.e.): 0.24) for levofloxacin, 0.17% (95% CI: 0.16-0.19, s.e.: 0.20) for ciprofloxacin, 1.40% (95% CI: 0.88-2.03, s.e.: 2.51) for ofloxacin, and 0.31% (95% CI: 0.23-0.40, s.e.: 0.77) for the other molecules. The comparison between groups documented a significantly higher AT/ATR rate in the ofloxacin group (P < 0.0001 for each comparison). Levofloxacin and ciprofloxacin showed the same risk (P = n.s.). The included studies showed an overall good quality. Conclusion Ofloxacin demonstrated a significantly higher rate of AT/ATR complications in the adult population, while levofloxacin and ciprofloxacin showed a safer profile compared to all the other molecules. More data are needed to identify other patient and treatment-related factors influencing the risk of musculoskeletal complications.
Collapse
Affiliation(s)
- Alessandro Sangiorgio
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
| | - Martina Sirone
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
| | - Federico Maria Adravanti
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
- 2nd Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Enrique Adrian Testa
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Martin Riegger
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Giuseppe Filardo
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
- 2nd Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
20
|
Elrashedy A, Nayel M, Salama A, Zaghawa A, Abdelsalam NR, Hasan ME. Phylogenetic Analysis and Comparative Genomics of Brucella abortus and Brucella melitensis Strains in Egypt. J Mol Evol 2024; 92:338-357. [PMID: 38809331 PMCID: PMC11169049 DOI: 10.1007/s00239-024-10173-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
Brucellosis is a notifiable disease induced by a facultative intracellular Brucella pathogen. In this study, eight Brucella abortus and eighteen Brucella melitensis strains from Egypt were annotated and compared with RB51 and REV1 vaccines respectively. RAST toolkit in the BV-BRC server was used for annotation, revealing genome length of 3,250,377 bp and 3,285,803 bp, 3289 and 3323 CDS, 48 and 49 tRNA genes, the same number of rRNA (3) genes, 583 and 586 hypothetical proteins, 2697 and 2726 functional proteins for B. abortus and B. melitensis respectively. B. abortus strains exhibit a similar number of candidate genes, while B. melitensis strains showed some differences, especially in the SRR19520422 Faiyum strain. Also, B. melitensis clarified differences in antimicrobial resistance genes (KatG, FabL, MtrA, MtrB, OxyR, and VanO-type) in SRR19520319 Faiyum and (Erm C and Tet K) in SRR19520422 Faiyum strain. Additionally, the whole genome phylogeny analysis proved that all B. abortus strains were related to vaccinated animals and all B. melitensis strains of Menoufia clustered together and closely related to Gharbia, Dameitta, and Kafr Elshiek. The Bowtie2 tool identified 338 (eight B. abortus) and 4271 (eighteen B. melitensis) single nucleotide polymorphisms (SNPs) along the genomes. These variants had been annotated according to type and impact. Moreover, thirty candidate genes were predicted and submitted at GenBank (24 in B. abortus) and (6 in B. melitensis). This study contributes significant insights into genetic variation, virulence factors, and vaccine-related associations of Brucella pathogens, enhancing our knowledge of brucellosis epidemiology and evolution in Egypt.
Collapse
Affiliation(s)
- Alyaa Elrashedy
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt.
| | - Mohamed Nayel
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Akram Salama
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ahmed Zaghawa
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Nader R Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Mohamed E Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
21
|
Xue W, Zuo X, Zhao X, Wang X, Zhang X, Xia J, Cheng M, Yang H. Bioisosteric replacement strategy leads to novel DNA gyrase B inhibitors with improved potencies and properties. Bioorg Chem 2024; 147:107314. [PMID: 38581967 DOI: 10.1016/j.bioorg.2024.107314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
The identification of novel 4-hydroxy-2-quinolone-3-carboxamide antibacterials with improved properties is of great value for the control of antibiotic resistance. In this study, a series of N-heteroaryl-substituted 4-hydroxy-2-quinolone-3-carboxamides were developed using the bioisosteric replacement strategy. As a result of our research, we discovered the two most potent GyrB inhibitors (WBX7 and WBX18), with IC50 values of 0.816 µM and 0.137 µM, respectively. Additional antibacterial activity screening indicated that WBX18 possesses the best antibacterial activity against MRSA, VISA, and VRE strains, with MIC values rangingbetween0.5and 2 µg/mL, which was 2 to over 32 times more potent than that of vancomycin. In vitro safety and metabolic stability, as well as in vivo pharmacokinetics assessments revealed that WBX18 is non-toxic to HUVEC and HepG2, metabolically stable in plasma and liver microsomes (mouse), and displays favorable in vivo pharmacokinetic properties. Finally, docking studies combined with molecular dynamic simulation showed that WBX18 could stably fit in the active site cavity of GyrB.
Collapse
Affiliation(s)
- Wenjie Xue
- Department of Pharmacy, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xueping Zuo
- School of Materials and Environment, Shanxi Jinzhong Institute of Technology, Jinzhong 030600, China
| | - Xueqi Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaomin Wang
- Department of Pharmacy, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangyu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Huali Yang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
22
|
Gadali KE, Rafya M, El Mansouri AE, Maatallah M, Vanderlee A, Mehdi A, Neyts J, Jochmans D, De Jonghe S, Benkhalti F, Sanghvi YS, Taourirte M, Lazrek HB. Design, synthesis, and molecular modeling studies of novel 2-quinolone-1,2,3-triazole-α-aminophosphonates hybrids as dual antiviral and antibacterial agents. Eur J Med Chem 2024; 268:116235. [PMID: 38377828 DOI: 10.1016/j.ejmech.2024.116235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
With the aim to identify new antiviral agents with antibacterial properties, a series of 2-quinolone-1,2,3-triazole derivatives bearing α-aminophosphonates was synthesized and characterized by 1H NMR, 13C NMR, 31P NMR, single crystal XRD and HRMS analyses. These compounds were examined against five RNA viruses (YFV, ZIKV, CHIKV, EV71 and HRV) from three distinct families (Picornaviridae, Togaviridae and Flaviviridae) and four bacterial strains (S. aureus, E. feacalis, E. coli and P. aeruginosa). The α-aminophosphonates 4f, 4i, 4j, 4k, 4p and 4q recorded low IC50 values of 6.8-10.91 μM, along with elevated selectivity indices ranging from 2 to more than 3, particularly against YFV, CHIKV and HRV-B14. Besides, the synthesized compounds were generally more sensitive toward Gram-positive bacteria, with the majority of them displaying significant potency against E. feacalis. Specifically, an excellent anti-enterococcus activity was obtained by compound 4q with MIC and MBC values of 0.03 μmol/mL, which were 8.7 and 10 times greater than those of the reference drugs ampicillin and rifampicin, respectively. Also, compounds 4f, 4p and 4q showed potent anti-staphylococcal activity with MIC values varying between 0.11 and 0.13 μmol/mL, compared to 0.27 μmol/mL for ampicillin. The results from DFT and molecular docking simulations were in agreement with the biological assays, proving the binding capability of hybrids 4f, 4i, 4j, 4k, 4p and 4q with viral and bacterial target enzymes through hydrogen bonds and other non-covalent interactions. The in silico ADME/Tox prediction revealed that these molecules possess moderate to good drug-likeness and pharmacokinetic properties, with a minimal chance of causing liver toxicity or carcinogenic effects.
Collapse
Affiliation(s)
- Khadija El Gadali
- Laboratoire de Recherche en Développement Durable et Santé, Faculty of Sciences and Technology Gueliz (FSTG), BP549, Marrakech 40000, Morocco; Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Marrakech 40000, Morocco
| | - Meriem Rafya
- Laboratoire de Recherche en Développement Durable et Santé, Faculty of Sciences and Technology Gueliz (FSTG), BP549, Marrakech 40000, Morocco
| | - Az-Eddine El Mansouri
- University of the Free State Faculty of Natural and Agricultural Sciences Chemistry Department 205 Nelson Mandela, Bloemfontein, 9301, South Africa
| | - Mohamed Maatallah
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Marrakech 40000, Morocco
| | - Arie Vanderlee
- Institut Européen des Membranes, IEM, UMR 5635, Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Ahmad Mehdi
- ICGM, UMR5253 1919, Route de Mende 34293 Montpellier cedex 5, France
| | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Box 1043, B-3000 Leuven, Belgium
| | - Dirk Jochmans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Box 1043, B-3000 Leuven, Belgium
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, Box 1043, B-3000 Leuven, Belgium
| | - Fatiha Benkhalti
- Laboratoire de Recherche en Développement Durable et Santé, Faculty of Sciences and Technology Gueliz (FSTG), BP549, Marrakech 40000, Morocco
| | - Yogesh S Sanghvi
- Rasayan Inc, 2802 Crystal Ridge Road, Encinitas, CA 92024-6615, USA
| | - Moha Taourirte
- Laboratoire de Recherche en Développement Durable et Santé, Faculty of Sciences and Technology Gueliz (FSTG), BP549, Marrakech 40000, Morocco.
| | - Hassan B Lazrek
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Marrakech 40000, Morocco.
| |
Collapse
|
23
|
Rasgania J, Gavadia R, Sahu N, Sharma P, Chauhan NS, Saharan V, Kapoor RK, Jakhar K. Design, synthesis and exploration of novel triazinoindoles as potent quorum-sensing inhibitors and radical quenchers. Future Med Chem 2024; 16:399-416. [PMID: 38375563 DOI: 10.4155/fmc-2023-0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Background: Antimicrobial resistance has become a critical health concern, and quorum-sensing exacerbates the resistance by facilitating cell-to-cell communication within the microbial community, leading to severe pathogenic outbreaks. Methods & results: Novel 1-(2-((5H-[1,2,4]-triazino[5,6-b]indol-3-yl)thio)acetyl)indoline-2,3-diones were synthesized. The title compounds exhibit outstanding anti-quorum-sensing efficacy, and compound 7g demonstrated the maximum proficiency (IC50 = 0.0504 μg/ml). The hybrids displayed potent antioxidant action, and compound 7c showed the highest antioxidant ability (IC50 = 40.71 μg/ml). Molecular docking of the isatin hybrids against DNA gyrase and quorum-sensing receptor CviR validated the observed in vitro findings. The befitting pharmacokinetic profile of the synthesized drug candidates was ascertained through absorption, distribution, metabolism, excretion and toxicity screening. Conclusion: The remarkable biocompetence of the synthesized triazinoindoles may help to combat drug-resistant infections.
Collapse
Affiliation(s)
- Jyoti Rasgania
- Department of Chemistry, M. D. University, Rohtak, 124001, Haryana, India
| | - Renu Gavadia
- Department of Chemistry, M. D. University, Rohtak, 124001, Haryana, India
| | - Neetu Sahu
- Department of Chemistry, M. D. University, Rohtak, 124001, Haryana, India
| | - Pinki Sharma
- Department of Biochemistry, M. D. University, Rohtak, 124001, Haryana, India
| | - Nar S Chauhan
- Department of Biochemistry, M. D. University, Rohtak, 124001, Haryana, India
| | - Vicky Saharan
- Department of Microbiology, M. D. University, Rohtak, 124001, Haryana, India
| | - Rajeev K Kapoor
- Department of Microbiology, M. D. University, Rohtak, 124001, Haryana, India
| | - Komal Jakhar
- Department of Chemistry, M. D. University, Rohtak, 124001, Haryana, India
| |
Collapse
|
24
|
Berwal P, Rohilla S, Mathur N, Rani K. Synthesis, Molecular Docking, and Biological Evaluation of Novel Indole-triazole Conjugates. Curr Drug Discov Technol 2024; 21:e120324227917. [PMID: 38482620 DOI: 10.2174/0115701638295739240222074426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Indole-triazole conjugates have emerged as promising candidates for new drug development. Their distinctive structural characteristics, coupled with a wide array of biological activities, render them a captivating and promising field of research for the creation of novel pharmaceutical agents. OBJECTIVE This study aimed to synthesize indole-triazole conjugates to investigate the influence of various substituents on the functional characteristics of indole-triazole hybrids. It also aimed to study the binding modes of new hybrids with the DNA Gyrase using molecular docking studies. METHODS A new set of indole-triazole hybrids was synthesized and characterized using various physicochemical and spectral analyses. All hybrids underwent in-silico pharmacokinetic prediction studies. The antimicrobial efficacy of the hybrids was assessed using tube dilution and agar diffusion methods. Additionally, the in-vitro antioxidant activity of synthesized compounds was determined using the 1,1-diphenyl-2-picryl-hydrazyl free radical scavenging assay. Furthermore, in silico molecular docking studies were performed to enhance our comprehension of how the synthesized compounds interact at the molecular level with DNA gyrase. RESULTS Pharmacokinetic predictions of synthesized hybrids indicated favourable pharmacokinetic profiles, and none of the compounds violated the Lipinski rule of five. Notably, compound 6, featuring a cyclohexanol substituent, demonstrated superior antimicrobial and antioxidant activity (EC50 value = 14.23 μmol). Molecular docking studies further supported the in vitro antioxidant and antimicrobial findings, revealing that all compounds adeptly fit into the binding pocket of DNA Gyrase and engaged in interactions with crucial amino acid residues. CONCLUSION In summary, our research underscores the efficacy of molecular hybridization in shaping the physicochemical, pharmacokinetic, and biological characteristics of novel indole-triazole derivatives.
Collapse
Affiliation(s)
- Paras Berwal
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Suman Rohilla
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Nancy Mathur
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Ketki Rani
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| |
Collapse
|
25
|
Beig M, Moradkasani S, Goodarzi F, Sholeh M. Prevalence of Brucella melitensis and Brucella abortus Fluoroquinolones Resistant Isolates: A Systematic Review and Meta-Analysis. Vector Borne Zoonotic Dis 2024; 24:1-9. [PMID: 37862228 DOI: 10.1089/vbz.2023.0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
Background: Brucellosis impact both animals and humans worldwide. However, using antibiotics for brucellosis remains controversial despite decades of research. Relapse can complicate treatment in this area. Since the mid-1980s, microbiologists, and physicians have studied fluoroquinolones' use for treating human brucellosis. The principal advantages of fluoroquinolones are their intracellular antimicrobial activity, low nephrotoxicity, good pharmacokinetics, and the lack of drug-level monitoring. Fluoroquinolones inhibit disease recurrence. In vitro and clinical data were used to study the prevalence of Brucella melitensis and Brucella abortus fluoroquinolone-resistant isolates. Methods: The PubMed, Scopus, Embase, and Web of Science databases were carefully searched until August 6, 2022, for relevant papers. The number of resistant isolates and sample size were used to estimate the proportion of resistant isolates, fitting a model with random effects, and DerSimonian-Laird estimated heterogeneity. Furthermore, meta-regression and subgroup analyses were used to assess the moderators to identify the sources of heterogeneity. Meta-analysis was performed using R software. Results: Forty-seven studies evaluated fluoroquinolone resistance in Brucella spp. Isolates. Fluoroquinolones have shown high in vitro efficacy against Brucella spp. The resistance rates to ofloxacin, sparfloxacin, fleroxacin, pefloxacin, and lomefloxacin were 2%, 1.6%, and 4.6%, respectively. Conclusion: Clinical in vitro tests demonstrated that fluoroquinolones can eradicate Brucella spp. Owing to first-line medication resistance, recurrence, and toxicity, it is essential to standardize the Brucella antimicrobial susceptibility test method for a more precise screening of resistance status. Fluoroquinolones are less resistant to fluoroquinolone-based treatments in modern clinical practice as alternatives to standard therapy for patients with brucellosis relapse after treatment with another regimen and in patients who have developed toxicity from older agents.
Collapse
Affiliation(s)
- Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Forough Goodarzi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
26
|
Yassin AE, Albekairy AM, Omer ME, Almutairi A, Alotaibi Y, Althuwaini S, Alaql OA, Almozaai SS, Almutiri NM, Alluhaim W, Alzahrani RR, Alterawi AM, Halwani MA. Chitosan-Coated Azithromycin/Ciprofloxacin-Loaded Polycaprolactone Nanoparticles: A Characterization and Potency Study. Nanotechnol Sci Appl 2023; 16:59-72. [PMID: 38146545 PMCID: PMC10749578 DOI: 10.2147/nsa.s438484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/09/2023] [Indexed: 12/27/2023] Open
Abstract
Purpose Antimicrobial resistance is a major health hazard worldwide. Combining azithromycin (AZ) and ciprofloxacin (CIP) in one drug delivery system was proposed to boost their antibacterial activity and overcome resistance. This study aims to improve azithromycin and ciprofloxacin activity by co-encapsulating them inside chitosan-coated polymeric nanoparticles and evaluating their antibacterial activity. Methods The double emulsion method was employed to co-encapsulate AZ/CIP inside chitosan-coated polymeric nanoparticles. The formulations were evaluated for their nanoparticle size, size distribution, and zeta potential. Differential scanning calorimetry (DSC) analysis characterized the formula's thermal sustainability. Encapsulation efficiency was measured by HPLC and spectrophotometric analysis. Morphological studies used the Transmission Electron Microscopy (TEM). The in vitro release profiles of both AZ and CIP were monitored utilizing the dialysis membrane bag method. The micro-dilution assay assessed the antimicrobial activity against a clinical isolate of Klebsiella pneumoniae. Results The prepared AZ/CIP-poly-caprolactone nanoparticles were spherical; their size range was 184.0 ± 3.3-190.4 ± 5.6 nm and had high size uniformity (poly-dispersity index below 0.2). The zeta potential ranged from -21.2 ± 2.4 to -27.0 ± 2.5 mV, while chitosan-coated nanoparticles showed a positive zeta potential value ranging from 8 to 11 mV. The thermal study confirmed the amorphous state of both antibiotics inside the nanoparticles. The results of the in vitro release study indicated a slow and uniform rate of release for both drugs extended over 4-days, with a faster rate in the case of AZ. The MIC values reported for both chitosan-coated NP have been tremendously reduced by at least 15 folds of pure CIP and more than 60 folds of pure AZ. Conclusion The co-encapsulation of AZ/CIP into chitosan-coated polymeric nanoparticles has been successfully achieved. The produced particles showed many beneficial attributes of uniform particle sizes below 200 nm and high zeta potential values. Chitosan-coated polymeric nanoparticles extensively enhanced the antibacterial activity of both AZ/CIP against bacteria.
Collapse
Affiliation(s)
- Alaa Eldeen Yassin
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Abdulkareem M Albekairy
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Pharmaceutical Care Services, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mustafa E Omer
- Pharmacy Program, College of Health and Sport Sciences, University of Bahrain, Zallaq, Bahrain
| | - Arwa Almutairi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Yousef Alotaibi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Salem Althuwaini
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Osama Aql Alaql
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Shahad S Almozaai
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Nouf Mohammed Almutiri
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Wed Alluhaim
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Raghad R Alzahrani
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Asma M Alterawi
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Majed A Halwani
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Safdar S, Shamim S, Khan M, Imran A, Khan MA, Ali Q, Han S. Probing Antibacterial and Anticancer Potential of Selenicereus undatus, Pistacia vera L. and Olea europaea L. against Uropathogens, MCF-7 and A2780 Cancer Cells. Molecules 2023; 28:8148. [PMID: 38138636 PMCID: PMC10746009 DOI: 10.3390/molecules28248148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Urinary tract infection is an infectious disease that requires immediate treatment. It can occur in any age group and involves both genders equally. The present study was to check the resistance of some antibiotics and to assess the antibacterial potential of three extracts of three plants against notorious bacteria involved in urinary tract infections. Along with assessing the antibacterial activity of plant extracts, we checked for the anticancer potential of these extracts against the cancer cell lines MCF-7 and A2780. Cancer is the leading cause of mortality in developed countries. Determinations of total flavonoid content, total phenolic content, total alkaloid content, total tannin content, total carotenoid content, and total steroid content were performed. The disk diffusion method was used to analyze the antibacterial activity of plant extracts. Ethanolic extract of Selenicereus undatus showed sensitivity (25-28 mm) against bacteria, whereas chloroform and hexane extracts showed resistance against all bacteria except Staphylococcus (25 mm). Ethanolic extract of Pistacia vera L. showed sensitivity (22-25 mm) against bacteria, whereas chloroform and hexane extracts showed resistance. Ethanolic extract of Olea europaea L. showed sensitivity (8-16 mm) against all bacteria except Staphylococcus, whereas chloroform and hexane extracts showed resistance. Positive controls showed variable zones of inhibition (2-60 mm), and negative control showed 0-1 mm. The antibiotic resistance was much more prominent in the case of hexane and chloroform extracts of all plants, whereas ethanolic extract showed a sensitivity of bacteria against extracts. Both cell lines, MCF-7 and A2780, displayed decreased live cells when treated with plant extracts.
Collapse
Affiliation(s)
- Sahar Safdar
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui 553004, China;
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54000, Pakistan; (M.K.); (A.I.)
| | - Saba Shamim
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54000, Pakistan; (M.K.); (A.I.)
| | - Maryam Khan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54000, Pakistan; (M.K.); (A.I.)
| | - Ali Imran
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54000, Pakistan; (M.K.); (A.I.)
| | - Mudassar Ali Khan
- Department of Physiology, Rashid Latif Medical College, Lahore 54000, Pakistan;
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan;
| | - Shiming Han
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui 553004, China;
| |
Collapse
|
28
|
Akili AWR, Hardianto A, Latip J, Permana A, Herlina T. Virtual Screening and ADMET Prediction to Uncover the Potency of Flavonoids from Genus Erythrina as Antibacterial Agent through Inhibition of Bacterial ATPase DNA Gyrase B. Molecules 2023; 28:8010. [PMID: 38138500 PMCID: PMC10745610 DOI: 10.3390/molecules28248010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 12/24/2023] Open
Abstract
The emergence of antimicrobial resistance due to the widespread and inappropriate use of antibiotics has now become the global health challenge. Flavonoids have long been reported to be a potent antimicrobial agent against a wide range of pathogenic microorganisms in vitro. Therefore, new antibiotics development based on flavonoid structures could be a potential strategy to fight against antibiotic-resistant infections. This research aims to screen the potency of flavonoids of the genus Erythrina as an inhibitor of bacterial ATPase DNA gyrase B. From the 378 flavonoids being screened, 49 flavonoids show potential as an inhibitor of ATPase DNA gyrase B due to their lower binding affinity compared to the inhibitor and ATP. Further screening for their toxicity, we identified 6 flavonoids from these 49 flavonoids, which are predicted to have low toxicity. Among these flavonoids, erystagallin B (334) is predicted to have the best pharmacokinetic properties, and therefore, could be further developed as new antibacterial agent.
Collapse
Affiliation(s)
- Abd. Wahid Rizaldi Akili
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (A.W.R.A.); (A.H.); (A.P.)
| | - Ari Hardianto
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (A.W.R.A.); (A.H.); (A.P.)
| | - Jalifah Latip
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 46300, Malaysia;
| | - Afri Permana
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (A.W.R.A.); (A.H.); (A.P.)
| | - Tati Herlina
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (A.W.R.A.); (A.H.); (A.P.)
| |
Collapse
|
29
|
Obiștioiu D, Hulea A, Cocan I, Alexa E, Negrea M, Popescu I, Herman V, Imbrea IM, Heghedus-Mindru G, Suleiman MA, Radulov I, Imbrea F. Boswellia Essential Oil: Natural Antioxidant as an Effective Antimicrobial and Anti-Inflammatory Agent. Antioxidants (Basel) 2023; 12:1807. [PMID: 37891886 PMCID: PMC10603989 DOI: 10.3390/antiox12101807] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The research aimed to determine the chemical composition, the antioxidant and anti-inflammatory activity as well as the antimicrobial activity against Gram-positive, Gram-negative and two fungal Candida ATCC strains of a commercial Boswellia essential oil (BEO) containing Boswellia carteri, Boswellia sacra, Boswellia papryfera, and Boswellia frereana. Additionally, molecular docking was carried out to show the molecular dynamics of the compounds identified from the essential oil against three bacterial protein targets and one fungal protein target. The major components identified by GC-MS (Gas Chromatography-Mass Spectrometry) were represented by α-pinene, followed by limonene. Evaluation of antioxidant activity using the DPPH (2,2-Diphenyl-1-Picrylhydrazyl) method showed high inhibition comparable to the synthetic antioxidant used as a control. Oxidative stability evaluation showed that BEO has the potential to inhibit primary and secondary oxidation products with almost the same efficacy as butylated hydroxyanisole (BHA). The use of BEO at a concentration of 500 ppm provided the best protection against secondary oxidation during 30 days of storage at room temperature, which was also evident in the peroxide value. Regarding the in vitro anti-inflammatory activity, the membrane lysis assay and the protein denaturation test revealed that even if the value of protection was lower than the value registered in the case of dexamethasone, the recommendation of using BEO as a protective agent stands, considering the lower side effects. Gram-positive bacteria proved more sensitive, while Pseudomonas aeruginosa presented different sensitivity, with higher MICs (minimal inhibitory concentration). Haemophilus influenzae demonstrated a MIC at 2% but with consecutive inhibitory values in a negative correlation with the increase in concentration, in contrast to E. coli, which demonstrated low inhibitory rates at high concentrations of BEO. The computational tools employed revealed interesting binding energies with compounds having low abundance. The interaction of these compounds and the proteins (tyrosyl-tRNA synthetase, DNA gyrase, peptide deformylase, 1,3-β-glucan synthase) predicts hydrogen bonds with amino acid residues, which are reported in the active sites of the proteins. Even so, compounds with low abundance in BEO could render the desired bioactive properties to the overall function of the oil sustained by physical factors such as storage and temperature. Interestingly, the findings from this study demonstrated the antioxidant and antimicrobial potential of Boswellia essential oil against food-related pathogens, thus making the oil a good candidate for usage in food, feed or food-safety-related products.
Collapse
Affiliation(s)
- Diana Obiștioiu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (D.O.); (I.P.); (I.R.); (F.I.)
| | - Anca Hulea
- Faculty of Veterinary Medicine, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Ileana Cocan
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (E.A.); (M.N.); (G.H.-M.)
| | - Ersilia Alexa
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (E.A.); (M.N.); (G.H.-M.)
| | - Monica Negrea
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (E.A.); (M.N.); (G.H.-M.)
| | - Iuliana Popescu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (D.O.); (I.P.); (I.R.); (F.I.)
| | - Viorel Herman
- Faculty of Veterinary Medicine, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Ilinca Merima Imbrea
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Gabriel Heghedus-Mindru
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (E.A.); (M.N.); (G.H.-M.)
| | - Mukhtar Adeiza Suleiman
- Faculty of Life Science, Department of Biochemistry, Ahmadu Bello University, Zaria 810107, Kaduna State, Nigeria;
| | - Isidora Radulov
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (D.O.); (I.P.); (I.R.); (F.I.)
| | - Florin Imbrea
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (D.O.); (I.P.); (I.R.); (F.I.)
| |
Collapse
|
30
|
Coronas R, Zara G, Gallo A, Rocchetti G, Lapris M, Petretto GL, Zara S, Fancello F, Mannazzu I. Propionibacteria as promising tools for the production of pro-bioactive scotta: a proof-of-concept study. Front Microbiol 2023; 14:1223741. [PMID: 37588883 PMCID: PMC10425813 DOI: 10.3389/fmicb.2023.1223741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023] Open
Abstract
Dairy propionibacteria are Gram positive Actinomycetota, routinely utilized as starters in Swiss type cheese making and highly appreciated for their probiotic properties and health promoting effects. In this work, within the frame of a circular economy approach, 47 Propionibacterium and Acidipropionibacterium spp. were isolated from goat cheese and milk, and ewe rumen liquor, and characterized in view of their possible utilization for the production of novel pro-bioactive food and feed on scotta, a lactose rich substrate and one of the main by-products of the dairy industry. The evaluation of the Minimum Inhibitory Concentration (MIC) of 13 among the most common antibiotics in clinical practice revealed a general susceptibility to ampicillin, gentamycin, streptomycin, vancomycin, chloramphenicol, and clindamycin while confirming a lower susceptibility to aminoglycosides and ciprofloxacin. Twenty-five isolates, that proved capable of lactose utilization as the sole carbon source, were then characterized for functional and biotechnological properties. Four of them, ascribed to Propionibacterium freudenreichii species, and harboring resistance to bile salts (growth at 0.7-1.56 mM of unconjugated bile salts), acid stress (>80% survival after 1 h at pH 2), osmostress (growth at up to 6.5% NaCl) and lyophilization (survival rate > 80%), were selected and inoculated in scotta. On this substrate the four isolates reached cell densities ranging from 8.11 ± 0.14 to 9.45 ± 0.06 Log CFU mL-1 and proved capable of producing different vitamin B9 vitamers after 72 h incubation at 30°C. In addition, the semi-quantitative analysis following the metabolomics profiling revealed a total production of cobalamin derivatives (vitamin B12) in the range 0.49-1.31 mg L-1, thus suggesting a full activity of the corresponding biosynthetic pathways, likely involving a complex interplay between folate cycle and methylation cycle required in vitamin B12 biosynthesis. These isolates appear interesting candidates for further ad-hoc investigation regarding the production of pro-bioactive scotta.
Collapse
Affiliation(s)
- Roberta Coronas
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Giacomo Zara
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Antonio Gallo
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marco Lapris
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Severino Zara
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Francesco Fancello
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Ilaria Mannazzu
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
31
|
Singh Y, Bhatia N, Biharee A, Kulkarni S, Thareja S, Monga V. Developing our knowledge of the quinolone scaffold and its value to anticancer drug design. Expert Opin Drug Discov 2023; 18:1151-1167. [PMID: 37592843 DOI: 10.1080/17460441.2023.2246366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
INTRODUCTION The quinolone scaffold is a bicyclic benzene-pyridinic ring scaffold with nitrogen at the first position and a carbonyl group at the second or fourth position. It is endowed with a diverse spectrum of pharmacological activities, including antitumor activity, and has progressed into various development phases of clinical trials for their target-specific anticancer activity. AREAS COVERED The present review covers both classes of quinolones, i.e. quinolin-2(H)-one and quinolin-4(H)-one as anticancer agents, along with their possible mode of binding. Furthermore, their structure-activity relationships, molecular mechanisms, and pharmacokinetic properties are also covered to provide insight into their structural requirements for their rational design as anticancer agents. EXPERT OPINION Synthetic feasibility and ease of derivatization at multiple positions, has allowed medicinal chemists to explore quinolones and their chemical diversity to discover newer anticancer agents. The presence of both hydrogen bond donor (-NH) and acceptor (-C=O) functionality in the basic scaffold at two different positions, has broadened the research scope. In particular, substitution at the -NH functionality of the quinolone motif has provided ample space for suitable functionalization and appropriate substitution at the quinolone's third, sixth, and seventh carbons, resulting in selective anticancer agents binding specifically with various drug targets.
Collapse
Affiliation(s)
- Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Neha Bhatia
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Avadh Biharee
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Swanand Kulkarni
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| |
Collapse
|
32
|
Chapa González C, González García LI, Burciaga Jurado LG, Carrillo Castillo A. Bactericidal activity of silver nanoparticles in drug-resistant bacteria. Braz J Microbiol 2023; 54:691-701. [PMID: 37131105 PMCID: PMC10235008 DOI: 10.1007/s42770-023-00991-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/23/2023] [Indexed: 05/04/2023] Open
Abstract
Bacterial resistance to multiple drugs is a worldwide problem that afflicts public health. Various studies have shown that silver nanoparticles are good bactericidal agents against bacteria due to the adherence and penetration of the external bacterial membrane, preventing different vital functions and subsequently bacterial cell death. A systematic review of ScienceDirect, PubMed, and EBSCOhost was conducted to synthesize the literature evidence on the association between the bactericidal property of silver nanoparticles on both resistant Gram-positive and Gram-negative bacteria. Eligible studies were original, comparative observational studies that reported results on drug-resistant bacteria. Two independent reviewers extracted the relevant information. Out of the initial 1 420, 142 studies met the inclusion criteria and were included to form the basis of the analysis. Full-text screening led to the selection of 6 articles for review. The results of this systematic review showed that silver nanoparticles act primarily as bacteriostatic agents and subsequently as bactericides, both in Gram-positive and Gram-negative drug-resistant bacteria.
Collapse
Affiliation(s)
- C Chapa González
- Grupo de Investigación en Nanomedicina, Instituto de Ingeniería y Tecnología de la Universidad Autónoma de Ciudad Juárez, Ave. del Charro 450, Ciudad Juárez, 32310, México.
- Ingeniería Biomédica, Instituto de Ingeniería y Tecnología de la Universidad Autónoma de Ciudad Juárez, Ave. del Charro 450, Ciudad Juárez, 32310, México.
| | - L I González García
- Grupo de Investigación en Nanomedicina, Instituto de Ingeniería y Tecnología de la Universidad Autónoma de Ciudad Juárez, Ave. del Charro 450, Ciudad Juárez, 32310, México
| | - L G Burciaga Jurado
- Ingeniería Biomédica, Instituto de Ingeniería y Tecnología de la Universidad Autónoma de Ciudad Juárez, Ave. del Charro 450, Ciudad Juárez, 32310, México
| | - A Carrillo Castillo
- Ingeniería Biomédica, Instituto de Ingeniería y Tecnología de la Universidad Autónoma de Ciudad Juárez, Ave. del Charro 450, Ciudad Juárez, 32310, México
- Biotecnología y Nanotecnología en Electrónica Flexible, Instituto de Ingeniería y Tecnología de la Universidad Autónoma de Ciudad Juárez, Ave. del Charro 450, Ciudad Juárez, 32310, México
| |
Collapse
|