1
|
Mirra D, Esposito R, Spaziano G, Rafaniello C, Panico F, Squillante A, Falciani M, Abrego-Guandique DM, Caiazzo E, Gallelli L, Cione E, D’Agostino B. miRNA Signatures in Alveolar Macrophages Related to Cigarette Smoke: Assessment and Bioinformatics Analysis. Int J Mol Sci 2025; 26:1277. [PMID: 39941045 PMCID: PMC11818525 DOI: 10.3390/ijms26031277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Cigarette smoke (CS) is a driver of many respiratory diseases, including chronic obstructive pulmonary disease (COPD) and non-small cell lung cancer (NSCLC). Tobacco causes oxidative stress, impaired phagocytosis of alveolar macrophages (AMs), and alterations in gene expression in the lungs of smokers. MicroRNAs (miRNAs) are small non-coding RNAs that influence several regulatory pathways. Previously, we monitored the expressions of hsa-miR-223-5p, 16-5p, 20a-5p, -17-5p, 34a-5p, and 106a-5p in AMs derived from the bronchoalveolar lavage (BAL) of subjects with NSCLC, COPD, and smoker and non-smoker control groups. Here, we investigated the capability of CS conditionate media to modulate the abovementioned miRNAs in primary AMs obtained in the same 43 sex-matched subjects. The expressions of has-miR-34a-5p, 17-5p, 16-5p, 106a-5p, 223-5p, and 20a-5p were assessed before and after in vitro CS exposure by RT-PCR. In addition, a comprehensive bioinformatic analysis of miRNAs KEGGS and PPI linked to inflammation was performed. Distinct and common miRNA expression profiles were identified in response to CS, suggesting their possible role in smoking-related diseases. It is worth noting that, following exposure to CS, the expression levels of hsa-miR-34a-5p and 17-5p in both smokers and non-smokers, 106a-5p in non-smokers, and 20a-5p in smokers, shifted towards those found in individuals with COPD, suggesting them as a risk factor in developing this lung condition. Moreover, CS-focused sub-analysis identified miRNA which exhibited CS-dependent pattern and modulated mRNA involved in the immune system or AMs property regulation. In conclusion, our study uncovered miRNA signatures in AMs exposed to CS, indicating that CS might modify epigenetic patterns that contribute to macrophage activation and lung disease onset and progression.
Collapse
Affiliation(s)
- Davida Mirra
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (E.C.); (B.D.)
| | - Renata Esposito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (E.C.); (B.D.)
| | - Giuseppe Spaziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (E.C.); (B.D.)
| | - Concetta Rafaniello
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy;
- Section of Pharmacology “L. Donatelli”, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Francesca Panico
- Science of Health Department, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (F.P.); (D.M.A.-G.)
| | | | - Maddalena Falciani
- Pulmonary and Critical Care Medicine, Ospedale Scarlato, 84018 Scafati, Italy;
| | | | - Eleonora Caiazzo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (E.C.); (B.D.)
| | - Luca Gallelli
- Clinical Pharmacology and Pharmacovigilance Unit, Department of Health Sciences, Mater Domini Hospital, University of “Magna Graecia”, 88100 Catanzaro, Italy;
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Bruno D’Agostino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (E.C.); (B.D.)
| |
Collapse
|
2
|
Nan F, Liu B, Yao C. Discovering the role of microRNAs and exosomal microRNAs in chest and pulmonary diseases: a spotlight on chronic obstructive pulmonary disease. Mol Genet Genomics 2024; 299:107. [PMID: 39527303 DOI: 10.1007/s00438-024-02199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory condition and ranks as the fourth leading cause of mortality worldwide. Despite extensive research efforts, a reliable diagnostic or prognostic tool for COPD remains elusive. The identification of novel biomarkers may facilitate improved therapeutic strategies for patients suffering from this debilitating disease. MicroRNAs (miRNAs), which are small non-coding RNA molecules, have emerged as promising candidates for the prediction and diagnosis of COPD. Studies have demonstrated that dysregulation of miRNAs influences critical cellular and molecular pathways, including Notch, Wnt, hypoxia-inducible factor-1α, transforming growth factor, Kras, and Smad, which may contribute to the pathogenesis of COPD. Extracellular vesicles, particularly exosomes, merit further investigation due to their capacity to transport various biomolecules such as mRNAs, miRNAs, and proteins between cells. This intercellular communication can significantly impact the progression and severity of COPD by modulating signaling pathways in recipient cells. A deeper exploration of circulating miRNAs and the content of extracellular vesicles may lead to the discovery of novel diagnostic and prognostic biomarkers, ultimately enhancing the management of COPD. The current review focus on the pathogenic role of miRNAs and their exosomal counterparts in chest and respiratory diseases, centering COPD.
Collapse
Affiliation(s)
- FangYuan Nan
- Thoracic Surgery Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China
| | - Bo Liu
- Thoracic Surgery Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China
| | - Cheng Yao
- Infectious Diseases Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China.
| |
Collapse
|
3
|
Shen Q, Chen J, Yang S, Zhang H, Yu H, Wang S, Li J. Protection against cigarette smoke-induced chronic obstructive pulmonary disease via activation of the SIRT1/FoxO1 axis by targeting microRNA-132. Am J Transl Res 2024; 16:5516-5524. [PMID: 39544778 PMCID: PMC11558385 DOI: 10.62347/fvqp4019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/11/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE To investigate the biological role of miR-132 in a murine model of chronic obstructive pulmonary disease (COPD) via activation of the SIRT1/FoxO1 axis. METHODS COPD was induced in C57BL/6J male mice by exposing them to cigarette smoke (CS) for 8 weeks. A miR-132 knockout mouse model was used to assess the role of miR-132 in CS-induced COPD. Lung tissue apoptosis was evaluated using TUNEL assays and histopathology, along with lung functional tests which were performed to assess CS-induced lung injury. RESULTS Elevated miR-132 expression was observed in lung tissues and bronchoalveolar lavage fluid in COPD mice. miR-132 depletion improved lung function, restored lung tissue morphology, and reduced apoptosis. Target prediction software identified miR-132 as a potential repressor of SIRT1. In COPD mice, SIRT1 and FoxO1 expression were reduced, but miR-132 knockout restored their levels. CONCLUSION Inhibition of miR-132 may serve as a therapeutic strategy for CS-induced COPD.
Collapse
Affiliation(s)
- Qin Shen
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha 410005, Hunan, P. R. China
| | - Jing Chen
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha 410005, Hunan, P. R. China
| | - Suzhen Yang
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha 410005, Hunan, P. R. China
| | - Hui Zhang
- Department of Respiratory Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha 410005, Hunan, P. R. China
| | - Hui Yu
- School of Medicine, Hunan Normal UniversityChangsha 410005, Hunan, P. R. China
| | - Sha Wang
- Department of Endocrinology, The First Affiliated Hospital of Changsha Medical UniversityChangsha 410005, Hunan, P. R. China
| | - Jianmin Li
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha 410005, Hunan, P. R. China
| |
Collapse
|
4
|
Umar S, Debnath K, Leung K, Huang CC, Lu Y, Gajendrareddy P, Ravindran S. Immunomodulatory properties of naïve and inflammation-informed dental pulp stem cell derived extracellular vesicles. Front Immunol 2024; 15:1447536. [PMID: 39224602 PMCID: PMC11366660 DOI: 10.3389/fimmu.2024.1447536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Mesenchymal stem cell derived extracellular vesicles (MSC EVs) are paracrine modulators of macrophage function. Scientific research has primarily focused on the immunomodulatory and regenerative properties MSC EVs derived from bone marrow. The dental pulp is also a source for MSCs, and their anatomical location and evolutionary function has primed them to be potent immunomodulators. In this study, we demonstrate that extracellular vesicles derived from dental pulp stem cells (DPSC EVs) have pronounced immunomodulatory effect on primary macrophages by regulating the NFκb pathway. Notably, the anti-inflammatory activity of DPSC-EVs is enhanced following exposure to an inflammatory stimulus (LPS). These inhibitory effects were also observed in vivo. Sequencing of the naïve and LPS preconditioned DPSC-EVs and comparison with our published results from marrow MSC EVs revealed that Naïve and LPS preconditioned DPSC-EVs are enriched with anti-inflammatory miRNAs, particularly miR-320a-3p, which appears to be unique to DPSC-EVs and regulates the NFκb pathway. Overall, our findings highlight the immunomodulatory properties of DPSC-EVs and provide vital clues that can stimulate future research into miRNA-based EV engineering as well as therapeutic approaches to inflammation control and disease treatment.
Collapse
Affiliation(s)
- Sadiq Umar
- Department of Oral Biology, University of Illinois, Chicago, IL, United States
| | - Koushik Debnath
- Department of Oral Biology, University of Illinois, Chicago, IL, United States
| | - Kasey Leung
- Department of Oral Biology, University of Illinois, Chicago, IL, United States
| | - Chun-Chieh Huang
- Department of Oral Biology, University of Illinois, Chicago, IL, United States
| | - Yu Lu
- Department of Oral Biology, University of Illinois, Chicago, IL, United States
| | | | - Sriram Ravindran
- Department of Oral Biology, University of Illinois, Chicago, IL, United States
| |
Collapse
|
5
|
Mirra D, Esposito R, Spaziano G, Sportiello L, Panico F, Squillante A, Falciani M, Cerqua I, Gallelli L, Cione E, D’Agostino B. MicroRNA Monitoring in Human Alveolar Macrophages from Patients with Smoking-Related Lung Diseases: A Preliminary Study. Biomedicines 2024; 12:1050. [PMID: 38791013 PMCID: PMC11118114 DOI: 10.3390/biomedicines12051050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/18/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung disease that is commonly considered to be a potent driver of non-small cell lung cancer (NSCLC) development and related mortality. A growing body of evidence supports a role of the immune system, mainly played by alveolar macrophages (AMs), in key axes regulating the development of COPD or NSCLC phenotypes in response to harmful agents. MicroRNAs (miRNAs) are small non-coding RNAs that influence most biological processes and interfere with several regulatory pathways. The purpose of this study was to assess miRNA expression patterns in patients with COPD, NSCLC, and ever- or never-smoker controls to explore their involvement in smoking-related diseases. Bronchoalveolar lavage (BAL) specimens were collected from a prospective cohort of 43 sex-matched subjects to determine the expressions of hsa-miR-223-5p, 16-5p, 20a-5p, -17-5p, 34a-5p and 106a-5p by RT-PCR. In addition, a bioinformatic analysis of miRNA target genes linked to cancer was performed. Distinct and common miRNA expression levels were identified in each pathological group, suggesting their possible role as an index of NSCLC or COPD microenvironment. Moreover, we identified miRNA targets linked to carcinogenesis using in silico analysis. In conclusion, this study identified miRNA signatures in AMs, allowing us to understand the molecular mechanisms underlying smoking-related conditions and potentially providing new insights for diagnosis or pharmacological treatment.
Collapse
Affiliation(s)
- Davida Mirra
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (B.D.)
| | - Renata Esposito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (B.D.)
| | - Giuseppe Spaziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (B.D.)
| | - Liberata Sportiello
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy;
- Department of Experimental Medicine-Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Francesca Panico
- Department of Health Sciences, University of “Magna Graecia”, 88100 Catanzaro, Italy; (F.P.); (L.G.)
| | | | - Maddalena Falciani
- Pulmonary and Critical Care Medicine, Ospedale Scarlato, 84018 Scafati, Italy;
| | - Ida Cerqua
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy;
| | - Luca Gallelli
- Department of Health Sciences, University of “Magna Graecia”, 88100 Catanzaro, Italy; (F.P.); (L.G.)
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Bruno D’Agostino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (B.D.)
| |
Collapse
|
6
|
Riondino S, Rosenfeld R, Formica V, Morelli C, Parisi G, Torino F, Mariotti S, Roselli M. Effectiveness of Immunotherapy in Non-Small Cell Lung Cancer Patients with a Diagnosis of COPD: Is This a Hidden Prognosticator for Survival and a Risk Factor for Immune-Related Adverse Events? Cancers (Basel) 2024; 16:1251. [PMID: 38610929 PMCID: PMC11011072 DOI: 10.3390/cancers16071251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The interplay between the immune system and chronic obstructive pulmonary disease (COPD) and non-small cell lung cancer (NSCLC) is complex and multifaceted. In COPD, chronic inflammation and oxidative stress can lead to immune dysfunction that can exacerbate lung damage, further worsening the respiratory symptoms. In NSCLC, immune cells can recognise and attack the cancer cells, which, however, can evade or suppress the immune response by various mechanisms, such as expressing immune checkpoint proteins or secreting immunosuppressive cytokines, thus creating an immunosuppressive tumour microenvironment that promotes cancer progression and metastasis. The interaction between COPD and NSCLC further complicates the immune response. In patients with both diseases, COPD can impair the immune response against cancer cells by reducing or suppressing the activity of immune cells, or altering their cytokine profile. Moreover, anti-cancer treatments can also affect the immune system and worsen COPD symptoms by causing lung inflammation and fibrosis. Immunotherapy itself can also cause immune-related adverse events that could worsen the respiratory symptoms in patients with COPD-compromised lungs. In the present review, we tried to understand the interplay between the two pathologies and how the efficacy of immunotherapy in NSCLC patients with COPD is affected in these patients.
Collapse
|
7
|
Zarogoulidis P, Oikonomidou R, Petridis D, Huang H, Bai C, perdokouri EI, Vagionas A, Hohenforst-Schmidt W, Kosmidis C, Sapalidis K, Oikonomou P, Nikolaou C, Charalampidis C, Matthaios D, Pataka A, Sardeli C. Chronic Obstructive Pulmonary Disease and Non-Small Cell Lung Cancer an association. J Cancer 2024; 15:603-609. [PMID: 38213723 PMCID: PMC10777038 DOI: 10.7150/jca.90594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/14/2023] [Indexed: 01/13/2024] Open
Abstract
Objectives: Lung cancer is known to be associated with chronic obstructive pulmonary disease. Moreover; nutritional status is associated with chronic obstructive disease treatment and lung cancer. Our aim was to evaluate the interaction of the COPD status and treatment of non-small cell lung cancer. Methods: Eighty-two patients were enrolled in our multicenter study. Chronic obstructive disease stage, spirometry and treatment was recorded along with the treatment and Body Mass Index (BMI), Mediterranian Diet Score, Pack Years, Basic Metabolsim (RMR) (kcal/day), VO₂ (ml/min), Ve (lt/min) and Physical Activity. The statistical analysis was performed using the JMP 14.3 (SAS Inc 2018) software. Results: The drug pairs showed a steady and unchanged by time health condition for 48 patients. Overall, 31 patients were recorded with worse COPD health conditions. The one-way ANOVA clearly indicated that chemotherapy induced the best FEV1-difference conditions with a positive effect of 8.56 mean FEV volume, the combined treatment simply did not have an effect (-0.9), while immunotherapy and patients receiving radiation decreased their FEV1 volume down to -4.23 and -5.15 mean values. Conclusions: Patients receiving chemotherapy alone had their chronic obstructive disease improved with less drugs and exacerbations, while patients receiving immunotherapy had their chronic obstructive disease stable, while all other treatment combinations worsened the patients chronic obstructive disease. Nutritional status did not affect the chronic obstructive disease of these patients in any way.
Collapse
Affiliation(s)
- Paul Zarogoulidis
- 3 rd University General Hospital, ``AHEPA`` University Hospital, Thessaloniki, Greece
- Pulmonary Department, General Clinic Euromedica, Thessaloniki, Greece
| | | | - Dimitris Petridis
- Department of Food Science and Technology International Hellenic University, Alexander Campus, Sindos, Thessaloniki
| | - Haidong Huang
- Department of Respiratory & Critical Care Medicine, Changhai Hospital, the Second Military Medical University, Shanghai, P. R. China
| | - Chong Bai
- Department of Food Science and Technology International Hellenic University, Alexander Campus, Sindos, Thessaloniki
| | | | | | - Wolfgang Hohenforst-Schmidt
- Sana Clinic Group Franken, Department of Cardiology / Pulmonology / Intensive Care / Nephrology, "Hof" Clinics, University of Erlangen, Hof, Germany
| | - Christoforos Kosmidis
- 3 rd University General Hospital, ``AHEPA`` University Hospital, Thessaloniki, Greece
| | | | - Panagoula Oikonomou
- Second Department of Surgery, University Hospital of Alexandroupolis, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Nikolaou
- Second Department of Surgery, University Hospital of Alexandroupolis, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | - Athanasia Pataka
- Pulmonary Department, G.Papnikolaou General Hospital, Aristotle University of Thessaloniki, Greece
| | - Chrysanthi Sardeli
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
8
|
Wang Y, Zou M, Zhao Y, Kabir MA, Peng X. Exosomal microRNA/miRNA Dysregulation in Respiratory Diseases: From Mycoplasma-Induced Respiratory Disease to COVID-19 and Beyond. Cells 2023; 12:2421. [PMID: 37830635 PMCID: PMC10571955 DOI: 10.3390/cells12192421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Respiratory diseases represent a significant economic and health burden worldwide, affecting millions of individuals each year in both human and animal populations. MicroRNAs (miRNAs) play crucial roles in gene expression regulation and are involved in various physiological and pathological processes. Exosomal miRNAs and cellular miRNAs have been identified as key regulators of several immune respiratory diseases, such as chronic respiratory diseases (CRD) caused by Mycoplasma gallisepticum (MG), Mycoplasma pneumoniae pneumonia (MMP) caused by the bacterium Mycoplasma pneumoniae, coronavirus disease 2019 (COVID-19), chronic obstructive pulmonary disease (COPD), asthma, and acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Consequently, miRNAs seem to have the potential to serve as diagnostic biomarkers and therapeutic targets in respiratory diseases. In this review, we summarize the current understanding of the functional roles of miRNAs in the above several respiratory diseases and discuss the potential use of miRNAs as stable diagnostic biomarkers and therapeutic targets for several immune respiratory diseases, focusing on the identification of differentially expressed miRNAs and their targeting of various signaling pathways implicated in disease pathogenesis. Despite the progress made, unanswered questions and future research directions are discussed to facilitate personalized and targeted therapies for patients with these debilitating conditions.
Collapse
Affiliation(s)
| | | | | | | | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (M.Z.); (Y.Z.); (M.A.K.)
| |
Collapse
|