1
|
Maurya S, Tripathi S, Arora T, Singh A. Adropin ameliorates reproductive dysfunctions in letrozole-induced PCOS mouse. Sci Rep 2025; 15:8659. [PMID: 40082514 PMCID: PMC11906834 DOI: 10.1038/s41598-025-93215-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/05/2025] [Indexed: 03/16/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common cause of infertility in reproductive-age women, and its etiology and exact treatment are not yet established. Adropin is a unique hepatokine involved in maintaining energy homeostasis, and its level has been reported to decline in serum and follicular fluid of PCOS women. Thus, present study was designed to investigate the effect of adropin on hormonal and reproductive abnormalities in PCOS mice. PCOS was induced in adult mice by administering letrozole (6 mg/kg body weight) orally for 21 days. PCOS mice were subsequently treated with adropin (450 nmol/kg body weight) for 15 days. Adropin treatment drastically decreased serum testosterone by suppressing the ovarian expression of 17β-HSD in PCOS mice. It also improved the follicular proliferation and survival by enhancing the ovarian expression of PCNA and BCL2 and suppressing the BAX, cleaved caspase 3, and TUNEL-positive cells in PCOS mice. Most of the effects of adropin are comparable to metformin (current PCOS treatment). Notably, adropin shows more efficacy than metformin in treating reproductive abnormalities in PCOS mice, as evidenced by early regularization of cyclicity and enhanced ovarian expression of 3β-HSD and aromatase proteins. Thus, adropin may be an alternative therapeutic option for managing PCOS.
Collapse
Affiliation(s)
- Shweta Maurya
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shashank Tripathi
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | | | - Ajit Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Qian F, Zhu Z, Luo C, Qi R, Wei L, Bo L, Jiang W, Mao C. Chlorogenic Acid Ameliorates Chronic Unpredictable Stress-Induced Diminished Ovarian Reserve Through Ovarian Renin-Angiotensin System. Mol Nutr Food Res 2025; 69:e202400814. [PMID: 39891261 PMCID: PMC11874143 DOI: 10.1002/mnfr.202400814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 02/03/2025]
Abstract
Chronic stress could impair ovarian reserve through hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis, leading to reduced oocyte quality and endocrine dysfunction. The ovarian renin-angiotensin system (OVRAS) modulates follicular development, and excessive activation of the ACE-AngII-AT1R axis increases oxidative stress, disrupting ovarian function. This study investigates OVRAS's role in chronic unpredictable stress (CUS)-induced diminished ovarian reserve (DOR) and explores the protective effects of chlorogenic acid (CGA). Female mice were subjected to CUS (10 intervention methods were randomly applied to mice according to low, medium, and high frequency) and CGA treatment. Hormone levels, estrous cycles, ovarian morphology, oxidative stress, and apoptosis were evaluated. Results demonstrated that CUS overactivated the ACE-AngII-AT1R axis, increasing oxidative stress and apoptosis in granulosa cells (GCs). CGA improved ovarian function, reduced oxidative stress, and downregulated ACE-AngII-AT1R axis activity. CGA may alleviate stress-induced DOR by mitigating oxidative stress and apoptosis via modulation of the ACE-AngII-AT1R axis.
Collapse
Affiliation(s)
- Fei Qian
- Reproductive Medicine CenterFirst Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhengyu Zhu
- Department of UrologyFirst Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chao Luo
- Reproductive Medicine CenterFirst Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Ruofan Qi
- Reproductive Medicine CenterFirst Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Lun Wei
- Reproductive Medicine CenterFirst Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Le Bo
- Reproductive Medicine CenterFirst Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wangtao Jiang
- Reproductive Medicine CenterFirst Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Caiping Mao
- Reproductive Medicine CenterFirst Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
3
|
Yuan J, Li Z, Yu Y, Wang X, Zhao Y. Natural compounds in the management of polycystic ovary syndrome: a comprehensive review of hormonal regulation and therapeutic potential. Front Nutr 2025; 12:1520695. [PMID: 40008316 PMCID: PMC11850276 DOI: 10.3389/fnut.2025.1520695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a multifaceted endocrine disorder characterized by irregularities in gonadotropin secretion, hyperandrogenism, chronic anovulation, and polycystic ovarian morphology. In addition, it is often associated with metabolic dysfunctions, most notably insulin resistance (IR). This disorder affects approximately 6-20% of individuals, primarily emerging during early adolescence, and considerably increases the risk of conditions such as impaired glucose tolerance, type 2 diabetes, endometrial cancer, cardiovascular diseases, dyslipidemia, and postpartum complications. To date, there is no standardized protocol for treating PCOS. Existing therapies primarily rely on personalized pharmacotherapy and lifestyle modifications. However, these treatments may often lead to adverse effects, and most medications prescribed for PCOS are used off-label and have not secured approval from the U.S. Food and Drug Administration specifically for this condition. Recently, natural compounds have garnered considerable attention due to their efficacy in hormone modulation and minimal toxicity. Substances such as myo-inositol, resveratrol, berberine, and quercetin have shown promise in mitigating PCOS symptoms. Their multi-target properties offer the potential to achieve outcomes unattainable by single-target pharmaceuticals, particularly in managing heterogeneous conditions. This review aims to comprehensively analyze in vivo and in vitro research alongside clinical interventions to evaluate the influence of natural compounds on the prevalence of PCOS and their therapeutic potential. These investigations lay the groundwork for developing innovative therapeutic strategies for PCOS.
Collapse
Affiliation(s)
- Jingyi Yuan
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhenmin Li
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yongjiang Yu
- Department of Endocrine and Metabolic Disease, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiuge Wang
- Department of Endocrine and Metabolic Disease, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yunyun Zhao
- Department of Endocrine and Metabolic Disease, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
4
|
Zallar LJ, Rivera-Irizarry JK, Hamor PU, Pigulevskiy I, Rico Rozo AS, Mehanna H, Liu D, Welday JP, Bender R, Asfouri JJ, Levine OB, Skelly MJ, Hadley CK, Fecteau KM, Nelson S, Miller J, Ghazal P, Bellotti P, Singh A, Hollmer LV, Erikson DW, Geri J, Pleil KE. Rapid nongenomic estrogen signaling controls alcohol drinking behavior in mice. Nat Commun 2024; 15:10725. [PMID: 39737915 PMCID: PMC11686278 DOI: 10.1038/s41467-024-54737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/19/2024] [Indexed: 01/01/2025] Open
Abstract
Ovarian-derived estrogen can signal non-canonically at membrane-associated receptors in the brain to rapidly regulate neuronal function. Early alcohol drinking confers greater risk for alcohol use disorder in women than men, and binge alcohol drinking is correlated with high estrogen levels, but a causal role for estrogen in driving alcohol drinking has not been established. We found that female mice displayed greater binge alcohol drinking and reduced avoidance when estrogen was high during the estrous cycle than when it was low. The pro-drinking, but not anxiolytic, effect of high endogenous estrogen occurred via rapid signaling at membrane-associated estrogen receptor alpha in the bed nucleus of the stria terminalis, which promoted synaptic excitation of corticotropin-releasing factor neurons and facilitated their activity during alcohol drinking. Thus, this study demonstrates a rapid, nongenomic signaling mechanism for ovarian-derived estrogen in the brain controlling behavior in gonadally intact females.
Collapse
Affiliation(s)
- Lia J Zallar
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jean K Rivera-Irizarry
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Peter U Hamor
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Irena Pigulevskiy
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ana-Sofia Rico Rozo
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Hajar Mehanna
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Dezhi Liu
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jacqueline P Welday
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Rebecca Bender
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Joseph J Asfouri
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Olivia B Levine
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Mary Jane Skelly
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Psychology Department, Iona University, New Rochelle, NY, USA
| | - Colleen K Hadley
- Weill Cornell/Rockefeller/Sloan Kettering Tri-institutional MD-PhD Program, New York, NY, 10065, USA
| | - Kristopher M Fecteau
- Endocrine Technologies Core, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Scottie Nelson
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - John Miller
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Pasha Ghazal
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Peter Bellotti
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ashna Singh
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lauren V Hollmer
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - David W Erikson
- Endocrine Technologies Core, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Jacob Geri
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Kristen E Pleil
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
5
|
Gong S, Huang R, Wang M, Lian F, Wang Q, Liao Z, Fan C. Comprehensive analysis of the metabolomics and transcriptomics uncovers the dysregulated network and potential biomarkers of Triple Negative Breast Cancer. J Transl Med 2024; 22:1016. [PMID: 39529035 PMCID: PMC11552364 DOI: 10.1186/s12967-024-05843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is known for its aggressive nature, lack of effective diagnostic tools and treatments, and generally poor prognosis. The objective of this study was to investigate metabolic changes in TNBC using metabolomics approaches and explore the underlying mechanisms through integrated analysis with transcriptomics. In this study, serum untargeted metabolic profiles were first examined between 18 TNBC patients and 21 healthy control (HC) subjects using liquid chromatography-mass spectrometry (LC-MS), identifying a total of 22 significantly differential metabolites (DMs). Subsequently, receiver operating characteristic analysis revealed that 7-methylguanine could serve as a potential biomarker for TNBC in both the discovery and validation sets. Additionally, transcriptomic datasets were retrieved from the GEO database to identify differentially expressed genes (DEGs) between TNBC and normal tissues. An integrative analysis of the DMs and DEGs was conducted, uncovering potential molecular mechanisms underlying TNBC. Notably, three pathways-tyrosine metabolism, phenylalanine metabolism, and glycolysis/gluconeogenesis-were enriched, providing insight into the energy metabolism disorders in TNBC. Within these pathways, two DMs (4-hydroxyphenylacetaldehyde and oxaloacetic acid) and six DEGs (MAOA, ADH1B, ADH1C, AOC3, TAT, and PCK1) were identified as key components. In summary, this study highlights metabolic biomarkers that could potentially be used for the diagnosis and screening of TNBC. The comprehensive analysis of metabolomics and transcriptomics data offers a validated and in-depth understanding of TNBC metabolism.
Collapse
Affiliation(s)
- Sisi Gong
- The Clinical Laboratory Center, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| | - Rongfu Huang
- The Clinical Laboratory Center, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| | - Meie Wang
- The Clinical Laboratory Center, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| | - Fen Lian
- The Clinical Laboratory Center, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| | - Qingshui Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, P.R. China.
| | - Zhijun Liao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, P.R. China.
| | - Chunmei Fan
- The Clinical Laboratory Center, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China.
| |
Collapse
|
6
|
Han Y, Sun Q, Chen W, Gao Y, Ye J, Chen Y, Wang T, Gao L, Liu Y, Yang Y. New advances of adiponectin in regulating obesity and related metabolic syndromes. J Pharm Anal 2024; 14:100913. [PMID: 38799237 PMCID: PMC11127227 DOI: 10.1016/j.jpha.2023.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/18/2023] [Accepted: 12/07/2023] [Indexed: 05/29/2024] Open
Abstract
Obesity and related metabolic syndromes have been recognized as important disease risks, in which the role of adipokines cannot be ignored. Adiponectin (ADP) is one of the key adipokines with various beneficial effects, including improving glucose and lipid metabolism, enhancing insulin sensitivity, reducing oxidative stress and inflammation, promoting ceramides degradation, and stimulating adipose tissue vascularity. Based on those, it can serve as a positive regulator in many metabolic syndromes, such as type 2 diabetes (T2D), cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), sarcopenia, neurodegenerative diseases, and certain cancers. Therefore, a promising therapeutic approach for treating various metabolic diseases may involve elevating ADP levels or activating ADP receptors. The modulation of ADP genes, multimerization, and secretion covers the main processes of ADP generation, providing a comprehensive orientation for the development of more appropriate therapeutic strategies. In order to have a deeper understanding of ADP, this paper will provide an all-encompassing review of ADP.
Collapse
Affiliation(s)
- Yanqi Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qianwen Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yue Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanmin Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tingting Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lili Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
7
|
Simaei SR, Askari VR, Rostami M, Kamalinejad M, Farzaei MH, Morovati M, Heydarpour F, Jafari Z, Baradaran Rahimi V. Lavender and metformin effectively propagate progesterone levels in patients with polycystic ovary syndrome: A randomized, double-blind clinical trial. Fitoterapia 2024; 172:105720. [PMID: 37931721 DOI: 10.1016/j.fitote.2023.105720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND The present study aimed to evaluate the impacts of lavender and metformin on polycystic ovary syndrome (PCOS) patients. METHODS We performed a randomized, double-blind clinical trial including 68 females aged 18 to 45, fulfilling the Rotterdam criteria for PCOS. The patients were randomized to receive lavender (250 mg twice daily) or metformin (500 mg three times a day) for 90 days. The serum progesterone was measured at baseline and after 90 days, one week before their expected menstruation. Moreover, the length of the menstrual cycle was documented. RESULTS Our results showed that lavender and metformin treatment notably increased the progesterone levels in PCOS patients (increasing from 0.35 (0.66) and 0.8 (0.69) to 2.5 (6.2) and 2.74 (6.27) ng/mL, respectively, P < 0.001). However, we found no significant differences between the increasing effects of both treatments on progesterone levels. In addition, all patients in the lavender or metformin groups had baseline progesterone levels <3 ng/mL, reaching 14 (45.2%) patients >3 ng/mL. Lavender and metformin remarkably attenuated the menstrual cycle length in PCOS patients (decreasing from 56.0 (20.0) and 60 (12.0) to 42.0 (5.0) and 50.0 (14.0) days, respectively, P < 0.001). Furthermore, the decreasing effects of lavender on the menstrual cycle length were greater than the metformin group; however, it was not statistically significant (P = 0.06). CONCLUSION Lavender effectively increased progesterone levels and regulated the menstrual cycles in PCOS patients, similar to metformin. Therefore, lavender may be a promising candidate for the treatment of PCOS.
Collapse
Affiliation(s)
- Saeed Reza Simaei
- Department of Persian Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad Iran.
| | - Mahboobeh Rostami
- Department of Obstetrics and Gynecology, Faculty of Medicine, Islamic Azad University of Mashhad, Mashhad, Iran.
| | - Mohammad Kamalinejad
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mohammadreza Morovati
- Department of Persian Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Fatemeh Heydarpour
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Zahra Jafari
- Department of Persian Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad Iran.
| |
Collapse
|
8
|
Alshehri B. Prognostic significance and expression pattern of glucose related genes in breast cancer: A comprehensive computational biology approach. Saudi J Biol Sci 2024; 31:103896. [PMID: 38173442 PMCID: PMC10761912 DOI: 10.1016/j.sjbs.2023.103896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Breast cancer (BC) is the most common type of malignancy globally and the main reason why women die from tumours. The Warburg effect, a characteristic of tumor, describes how most solid tumour cells acclimatize to their diverse surroundings by relying heavily on aerobic glycolysis for production of energy. In addition to producing key metabolic intermediates that are crucial for the production of macromolecules, which enable cancer cell division, invasiveness, and drug resistance, the transformed energy metabolism also supplies tumor cells with ATP for cellular energy. Here, we evaluated the expression profile, prognostic significance, and clinical relevance of glucose-related genes in BC using a bioinformatic approach. To clarify the significance of glucose-related genes in the development of breast tumours, we also performed a functional enrichment investigation of deregulated genes using the STRING and KEGG portal. The study depicted that of the 61 genes examined, 8 genes had a fold change =± 1.5, that is, ADH1C, ADH4, ALDH1A3, ALDOC, FBP1, PCK1, PFKFB1, PFKFB3. Among the highly deregulated genes, ADH1C showed a fold change of -6.669. These deregulated genes were associated with poor prognosis. The study signifies that glucose related genes are highly dysregulated in breast cancer. Deregulation of glucose related genes is linked with a poor prognosis in BC individuals. Thus, targeting glucose related genes will provide an effective treatment approach for BC individuals.
Collapse
Affiliation(s)
- Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Almajmaah 11952, Saudi Arabia
| |
Collapse
|
9
|
Zhang Z, Shi C, Wang Z. Therapeutic Effects and Molecular Mechanism of Chlorogenic Acid on Polycystic Ovarian Syndrome: Role of HIF-1alpha. Nutrients 2023; 15:2833. [PMID: 37447160 PMCID: PMC10343257 DOI: 10.3390/nu15132833] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Chlorogenic acid (CGA) is a powerful antioxidant polyphenol molecule found in many diets and liquid beverages, playing a preventive and therapeutic role in various diseases caused by oxidative stress and inflammation. Recent research has found that CGA can not only improve clinical symptoms in PCOS patients but also improve follicular development, hormone status, and oxidative stress in PCOS rats, indicating the therapeutic effect of CGA on PCOS. Notably, our previous series of studies has demonstrated the expression changes and regulatory mechanisms of HIF-1alpha signaling in PCOS ovaries. Considering the regulatory effect of CGA on the HIF-1alpha pathway, the present article systematically elucidates the therapeutic role and molecular mechanisms of HIF-1alpha signaling during the treatment of PCOS by CGA, including follicular development, steroid synthesis, inflammatory response, oxidative stress, and insulin resistance, in order to further understand the mechanisms of CGA effects in different types of diseases and to provide a theoretical basis for further promoting CGA-rich diets and beverages simultaneously.
Collapse
Affiliation(s)
| | | | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (C.S.)
| |
Collapse
|