1
|
Safaei M, Rajabi SS, Tirgar M, Namdar N, Dalfardi M, Mohammadifar F, Goodarzi A, Farmani AR, Ramezani V, Abpeikar Z. Exosome-based approaches in cancer along with unlocking new insights into regeneration of cancer-prone tissues. Regen Ther 2025; 29:202-216. [PMID: 40225049 PMCID: PMC11992408 DOI: 10.1016/j.reth.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/01/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025] Open
Abstract
Most eukaryotic cells secrete extracellular vesicles called exosomes, which are involved in intercellular communication. Exosomes play a role in tumor development and metastasis by transporting bioactive chemicals from cancerous cells to other cells in local and distant microenvironments. However, the potential of exosomes can be used by engineering them and considering different therapeutic approaches to overcome tumors. Exosomes are a promising drug delivery approach that can help decrease side effects from traditional treatments like radiation and chemotherapy by acting as targeted agents at the tumor site. The present review provides an overview of exosomes and various aspects of the role of exosomes in cancer development, which include these items: exosomes in cancer diagnosis, exosomes and drug delivery, exosomes and drug resistance, exosomal microRNAs and exosomes in tumor microenvironment, etc. Cancer stem cells release exosomes that nurture tumors, promoting unwanted growth and regeneration, and these types of exosomes should be inhibited. Ironically, exosomes from other cells, such as hepatocytes or mesenchymal stem cells (MSCs), are vital for healing organs like the liver and repairing gastric ulcers. Without proper treatment, this healing process can backfire, potentially leading to disease progression or even cancer. What can be found from various studies about the role of exosomes in the field of cancer is that exosomes act like a double-edged sword; on the other hand, natural exosomes in the body may play an important role in the process and progression of cancer, but by engineering exosomes, they can be directed towards target therapy and targeted delivery of drugs to tumor cells. By examining the role and application of exosomes in various mechanisms of cancer, it is possible to help treat this disease more efficiently and quickly in preclinical and clinical research.
Collapse
Affiliation(s)
- Mohsen Safaei
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Seyedeh Somayeh Rajabi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahtab Tirgar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Najmeh Namdar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahsa Dalfardi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Farnia Mohammadifar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Arash Goodarzi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Ahmad Reza Farmani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Vahid Ramezani
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Abpeikar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
2
|
Song F, Xu D, Che J, Huang M, Li H. Chitosan hydrogel incorporated with bone marrow mesenchymal stem cell-derived exosomal TIMP2 to inhibit angiogenesis in cholangiocarcinoma. Tissue Cell 2025; 93:102694. [PMID: 39718067 DOI: 10.1016/j.tice.2024.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
OBJECTIVE Cholangiocarcinoma (CCA) presents a therapeutic challenge due to its aggressiveness and poor survival rates. This study introduces an approach using tissue inhibitor of metalloproteinase 2 (TIMP2)-enriched bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exo) encapsulated in chitosan hydrogels (CS), intending to provide novel insight into the CCA treatment. METHODS BMSC-Exo was characterized by using TEM, nanoparticle tracking analysis, and western blotting. Role of TIMP2 in CCA was explored using bioinformatics analysis. Therapeutic efficacy and mechanisms of BMSC-Exo/CS in CCA were assessed through cell viability tests and colony formation assays. Angiogenic and Wnt/β-catenin signaling pathways-related key factors were detected through RT-qPCR or western blotting. RESULTS BMSC-Exo displayed typical cup-shaped morphology and was positive for exosomal markers CD9 and TSG101, but negative for endoplasmic reticulum marker Calnexin, with a diameter of 124.6 nm. BMSC-Exo combined with CS showed synergistic anti-proliferative effects in CCA cells. High-expression TIMP2 samples indicated a better prognosis of CCA patients, and BMSC-Exo/CS increased the TIMP2 expression in CCA cells. Mechanistically, BMSC-Exo/CS TIMP2 overexpression inhibited key factors related to angiogenesis (VEGFA and VEGFR2) and Wnt/β-catenin pathway (β-catenin and c-Myc), thereby reducing CCA cell viability. Notably, these inhibitory effects were reversed by a Wnt signaling agonist (BML-284). CONCLUSION The study validates the therapeutic potential of BMSC-Exo/CS TIMP2 in CCA treatment. This innovative approach targets angiogenesis and Wnt/β-catenin signaling, providing a new avenue for more effective and comprehensive CCA therapies.
Collapse
Affiliation(s)
- Fei Song
- Department of Minimally Invasive Intervention, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Dan Xu
- Department of Medical laboratory, Pingbian County People's Hospital, Pingbian, Yunnan, China.
| | - Jiayin Che
- Department of Minimally Invasive Intervention, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Ming Huang
- Department of Minimally Invasive Intervention, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Hongyang Li
- Department of Minimally Invasive Intervention, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
3
|
Kamrani S, Naseramini R, Khani P, Razavi ZS, Afkhami H, Atashzar MR, Nasri F, Alavimanesh S, Saeidi F, Ronaghi H. Mesenchymal stromal cells in bone marrow niche of patients with multiple myeloma: a double-edged sword. Cancer Cell Int 2025; 25:117. [PMID: 40140850 PMCID: PMC11948648 DOI: 10.1186/s12935-025-03741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy defined by the abnormal proliferation and accumulation of plasma cells (PC) within the bone marrow (BM). While multiple myeloma impacts the bone, it is not classified as a primary bone cancer. The bone marrow microenvironment significantly influences the progression of myeloma and its treatment response. Mesenchymal stromal cells (MSCs) in this environment engage with myeloma cells and other bone marrow components via direct contact and the secretion of soluble factors. This review examines the established roles of MSCs in multiple facets of MM pathology, encompassing their pro-inflammatory functions, contributions to tumor epigenetics, effects on immune checkpoint inhibitors (ICIs), influence on reprogramming, chemotherapy resistance, and senescence. This review investigates the role of MSCs in the development and progression of MM.
Collapse
Affiliation(s)
- Sina Kamrani
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Naseramini
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Zahra Sadat Razavi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Mohammad Reza Atashzar
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Farzad Nasri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Alavimanesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Farzane Saeidi
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hossein Ronaghi
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
4
|
He Y, Kang J, Yang X, Deng N, Hui L, Yu Y, Bian Y, Tao F, Duan X, Zhang J. Extracellular Vesicles Separation and Biomedical Application Based on Affinity Recognition and Antifouling Coating Bifunctional Microsphere. Anal Chem 2025; 97:4542-4548. [PMID: 39977271 DOI: 10.1021/acs.analchem.4c06347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Extracellular vesicles (EVs) are crucial mediators in various physiological and pathological processes, facilitating intercellular communication and offering potential as diagnostic disease markers. However, existing EVs separation methods have limitations that hinder their clinical application. In this study, we present a novel approach using bifunctional silica microspheres (SiO2-PTB-PS) for the specific, nondestructive isolation of EVs from complex biological media. The isolated EVs were subsequently used for direct cancer detection in clinical samples. The SiO2-PTB-PS microspheres, functionalized with a phosphatidylserine (PS) recognition peptide (PSpep), specifically bound to PS on the EVs surface. Additionally, an anti-adhesion coating on the silica microspheres minimized protein contamination, enhancing purity. This affinity-based recognition and antifouling strategy ensured high-purity EVs separation. Furthermore, we developed a detection system combining SiO2-PTB-PS microspheres with surface-enhanced Raman scattering (SERS) nanoprobes to identify protein tyrosine kinase 7 (PTK7) and epithelial cell adhesion (EpCAM) on the EVs membrane, achieving 80% precision in distinguishing cancer patients from healthy donors. The SiO2-PTB-PS microsphere system shows significant promise as a biotechnology tool, advancing the clinical application of EVs-based diagnostics.
Collapse
Affiliation(s)
- Yuxing He
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, P. R. China
| | - Jia Kang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, P. R. China
| | - Xuwen Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, P. R. China
| | - Nan Deng
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, P. R. China
| | - Lingyun Hui
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, P. R. China
| | - Yunxuan Yu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, P. R. China
| | - Yangyang Bian
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, P. R. China
| | - Fufang Tao
- Shaanxi Provincial Drug Technical Evaluation Center, Xi'an, Shaanxi Province 710065, P. R. China
| | - Xinrui Duan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, P. R. China
| | - Jing Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710119, P. R. China
| |
Collapse
|
5
|
Tang L, Zhang W, Qi T, Jiang Z, Tang D. Exosomes play a crucial role in remodeling the tumor microenvironment and in the treatment of gastric cancer. Cell Commun Signal 2025; 23:82. [PMID: 39948541 PMCID: PMC11827163 DOI: 10.1186/s12964-024-02009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/21/2024] [Indexed: 02/16/2025] Open
Abstract
Gastric cancer (GC) is a common and frequent malignant cancer of the digestive system with a poor prognosis. In addition to common therapies such as surgical resection and chemotherapy, novel biological interventions are quite valuable for research. Exosomes are extracellular vesicles (EVs) that originate from various cell types and contain proteins, RNA, DNA, and other components that transmit biological signals and mediate intercellular communication. Numerous studies have shown that exosomes shape the tumor microenvironment (TME) by affecting hypoxia, inflammation, immunity, metabolism, and interstitial changes in the tumor, playing a crucial role in the development and metastasis of GC. This article reviews the important role of exosomes in the TME of GC and explores their potential clinical applications in GC treatment.
Collapse
Affiliation(s)
- Lingyun Tang
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, China
| | - Wenjie Zhang
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Teng Qi
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225000, China
| | - Zhengting Jiang
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225000, China.
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital; The Yangzhou Clinical Medical College of Xuzhou Medical University; The Yangzhou School of Clinical Medicine of Dalian Medical University; The Yangzhou School of Clinical Medicine of Nanjing Medical University; Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, 225000, China.
| |
Collapse
|
6
|
Gui Y, Xue G, Yuan Y, Wang J, Deng S, Gao F, Tian Y, Zhao Z, Fan H. Stachydrine targeting tumor-associated macrophages inhibit colorectal cancer liver metastasis by regulating the JAK2/STAT3 pathway. Front Pharmacol 2025; 16:1514158. [PMID: 39974738 PMCID: PMC11835834 DOI: 10.3389/fphar.2025.1514158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
Introduction Colorectal cancer (CRC) represents the third most prevalent form of cancer worldwide, with liver metastasis representing a significant contributor to mortality. The interaction between tumor-associated macrophages (TAMs) and tumor cells plays a pivotal role in the development of colorectal cancer liver metastases (CRLM) and represents a promising avenue for therapeutic intervention. Stachydrine (STA), a compound derived from the Leonurus heterophyllus plant, has been shown to effectively inhibit tumor growth through a range of mechanisms. Methods The study employed imaging and histopathology to evaluate the efficacy of STA monotherapy in preventing CRLM. The inhibition of M2 macrophage polarization by STA was confirmed through the use of flow cytometry and immunofluorescence. Subsequently, a series of assays, including quantitative reverse transcription polymerase chain reaction (qRT-PCR), flow cytometry, scratch, invasion, and tube formation assays, were conducted to confirm STA's capacity to impede tumor cell migration, invasion, and angiogenesis in vitro. Western blotting and flow cytometry were employed to elucidate the mechanisms through which STA exerts its effects on tumor metastasis. Results In our research, STA has been shown to attenuate liver metastasis in CRC mouse models by inhibiting the polarization of macrophages to the M2 phenotype. This anti-metastatic effect is dependent on the presence of macrophages. In vitro, STA has been found to impede tumor cell migration, invasion, and angiogenesis by preventing TAMs from polarizing to the M2 phenotype via the JAK2/STAT3 signaling pathway. Moreover, the combination of STA with anti-PD-1 therapy has been observed to restore immune infiltration within the tumor microenvironment and inhibit tumor progression. Conclusion The findings of this study demonstrate that STA exerts an inhibitory effect on colorectal cancer liver metastasis by targeting macrophages and impeding their M2 polarization via the JAK2/STAT3 pathway. Furthermore, the combination of STA with anti-PD-1 therapy has been observed to enhance the effectiveness of immune checkpoint blockade and reduce tumor spread, indicating the potential of STA to improve the efficacy of immunotherapy for liver metastases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Liu X, Hyun Kim J, Li X, Liu R. Application of mesenchymal stem cells exosomes as nanovesicles delivery system in the treatment of breast cancer. Int J Pharm 2024; 666:124732. [PMID: 39304093 DOI: 10.1016/j.ijpharm.2024.124732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
As people's living standards continue to improve and human life span expectancy increases, the incidence and mortality rates of breast cancer are continuously rising. Early detection of breast cancer and targeted therapy for different breast cancer subtypes can significantly reduce the mortality rate and alleviate the suffering of patients. Exosomes are extracellular vesicles secreted by various cells in the body. They participate in physiological and pathological responses by releasing active substances and play an important role in regulating intercellular communication. In recent years, research on exosomes has gradually expanded, and their special membrane structure and targetable characteristics are being increasingly applied in various clinical studies. Mesenchymal stem cells (MSCs)-derived exosomes play an important role in regulating the progression of breast cancer. In this review, we summarize the current treatment methods for breast cancer, the connection between MSCs, exosomes, and breast cancer, as well as the application of exosomes derived from MSCs from different sources in cancer treatment. We highlight how the rational design of modified MSCs-derived exosomes (MSCs-Exos) delivery systems can overcome the uncertainties of stem cell therapy and overcome the clinical translation challenges of nanomaterials. This work aims to promote future research on the application of MSCs-Exos in breast cancer treatment.
Collapse
Affiliation(s)
- Xiaofan Liu
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea; Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - June Hyun Kim
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea
| | - Xuemei Li
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Rui Liu
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea.
| |
Collapse
|
8
|
Sun H, Wang J, Bi W, Zhang F, Zhang K, Tian X, Gao X, Zhang Y. Mesenchymal stem cell-derived exosomal microRNA-367-3p mitigates lower limb ischemia/reperfusion injury in mouse skeletal muscle via EZH2 targeting. J Pharm Pharmacol 2024; 76:1634-1646. [PMID: 39137155 DOI: 10.1093/jpp/rgae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/22/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVE This study aimed to investigate the protective effect of bone marrow mesenchymal stem cell-derived exosomes (BMSCs-exo) against lower limb ischemia/reperfusion (I/R) injury-induced pyroptosis in skeletal muscle. METHODS A mouse model of lower limb I/R injury was utilized to assess the impact of BMSCs-exo, particularly when loaded with microRNA-367-3p (miR-367-3p), on pyroptosis. Histological examination, wet weight/dry weight ratio measurements, and luciferase assays were employed to elucidate the mechanisms involved. KEY FINDINGS BMSCs-exo effectively suppressed pyroptosis in injured skeletal muscle tissue. Loading BMSCs-exo with miR-367-3p enhanced this protective effect by downregulating key pyroptosis-related proteins. Luciferase assays identified enhancer of zeste homolog 2 (EZH2) as a direct target of miR-367-3p in BMSCs-exo. CONCLUSIONS BMSCs-exo loaded with miR-367-3p safeguarded mouse skeletal muscle against pyroptosis-induced I/R injury by targeting EZH2. These findings offer valuable insights into potential therapeutic strategies for lower limb I/R injuries, emphasizing the therapeutic potential of BMSCs-exo in mitigating tissue damage caused by pyroptosis.
Collapse
Affiliation(s)
- Huanhuan Sun
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jueqiong Wang
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Wei Bi
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Feng Zhang
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Kai Zhang
- Department of Vascular Surgery, Shijiazhuang Hospital of Traditional Chinese Medicine 050000, Hebei, China
| | - Xitao Tian
- The Department of Orthopedic, Wuqiang County People's Hospital, Hengshui, Hebei 053300, China
| | - Xiang Gao
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Yanrong Zhang
- Department of Vascular Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
9
|
Almutairy B, Alzahrani MS, Waggas DS, Alsaab HO. Particular exosomal micro-RNAs and gastrointestinal (GI) cancer cells' roles: Current theories. Exp Cell Res 2024; 442:114278. [PMID: 39383930 DOI: 10.1016/j.yexcr.2024.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
A diverse range of gastrointestinal tract disorders are called gastrointestinal (GI) malignancies. The transformation of normal cells into precursor cells, precursor cells into premalignant cells, and premalignant cells into cancerous cells is facilitated by the interaction of many modifiable and non-modifiable risk factors. Developing relevant therapy alternatives based on a better knowledge of the illness's aetiology is essential to enhance patient outcomes. The exosome is crucial in regulating intercellular interaction because it may send molecular signals to nearby or distant cells. Exosomes produced from cancer can introduce a variety of chemicals and vast concentrations of microRNA (miRNA) into the tumour microenvironment. These miRNAs significantly impact immunological evasion, metastasis, apoptosis resistance, and cell growth. Exosomal miRNAs, or exosomal miRNAs, are essential for controlling cancer resistance to apoptosis, according to mounting data. Exosomal miRNAs function as an interaction hub between cancerous cells and the milieu around them, regulating gene expression and various signalling pathways. Our research examines the regulatory function of exosomal miRNAs in mediating interactions between cancer cells and the stromal and immunological cells that make up the surrounding milieu.
Collapse
Affiliation(s)
- Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Dania S Waggas
- Pathological Sciences Department, Fakeeh College for Medical Sciences, Jeddah University, Saudi Arabia.
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| |
Collapse
|
10
|
Fawzy MP, Hassan HAFM, Sedky NK, Nafie MS, Youness RA, Fahmy SA. Revolutionizing cancer therapy: nanoformulation of miRNA-34 - enhancing delivery and efficacy for various cancer immunotherapies: a review. NANOSCALE ADVANCES 2024:d4na00488d. [PMID: 39309515 PMCID: PMC11414826 DOI: 10.1039/d4na00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
Despite recent advancements in cancer therapies, challenges such as severe toxic effects, non-selective targeting, resistance to chemotherapy and radiotherapy, and recurrence of metastatic tumors persist. Consequently, there has been considerable effort to explore innovative anticancer compounds, particularly in immunotherapy, which offer the potential for enhanced biosafety and efficacy in cancer prevention and treatment. One such avenue of exploration involves the miRNA-34 (miR-34) family, known for its ability to inhibit tumorigenesis across various cancers. Dysregulation of miR-34 has been observed in several human cancers, and it is recognized as a tumor suppressor microRNA due to its synergistic interaction with the well-established tumor suppressor p53. However, challenges have arisen with the therapeutic application of miR-34a. These include its susceptibility to degradation by RNase in serum, limiting its ability to penetrate capillary endothelium and reach target cells, as well as reports of immunoreactive adverse reactions. Furthermore, unexpected side effects may occur, such as the accumulation of therapeutic miRNAs in healthy tissues due to interactions with serum proteins on nano-vector surfaces, nanoparticle breakdown in the bloodstream due to shearing stress, and unsuccessful extravasation of nanocarriers to target cells owing to interstitial fluid pressure. Despite these challenges, miR-34a remains a promising candidate for cancer therapy, and other members of the miR-34 family have also shown potential in inhibiting tumor cell proliferation. While the in vivo applications of miR-34b/c are limited, they warrant further exploration for oncotherapy. Recently, procedures utilizing nanoparticles have been developed to address the challenges associated with the clinical use of miR-34, demonstrating efficacy both in vitro and in vivo. This review highlights emerging trends in nanodelivery systems for miR-34 targeting cancer cells, offering insights into novel nanoformulations designed to enhance the anticancer therapeutic activity and targeting precision of miR-34. As far as current knowledge extends, no similar recent review comprehensively addresses the diverse nanoformulations aimed at optimizing the therapeutic potential of miR-34 in anticancer strategies.
Collapse
Affiliation(s)
- Marola Paula Fawzy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt
| | - Hatem A F M Hassan
- Medway School of Pharmacy, University of Kent Central Avenue, Chatham Maritime Canterbury ME44TB UK
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University 11562 Cairo Egypt
| | - Nada K Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Administrative Capital Cairo 11835 Egypt
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah (P.O. 27272) Sharjah United Arab Emirates (UAE)
- Chemistry Department, Faculty of Science, Suez Canal University (P.O. 41522) Ismailia Egypt
| | - Rana A Youness
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU) 11835 Cairo Egypt
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg Robert-Koch-Str. 4 35037 Marburg Germany
| |
Collapse
|
11
|
Fan MH, Pi JK, Zou CY, Jiang YL, Li QJ, Zhang XZ, Xing F, Nie R, Han C, Xie HQ. Hydrogel-exosome system in tissue engineering: A promising therapeutic strategy. Bioact Mater 2024; 38:1-30. [PMID: 38699243 PMCID: PMC11061651 DOI: 10.1016/j.bioactmat.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Characterized by their pivotal roles in cell-to-cell communication, cell proliferation, and immune regulation during tissue repair, exosomes have emerged as a promising avenue for "cell-free therapy" in clinical applications. Hydrogels, possessing commendable biocompatibility, degradability, adjustability, and physical properties akin to biological tissues, have also found extensive utility in tissue engineering and regenerative repair. The synergistic combination of exosomes and hydrogels holds the potential not only to enhance the efficiency of exosomes but also to collaboratively advance the tissue repair process. This review has summarized the advancements made over the past decade in the research of hydrogel-exosome systems for regenerating various tissues including skin, bone, cartilage, nerves and tendons, with a focus on the methods for encapsulating and releasing exosomes within the hydrogels. It has also critically examined the gaps and limitations in current research, whilst proposed future directions and potential applications of this innovative approach.
Collapse
Affiliation(s)
- Ming-Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jin-Kui Pi
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yan-Lin Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qian-Jin Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xiu-Zhen Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Fei Xing
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chen Han
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, 610212, PR China
| |
Collapse
|
12
|
Lin J, Lu W, Huang B, Yang W, Wang X. The role of tissue-derived extracellular vesicles in tumor microenvironment. Tissue Cell 2024; 89:102470. [PMID: 39002287 DOI: 10.1016/j.tice.2024.102470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
The tumor microenvironment (TME) is a highly heterogeneous ecosystem that plays critical roles in the initiation, progression, invasion, and metastasis of cancers. Extracellular vesicles (EVs), as emerging components of the host-tumor communication, are lipid-bilayer membrane structures that are secreted by most cell types into TEM and increasingly recognized as critical elements that regulate the interaction between tumor cells and their surroundings. They contain a variety of bioactive molecules, such as proteins, nucleic acids, and lipids, and participate in various pathophysiological processes while regulating intercellular communication. While many studies have focused on the EVs derived from different body fluids or cell culture supernatants, the direct isolation of tissue-derived EVs (Ti-EVs) has garnered more attention due to the advantages of tissue specificity and accurate reflection of tissue microenvironment. In this review, we summarize the protocol for isolating Ti-EVs from different tissue interstitium, discuss the role of tumor-derived and adipose tissue-derived Ti-EVs in regulating TME. In addition, we sum up the latest application of Ti-EVs as potential biomarkers for cancer diseases.
Collapse
Affiliation(s)
- Jin Lin
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wan Lu
- Jiangxi Provincial Key Laboratory of Birth Defect for Prevention and Control, Medical Genetics Center, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Weiming Yang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
13
|
Xu H, Huang K, Shi M, Gong H, Han M, Tian W, Wang X, Zhang D. MicroRNAs in Helicobacter pylori-infected gastric cancer: Function and clinical application. Pharmacol Res 2024; 205:107216. [PMID: 38761883 DOI: 10.1016/j.phrs.2024.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Gastric cancer (GC) is the leading cause of cancer-related death worldwide, and it is associated with a combination of genetic, environmental, and microbial risk factors. Helicobacter pylori (H. pylori) is classified as a type I carcinogen, however, the exact regulatory mechanisms underlying H. pylori-induced GC are incompletely defined. MicroRNAs (miRNAs), one of small non-coding RNAs, negatively regulate gene expression through binding to their target genes. Dysregulation of miRNAs is crucial in human cancer. A noteworthy quantity of aberrant miRNAs induced by H. pylori through complex regulatory networks have been identified. These miRNAs substantially affect genetic instability, cell proliferation, apoptosis, invasion, metastasis, autophagy, chemoresistance, and the tumor microenvironment, leading to GC development and progression. Importantly, some H. pylori-associated miRNAs hold promise as therapeutic tools and biomarkers for GC prevention, diagnosis, and prognosis. Nonetheless, clinical application of miRNAs remains in its infancy with multiple issues, including sensitivity and specificity, stability, reliable delivery systems, and off-target effects. Additional research on the specific molecular mechanisms and more clinical data are still required. This review investigated the biogenesis, regulatory mechanisms, and functions of miRNAs in H. pylori-induced GC, offering novel insights into the potential clinical applications of miRNA-based therapeutics and biomarkers.
Collapse
Affiliation(s)
- Huimei Xu
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Ke Huang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China
| | - Mingxuan Shi
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China
| | - Hang Gong
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Mengyu Han
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Wenji Tian
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Xiaoying Wang
- Department of Emergency, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| | - Dekui Zhang
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
14
|
Ye Z, Chen W, Li G, Huang J, Lei J. Tissue-derived extracellular vesicles in cancer progression: mechanisms, roles, and potential applications. Cancer Metastasis Rev 2024; 43:575-595. [PMID: 37851319 DOI: 10.1007/s10555-023-10147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Extracellular vesicles (EVs) are small lipid bilayer-enclosed vesicles that mediate vital cellular communication by transferring cargo between cells. Among these, tissue-derived extracellular vesicles (Ti-EVs) stand out due to their origin from the tissue microenvironment, providing a more accurate reflection of changes in this setting. This unique advantage makes Ti-EVs valuable in investigating the intricate relationship between extracellular vesicles and cancer progression. Despite considerable research efforts exploring the association between Ti-EVs and cancers, a comprehensive clustering or grouping of these studies remains lacking. In this review, we aim to fill this gap by presenting a comprehensive synthesis of the mechanisms underlying Ti-EV generation, release, and transport within cancer tissues. Moreover, we delve into the pivotal roles that Ti-EVs play in cancer progression, shedding light on their potential as diagnostic and therapeutic tools. The review culminates in the construction of a comprehensive functional spectrum of Ti-EVs, providing a valuable reference for future research endeavors. By summarizing the current state of knowledge on Ti-EVs and their significance in tumor biology, this work contributes to a deeper understanding of cancer microenvironment dynamics and opens up avenues for harnessing Ti-EVs in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Ziyang Ye
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenjie Chen
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Genpeng Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Huang
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Guan XL, Guan XY, Zhang ZY. Roles and application of exosomes in the development, diagnosis and treatment of gastric cancer. World J Gastrointest Oncol 2024; 16:630-642. [PMID: 38577463 PMCID: PMC10989387 DOI: 10.4251/wjgo.v16.i3.630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/18/2023] [Accepted: 01/15/2024] [Indexed: 03/12/2024] Open
Abstract
As important messengers of intercellular communication, exosomes can regulate local and distant cellular communication by transporting specific exosomal contents and can also promote or suppress the development and progression of gastric cancer (GC) by regulating the growth and proliferation of tumor cells, the tumor-related immune response and tumor angiogenesis. Exosomes transport bioactive molecules including DNA, proteins, and RNA (coding and noncoding) from donor cells to recipient cells, causing reprogramming of the target cells. In this review, we will describe how exosomes regulate the cellular immune response, tumor angiogenesis, proliferation and metastasis of GC cells, and the role and mechanism of exosome-based therapy in human cancer. We will also discuss the potential application value of exosomes as biomarkers in the diagnosis and treatment of GC and their relationship with drug resistance.
Collapse
Affiliation(s)
- Xiao-Li Guan
- Department of General Medicine, The Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Xiao-Ying Guan
- Department of Pathology, The Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Zheng-Yi Zhang
- Department of General Medicine, The Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, China
| |
Collapse
|
16
|
Zhang C, Qin C, Dewanjee S, Bhattacharya H, Chakraborty P, Jha NK, Gangopadhyay M, Jha SK, Liu Q. Tumor-derived small extracellular vesicles in cancer invasion and metastasis: molecular mechanisms, and clinical significance. Mol Cancer 2024; 23:18. [PMID: 38243280 PMCID: PMC10797874 DOI: 10.1186/s12943-024-01932-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024] Open
Abstract
The production and release of tumor-derived small extracellular vesicles (TDSEVs) from cancerous cells play a pivotal role in the propagation of cancer, through genetic and biological communication with healthy cells. TDSEVs are known to orchestrate the invasion-metastasis cascade via diverse pathways. Regulation of early metastasis processes, pre-metastatic niche formation, immune system regulation, angiogenesis initiation, extracellular matrix (ECM) remodeling, immune modulation, and epithelial-mesenchymal transition (EMT) are among the pathways regulated by TDSEVs. MicroRNAs (miRs) carried within TDSEVs play a pivotal role as a double-edged sword and can either promote metastasis or inhibit cancer progression. TDSEVs can serve as excellent markers for early detection of tumors, and tumor metastases. From a therapeutic point of view, the risk of cancer metastasis may be reduced by limiting the production of TDSEVs from tumor cells. On the other hand, TDSEVs represent a promising approach for in vivo delivery of therapeutic cargo to tumor cells. The present review article discusses the recent developments and the current views of TDSEVs in the field of cancer research and clinical applications.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neuro-Oncology at Hunan Province, Changsha, 410008, China
| | - Chaoying Qin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neuro-Oncology at Hunan Province, Changsha, 410008, China
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Niraj Kumar Jha
- Centre of Research Impact and Outreach, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - Moumita Gangopadhyay
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat, Kolkata, 700126, West Bengal, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, New Delhi, Delhi, 110008, India.
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
- The Institute of Skull Base Surgery and Neuro-Oncology at Hunan Province, Changsha, 410008, China.
| |
Collapse
|
17
|
Dolatshahi M, Bahrami AR, Sheikh QI, Ghanbari M, Matin MM. Gastric cancer and mesenchymal stem cell-derived exosomes: from pro-tumorigenic effects to anti-cancer vehicles. Arch Pharm Res 2024; 47:1-19. [PMID: 38151649 DOI: 10.1007/s12272-023-01477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Gastric cancer (GC) is one of the most prevalent malignancies in the world, with a high mortality rate in both women and men. Conventional treatments, like chemotherapy, radiotherapy and surgery, are facing some drawbacks like acquired drug resistance and various side effects, leading to cancer recurrence and increased morbidity; thus, development of novel approaches in targeted therapy would be very beneficial. Exosomes, extracellular vesicles with a size distribution of sub-150 nm, interplay in physiological and pathophysiological cell-cell communications and can pave the way for targeted cancer therapy. Accumulating pieces of evidence have indicated that exosomes derived from mesenchymal stem cells (MSC-EXs) can act as a double-edged sword in some cancers. The purpose of this review is to assess the differences between stem cell therapy and exosome therapy. Moreover, our aim is to demonstrate how naïve MSCs transform into GC-MSCs in the tumor microenvironment. Additionally, the tumorigenic and anti-proliferation effects of MSC-EXs derived from different origins were investigated. Finally, we suggest potential modifications and combination options that involve utilizing MSC-EXs from the foreskin and umbilical cord as promising sources to enhance the efficacy of gastric cancer treatment. This approach is presented in contrast to bone marrow cells, which are more heterogeneous, age-related, and are also easily affected by the patient's circulation system.
Collapse
Affiliation(s)
- Maryam Dolatshahi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Qaiser Iftikhar Sheikh
- School of Biosciences, Western Bank, Firth Court, University of Sheffield, Sheffield, S10 2TN, England, UK
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
18
|
Yang C, Xue Y, Duan Y, Mao C, Wan M. Extracellular vesicles and their engineering strategies, delivery systems, and biomedical applications. J Control Release 2024; 365:1089-1123. [PMID: 38065416 DOI: 10.1016/j.jconrel.2023.11.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/07/2024]
Abstract
Extracellular vesicles are nanoscale vesicles that can be secreted by all cell types, are intracellular in origin and have the same composition as their parent cells, play a key role in intercellular communication in organismal health and disease, and are now often used as biomarkers of disease and therapeutic agents in biomedical research. When injected locally or systemically, they have the ability to provide a variety of therapeutic effects, for example, regeneration of skin damage or restoration of cardiac function. However, direct injection of extracellular vesicles may result in their rapid clearance from the injection site.In order to maintain the biological activity of extracellular vesicles and to control the release of effective concentrations for better therapeutic efficacy during long-term disease treatment, the design of an optimized drug delivery system is necessary and different systems for the continuous delivery of extracellular vesicles have been developed. This paper first provides an overview of the biogenesis, composition and physiological function of extracellular vesicles, followed by a review of different strategies for extracellular vesicle isolation and methods for engineering extracellular vesicles. In addition, this paper reviews the latest extracellular vesicle delivery platforms such as micro-nanoparticles, injectable hydrogels, microneedles and scaffold patches. At the same time, the research progress and key cases of extracellular vesicle delivery systems in the field of biomedical therapeutics are described. Finally, the challenges and future trends of extracellular vesicle delivery are discussed.
Collapse
Affiliation(s)
- Chunhao Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yunxin Xue
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yu Duan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
19
|
Fu J, Imani S, Wu MY, Wu RC. MicroRNA-34 Family in Cancers: Role, Mechanism, and Therapeutic Potential. Cancers (Basel) 2023; 15:4723. [PMID: 37835417 PMCID: PMC10571940 DOI: 10.3390/cancers15194723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
MicroRNA (miRNA) are small noncoding RNAs that play vital roles in post-transcriptional gene regulation by inhibiting mRNA translation or promoting mRNA degradation. The dysregulation of miRNA has been implicated in numerous human diseases, including cancers. miR-34 family members (miR-34s), including miR-34a, miR-34b, and miR-34c, have emerged as the most extensively studied tumor-suppressive miRNAs. In this comprehensive review, we aim to provide an overview of the major signaling pathways and gene networks regulated by miR-34s in various cancers and highlight the critical tumor suppressor role of miR-34s. Furthermore, we will discuss the potential of using miR-34 mimics as a novel therapeutic approach against cancer, while also addressing the challenges associated with their development and delivery. It is anticipated that gaining a deeper understanding of the functions and mechanisms of miR-34s in cancer will greatly contribute to the development of effective miR-34-based cancer therapeutics.
Collapse
Affiliation(s)
- Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310022, China
| | - Mei-Yi Wu
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Ray-Chang Wu
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|