1
|
Khadka SR, Karani P, Gogineni N, Vaddadi I, Awasthi CR, Gajowski N, Rizwanullah U, Hernández CA, Razzaq HMI, Shehriyar. Advances in Neurological Pain Management: Bridging Scientific Innovations and Clinical Practice. Cureus 2025; 17:e80447. [PMID: 40230768 PMCID: PMC11995363 DOI: 10.7759/cureus.80447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 04/16/2025] Open
Abstract
Neuronal pain, including neuropathic pain, migraines, and chronic pain syndromes, presents a significant global health challenge. This literature review covers studies conducted until 2024 using major databases, including PubMed and Google Scholar, with the search terms "Neuropathic Pain/therapy" OR "Chronic Pain/therapy" OR "Pain Management/methods" OR "Neuromodulation/methods" OR "Spinal Cord Stimulation" OR "Deep Brain Stimulation" OR "Transcranial Magnetic Stimulation" OR "Transcranial Direct Current Stimulation" OR "Nav1.7 Voltage-Gated Sodium Channel" OR "Biologics/pharmacology" OR "Drug Delivery Systems/methods" OR "Regenerative Medicine/methods" OR "Stem Cell Transplantation/methods" OR "Platelet-Rich Plasma/therapeutic use" OR "Tissue Engineering/methods" OR "Biomarkers/metabolism" OR "Machine Learning" OR "Precision Medicine." This review explores contemporary advancements in neurological pain therapy, emphasizing analytical studies that translate into clinical applications. The research foundation is built on modern literature examining pain mechanisms, pharmaceutical innovations, neuromodulation strategies, personalized pain management, and regenerative medicine. Notable advancements include neuroinflammation research, molecular and genetic pain factor discoveries, and the development of selective Nav1.7 inhibitors, biologics, and advanced drug delivery systems. Neuromodulation techniques, both invasive (e.g., deep brain stimulation (DBS), spinal cord stimulation (SCS)) and noninvasive (e.g., transcranial direct current stimulation (tDCS), transcranial magnetic stimulation (TMS)), play a crucial role in pain modulation. Regenerative approaches, including stem cell therapy, platelet-rich plasma (PRP), and tissue engineering, offer promising solutions for tissue repair and symptom relief. Additionally, genomic data, biomarkers, and machine learning enhance precision in pain management. Ethical considerations regarding treatment accessibility and opioid alternatives remain critical, particularly for Hispanic Americans facing language barriers in programs like Optum. Selective serotonin reuptake inhibitors (SSRIs) continue to be widely used in mental health treatment. In conclusion, the convergence of translational research, innovative therapies, and personalized medicine marks a transformative era in neurological pain management, improving patient outcomes and quality of life.
Collapse
Affiliation(s)
| | | | - Neha Gogineni
- Family Medicine, University Hospitals Cleveland Medical Center, Toronto, CAN
| | | | | | - Nicole Gajowski
- Internal Medicine, Avalon University School of Medicine, Willemstad, CUW
| | - Ufn Rizwanullah
- Internal Medicine, Hayatabad Medical Complex Peshawar, Peshawar, PAK
| | | | | | - Shehriyar
- Internal Medicine, Hayatabad Medical Complex Peshawar, Peshawar, PAK
| |
Collapse
|
2
|
Monti L, Franchi E, Verde F, Sgherzi S, Anghilieri FM. Retrospective evaluation of the efficacy of ultrasound-guided intra-articular hyaluronic-acid-based injections (Hyalubrix ®) in patients with glenohumeral osteoarthritis. Reumatismo 2025; 77. [PMID: 39688326 DOI: 10.4081/reumatismo.2024.1699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/14/2024] [Indexed: 12/18/2024] Open
Abstract
OBJECTIVE Intra-articular injections of hyaluronic acid (HA) have been reported to alleviate pain, reduce disability, and improve joint function in glenohumeral osteoarthritis (GH-OA). This retrospective study aimed to evaluate the effectiveness of a HA-based formulation (Hyalubrix®) in reducing the pain of patients with GH-OA and improving both patient's shoulder functions and quality of life (QoL). METHODS Data collected during the standard clinical practice of the center was retrospectively analyzed. The Simple Shoulder Test (SST) questionnaire reported data on the patient's ability to perform daily activities; the Euro-Quality of Life Health Assessment (EQ-5D) collected evidence on QoL; and changes in pain were evaluated through the Visual Analog Scale (VAS). SST and EQ-5D scores were analyzed comparing baseline values with those at the last follow-up, while VAS was investigated for all the available visits. Continuous values were summarized as mean ± standard deviation, median, and 25-75th percentiles. The Shapiro-Wilk test assessed normality, with significance set at p<0.05, and no adjustments for multiple comparisons were made. RESULTS All scores showed a significant improvement: VAS decreased from 55.4±13.8 to 16.2±16.3 (p<0.001), the SST increased from 38.0 to 65.5 (p<0.001), as did the EQ-5D (from 41.7 to 76.7; p<0.001). CONCLUSIONS GH-OA treatment with Hyalubrix® proved to be highly beneficial, leading to complete pain reduction in more than 50% of patients and a significant reduction in 27.5% of cases. This resulted in improved joint function and QoL.
Collapse
Affiliation(s)
- Lorenzo Monti
- Minimally Invasive and Robotic Prosthetic Surgery of Hip and Knee Unit, Department of Orthopedics, IRCCS San Raffaele Hospital, Milan
| | - Emanuele Franchi
- Department of Orthopedics, Villa Aprica Clinical Institute, Como
| | - Francesco Verde
- Minimally Invasive and Robotic Prosthetic Surgery of Hip and Knee Unit, Department of Orthopedics, IRCCS San Raffaele Hospital, Milan
| | | | | |
Collapse
|
3
|
Du D, Liang Y. A meta-analysis and systematic review of the clinical efficacy and safety of platelet-rich plasma combined with hyaluronic acid (PRP + HA) versus PRP monotherapy for knee osteoarthritis (KOA). J Orthop Surg Res 2025; 20:57. [PMID: 39819683 PMCID: PMC11740359 DOI: 10.1186/s13018-024-05429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025] Open
Abstract
INTRODUCTION KOA, a chronic degenerative joint disease, is commonly treated with intra-articular HA and PRP, used alone or in combination. However, the efficacy and safety of combination therapy (PRP + HA) remain unclear. AIM The aim of this systematic review and meta-analysis is to assess the clinical effectiveness and safety profile of PRP + HA versus PRP monotherapy for KOA. MATERIAL AND METHODS A systematic search was conducted using four electronic databases (PubMed, EMBASE, Scopus, and Cochrane Library) to select publications published in peer-reviewed journals. The mean difference (MD) and risk ratio (RR) was calculated, along with their 95% confidence intervals. We assessed heterogeneity using Cochrane Q and I2statistics and the appropriate p-value. The analysis used RevMan 5.4. GRADE system was used for evidence assessment for each outcome parameter. RESULTS This meta-analysis of 11 RCTs (n = 1023 KOA patients) revealed that PRP + HA has substantial effectiveness than PRP alone in reducing OMAC total scores [MD -1.77 (95% CI -2.20 to - 1.34); I2 = 10%, and p < 0.001], VAS scores [MD -4.27 (95% CI -4.96 to - 3.58); I2 = 13%, and p < 0.001], and Lequesne index score [MD -5.48 (95% CI -6.56 to - 4.40); I2 = 16%, and p < 0.001], while increasing IKDC scores [MD -2.10 (95% CI -3.70 to - 0.50); I2 = 9%, and p = 0.01], with low risk of adverse events [RR 0.41 (95% CI 0.35 to 0.48); I2 = 12%, and p < 0.001]. CONCLUSION This meta-analysis reveals that, for patients with KOA, PRP + HA therapy is safe and yields better outcomes in pain relief and functional improvement compared to PRP monotherapy.
Collapse
Affiliation(s)
- Dan Du
- General Practice, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, China
| | - Yuan Liang
- General Practice, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, China.
| |
Collapse
|
4
|
Migliorini F, Schäfer L, Pilone M, Bell A, Simeone F, Maffulli N. Similar efficacy of intra-articular hyaluronic acid injections and other biologically active injections in patients with early stages knee osteoarthritis: a level I meta-analysis. Arch Orthop Trauma Surg 2024; 145:68. [PMID: 39694921 DOI: 10.1007/s00402-024-05614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/17/2024] [Indexed: 12/20/2024]
Abstract
INTRODUCTION The present meta-analysis compared the efficacy of intra-articular hyaluronic acid (HA) injections in patients with early to mild knee osteoarthritis (OA) (Kellgren Lawrence I-II) versus other commonly injected biologically active compounds using patient-reported outcome measures (PROMs). The outcomes of interest were the visual analogue scale (VAS) and the Western Ontario McMaster Osteo-Arthritis Index (WOMAC) scores. METHODS This study was conducted according to the 2020 PRISMA statement. In April 2024, PubMed, Web of Science, Google Scholar, and Embase were accessed without time constraints. All the randomised controlled trials (RCTs) investigating the efficacy of intra-articular HA injections in the early stages of knee OA were accessed. Data concerning the VAS, WOMAC, and related subscales were collected at baseline and the last follow-up. Only studies clearly stated the degrees of advancement of OA using the Kellgren-Lawrence scoring system were used. RESULTS The literature search resulted in four RCTs (390 patients). The mean length of the last follow-up was 7.5 ± 3.0 months. 72.3% (282 of 390) of the patients were women. The mean age of the patients was 58.1 ± 3.2 years, and the mean BMI was 27.3 ± 3.2 kg/m2. At the last follow-up, no difference was found between HA and the control group in VAS, WOMAC, and related subscales. CONCLUSION In patients with early to mild knee osteoarthritis, the current level of evidence suggests that intra-articular injections using HA performed similarly to other biologically active compounds commonly injected in the knee joint for a minimum of three months. LEVEL OF EVIDENCE Level I, meta-analysis.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), 39100, Bolzano, Italy.
- Department of Orthopaedic and Trauma Surgery, Eifelklinik St.Brigida, 52152, Simmerath, Germany.
- Department of Life Sciences, Health, and Health Professions, Link Campus University, Rome, Italy.
| | - Luise Schäfer
- Department of Orthopaedic and Trauma Surgery, Eifelklinik St.Brigida, 52152, Simmerath, Germany
| | - Marco Pilone
- Residency Program in Orthopaedic and Trauma Surgery, University of Milan, Milan, Italy
| | - Andreas Bell
- Department of Orthopaedic and Trauma Surgery, Eifelklinik St.Brigida, 52152, Simmerath, Germany
| | - Francesco Simeone
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), 39100, Bolzano, Italy
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, Faculty of Medicine and Psychology, University La Sapienza, 00185, Rome, Italy
- School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Stoke On Trent, ST4 7QB, UK
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, London, E1 4DG, UK
| |
Collapse
|
5
|
Gavín C, Sebastián V, Gimeno M, Coronel P. Beyond Boundaries of a Trial: Post-Market Clinical Follow-Up of SOYA Patients. J Clin Med 2024; 13:6308. [PMID: 39518447 PMCID: PMC11546336 DOI: 10.3390/jcm13216308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: osteoarthritis (OA) is a leading cause of disability. With an aging population and rising obesity rates, OA presents a growing challenge to health systems worldwide. Current OA treatments involve a mix of pharmacological and nonpharmacological interventions. Viscosupplementation with hyaluronic acid (HA) has proven effective, especially in knee OA, leading to its recommendation in international guidelines. This study investigates the sustained benefits of a single intra-articular HA injection beyond one year in patients coming from the SOYA trial, considering the EU MDR 2017/745 emphasis on post-market follow-up. Methods: A prospective, observational, open, post-marketing study in a cohort of patients that participated in the SOYA trial. Follow-up was carried out by means of a telephone survey, and the data were anonymized and coded so that patients could not be identified. The study was approved by the Alcorcón Hospital Institutional Review Board (Alcorcón, Madrid, Spain). Results: In the follow-up of the SOYA trial, 81.5% of patients sustained positive effects for over 6 months after the trial ended. This correlated with improved daily functioning, enhanced mood, and high patient satisfaction. Younger age and milder OA grades were associated with prolonged treatment effects. Notably, 82% of patients with >6 months of improvement did not require additional medication. Conclusions: the results of this study support the safety and performance of Adant® Plus as a treatment for patients with mild and moderate knee OA, with results lasting more than one year. Post-marketing studies are particularly relevant to examine the experience gained with the use of the device in routine clinical practice.
Collapse
Affiliation(s)
- Carlos Gavín
- Hospital Universitario Fundación Alcorcón, 28922 Madrid, Spain
| | | | - Mercedes Gimeno
- Scientific Depart, mentMeiji Pharma Spain, 28802 Madrid, Spain
| | - Pilar Coronel
- Scientific Depart, mentMeiji Pharma Spain, 28802 Madrid, Spain
| |
Collapse
|
6
|
Zhou F, Chen M, Qian Y, Yuan K, Han X, Wang W, Guo JJ, Chen Q, Li B. Enhancing Endogenous Hyaluronic Acid in Osteoarthritic Joints with an Anti-Inflammatory Supramolecular Nanofiber Hydrogel Delivering HAS2 Lentivirus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400542. [PMID: 38593309 DOI: 10.1002/smll.202400542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/24/2024] [Indexed: 04/11/2024]
Abstract
Osteoarthritis (OA) management remains challenging because of its intricate pathogenesis. Intra-articular injections of drugs, such as glucocorticoids and hyaluronic acid (HA), have certain limitations, including the risk of joint infection, pain, and swelling. Hydrogel-based therapeutic strategies have attracted considerable attention because of their enormous therapeutic potential. Herein, a supramolecular nanofiber hydrogel is developed using dexamethasone sodium phosphate (DexP) as a vector to deliver lentivirus-encoding hyaluronan synthase 2 (HAS2) (HAS2@DexP-Gel). During hydrogel degradation, HAS2 lentivirus and DexP molecules are slowly released. Intra-articular injection of HAS2@DexP-Gel promotes endogenous HA production and suppresses synovial inflammation. Additionally, HAS2@DexP-Gel reduces subchondral bone resorption in the anterior cruciate ligament transection-induced OA mice, attenuates cartilage degeneration, and delays OA progression. HAS2@DexP-Gel exhibited good biocompatibility both in vitro and in vivo. The therapeutic mechanisms of the HAS2@DexP-Gel are investigated using single-cell RNA sequencing. HAS2@DexP-Gel optimizes the microenvironment of the synovial tissue by modulating the proportion of synovial cell subpopulations and regulating the interactions between synovial fibroblasts and macrophages. The innovative nanofiber hydrogel, HAS2@DexP-Gel, effectively enhances endogenous HA production while reducing synovial inflammation. This comprehensive approach holds promise for improving joint function, alleviating pain, and slowing OA progression, thereby providing significant benefits to patients.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Medical 3D Printing Center, Orthopedic Institute, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Muchao Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yufan Qian
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Medical 3D Printing Center, Orthopedic Institute, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Kai Yuan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xuequan Han
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Center for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Weishan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832099, P. R. China
| | - Jiong Jiong Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Medical 3D Printing Center, Orthopedic Institute, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Medical 3D Printing Center, Orthopedic Institute, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| |
Collapse
|
7
|
Senobari F, Abolmaali SS, Farahavr G, Tamaddon AM. Targeting inflammation with hyaluronic acid-based micro- and nanotechnology: A disease-oriented review. Int J Biol Macromol 2024; 280:135923. [PMID: 39322155 DOI: 10.1016/j.ijbiomac.2024.135923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Inflammation is a pivotal immune response in numerous diseases and presents therapeutic challenges. Traditional anti-inflammatory drugs and emerging cytokine inhibitors encounter obstacles such as limited bioavailability, poor tissue distribution, and adverse effects. Hyaluronic acid (HA), a versatile biopolymer, is widely employed to deliver therapeutic agents, including anti-inflammatory drugs, genes, and cell therapies owing to its unique properties, such as hydrophilicity, biodegradability, and safety. HA interacts with cell receptors to initiate processes such as angiogenesis, cell proliferation, and immune regulation. HA-based drug delivery systems offer dual strategies for effective inflammation management, capitalizing on passive and active mechanisms. This synergy permits the mitigation of inflammation by lowering the doses of anti-inflammatory drugs and their off-target adverse effects. A diverse array of micro- and nanotechnology techniques enable the fabrication of tailored HA-engineered systems, including hydrogels, microgels, nanogels, microneedles, nanofibers, and 3D-printed scaffolds, for diverse formulations and administration routes. This review explores recent insights into HA pharmacology in inflammatory conditions, material design, and fabrication methods, as well as its applications across a spectrum of inflammatory diseases, such as atherosclerosis, psoriasis, dermatitis, wound healing, rheumatoid arthritis, osteoarthritis, inflammatory bowel disease, and colitis, highlighting its potential for clinical translation.
Collapse
Affiliation(s)
- Fatemeh Senobari
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Samira Sadat Abolmaali
- Associate Professor, Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Ghazal Farahavr
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Ali Mohammad Tamaddon
- Professor, Pharmaceutics and Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| |
Collapse
|
8
|
Huang K, Liu X, Qin H, Li Y, Zhu J, Yin B, Zheng Q, Zuo C, Cao H, Tong Z, Sun Z. FGF18 encoding circular mRNA-LNP based on glycerolipid engineering of mesenchymal stem cells for efficient amelioration of osteoarthritis. Biomater Sci 2024; 12:4427-4439. [PMID: 39037353 DOI: 10.1039/d4bm00668b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Mesenchymal stem cells (MSCs) exhibit substantial potential for osteoarthritis (OA) therapy through cartilage regeneration, yet the realization of optimal therapeutic outcomes is hampered by their limited intrinsic reparative capacities. Herein, MSCs are engineered with circular mRNA (cmRNA) encoding fibroblast growth factor 18 (FGF18) encapsulated within lipid nanoparticles (LNP) derived from a glycerolipid to facilitate OA healing. A proprietary biodegradable and ionizable glycerolipid, TG6A, with branched tails and five ester bonds, forms LNP exhibiting above 9-fold and 41-fold higher EGFP protein expression in MSCs than commercial LNP from DLin-MC3-DMA and ALC-0315, respectively. The introduction of FGF18 not only augmented the proliferative capacity of MSCs but also upregulated the expression of chondrogenic genes and glycosaminoglycan (GAG) content. Additionally, FGF18 enhanced the production of proteoglycans and type II collagen in chondrocyte pellet cultures in a three-dimensional culture. In an OA rat model, transplantation with FGF18-engineered MSCs remarkably preserved cartilage integrity and facilitated functional repair of cartilage lesions, as evidenced by thicker cartilage layers, reduced histopathological scores, maintenance of zone structure, and incremental type II collagen and extracellular matrix (ECM) deposition. Taken together, our findings suggest that TG6A-based LNP loading with cmRNA for engineering MSCs present an innovative strategy to overcome the current limitations in OA treatment.
Collapse
Affiliation(s)
- Ke Huang
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, China
| | - Xiaoyun Liu
- Jiangsu Purecell Biopharma Technology Co., Ltd, Suzhou 215125, China.
| | - Haitang Qin
- Jiangsu Purecell Biopharma Technology Co., Ltd, Suzhou 215125, China.
| | - Yingwen Li
- Suzhou CureMed Biopharma Technology Co., Ltd, Suzhou 215125, China.
| | - Jiafeng Zhu
- Suzhou CureMed Biopharma Technology Co., Ltd, Suzhou 215125, China.
| | - Bo Yin
- National University of Singapore (Suzhou) Research Institute, Suzhou, 215123, China.
| | - Qijun Zheng
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, China
| | - Chijian Zuo
- Suzhou CureMed Biopharma Technology Co., Ltd, Suzhou 215125, China.
| | - Hui Cao
- Jiangsu Purecell Biopharma Technology Co., Ltd, Suzhou 215125, China.
| | - Zhenbo Tong
- Southeast University-Monash University Joint Research Institute, Suzhou 215125, China
| | - Zhenhua Sun
- Suzhou CureMed Biopharma Technology Co., Ltd, Suzhou 215125, China.
| |
Collapse
|
9
|
Marzagalli M, Battaglia S, Raimondi M, Fontana F, Cozzi M, Ranieri FR, Sacchi R, Curti V, Limonta P. Anti-Inflammatory and Antioxidant Properties of a New Mixture of Vitamin C, Collagen Peptides, Resveratrol, and Astaxanthin in Tenocytes: Molecular Basis for Future Applications in Tendinopathies. Mediators Inflamm 2024; 2024:5273198. [PMID: 39108992 PMCID: PMC11303056 DOI: 10.1155/2024/5273198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 04/09/2024] [Accepted: 07/12/2024] [Indexed: 09/17/2024] Open
Abstract
Tendinopathy is one of the most frequent musculoskeletal disorders characterized by sustained tissue inflammation and oxidative stress, accompanied by extracellular matrix remodeling. Patients suffering from this pathology frequently experience pain, swelling, stiffness, and muscle weakness. Current pharmacological interventions are based on nonsteroidal anti-inflammatory drugs; however, the effectiveness of these strategies remains ambiguous. Accumulating evidence supports that oral supplementation of natural compounds can provide preventive, and possibly curative, effects. Vitamin C (Vit C), collagen peptides (Coll), resveratrol (Res), and astaxanthin (Asx) were reported to be endowed with potential beneficial effects based on their anti-inflammatory and antioxidant activities. Here, we analyzed the efficacy of a novel combination of these compounds (Mix) in counteracting proinflammatory (IL-1β) and prooxidant (H2O2) stimuli in human tenocytes. We demonstrated that Mix significantly impairs IL-6-induced IL-1β secretion, NF-κB nuclear translocation, and MMP-2 production; notably, a synergistic effect of Mix over the single compounds could be observed. Moreover, Mix was able to significantly counteract H2O2-triggered ROS production. Together, these results point out that Mix, a novel combination of Vit C, Coll, Resv, and Asx, significantly impairs proinflammatory and prooxidant stimuli in tenocytes, mechanisms that contribute to the onset of tendinopathies.
Collapse
Affiliation(s)
- Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”University of Milano, Milano 20133, Italy
| | | | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”University of Milano, Milano 20133, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”University of Milano, Milano 20133, Italy
| | - Marco Cozzi
- R&D Department Kolinpharma S.p.A., Lainate 20045, Italy
| | | | - Roberto Sacchi
- Department of Earth and Environmental SciencesUniversity of Pavia, Pavia 27100, Italy
| | - Valeria Curti
- R&D Department Kolinpharma S.p.A., Lainate 20045, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”University of Milano, Milano 20133, Italy
| |
Collapse
|
10
|
Mazy D, Wang J, Dodin P, Lu D, Moldovan F, Nault ML. Emerging biologic augmentation strategies for meniscal repair: a systematic review. BMC Musculoskelet Disord 2024; 25:541. [PMID: 39003467 PMCID: PMC11245777 DOI: 10.1186/s12891-024-07644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND Meniscal repair should be the gold standard. However, the meniscus is poorly vascularized and even an excellent meniscus repair may not heal. Therefore, numerous studies and systematic reviews have been carried out on platelet-rich plasma (PRP), mesenchymal stem cells (MSCs) and fibrin clots for meniscal augmentation, but the results remain controversial. This systematic review aimed to identify other emerging strategies for meniscal repair augmentation and to assess whether there are different avenues to explore in this field. METHODS A systematic literature review was conducted in August 2022. PubMed, Ovid MEDLINE(R) all, Ovid All EBM Reviews, Ovid Embase and ISI Web of Science databases were searched. In Vivo animal and human studies concerning the biological augmentation of meniscal lesions by factors other than PRP, MSCs or fibrin clots were included. Cartilage-only studies, previous systematic reviews and expert opinions were excluded. All data were analyzed by two independent reviewers. RESULTS Of 8965 studies only nineteen studies covering 12 different factors met the inclusion criteria. Eight studies investigated the use of growth factors for meniscal biologic augmentation, such as vascular endothelial growth factor or bone morphogenic protein 7. Five studies reported on cell therapy and six studies focused on other factors such as hyaluronic acid, simvastatin or atelocollagen. Most studies (n = 18) were performed on animal models with gross observation and histological evaluation as outcomes. Polymerase chain reaction and immunohistochemistry were also common. Biomechanical testing was the object of only two studies. CONCLUSIONS Although several augmentation strategies have been attempted, none has yielded conclusive results, testifying to a lack of understanding with regard to meniscal healing. More research is needed to better understand the pathways that regulate meniscus repair and how to act positively on them. LEVEL OF EVIDENCE Systematic review of case-control and animal laboratory studies.
Collapse
Affiliation(s)
- David Mazy
- CHU Sainte-Justine, Montréal, 7905-3175, Côte Ste-Catherine, QC, H3T 1C5, Canada
| | - Jessica Wang
- Faculty of Medicine, Université de Montréal, 2900 Boul. Edouard-Montpetit, Montreal, QC, H3T 1J4, Canada
| | - Philippe Dodin
- CHU Sainte-Justine, Montréal, 7905-3175, Côte Ste-Catherine, QC, H3T 1C5, Canada
| | - Daisy Lu
- Faculty of Medicine, Université de Montréal, 2900 Boul. Edouard-Montpetit, Montreal, QC, H3T 1J4, Canada
| | - Florina Moldovan
- CHU Sainte-Justine, Montréal, 7905-3175, Côte Ste-Catherine, QC, H3T 1C5, Canada
| | - Marie-Lyne Nault
- CHU Sainte-Justine, Montréal, 7905-3175, Côte Ste-Catherine, QC, H3T 1C5, Canada.
- Faculty of Medicine, Université de Montréal, 2900 Boul. Edouard-Montpetit, Montreal, QC, H3T 1J4, Canada.
- CHU Sainte-Justine Azrieli Research Center, Montréal, 7905-3175 Côte Ste-Catherine, H3T 1J4, QC, Canada.
- Department of Orthopedic Surgery, CIUSSS Hôpital du Sacré-Cœur de Montréal (HSCM), 5400, Boul. Gouin Ouest, Montreal, QC, H4J 1C5, Canada.
| |
Collapse
|
11
|
Xiongce L, Tao Y, Zhu J, Jin Y, Wang L. A bibliometric analysis from 2013 to 2023 reveals research hotspots and trends in the connection between sport and regenerative medicine. Medicine (Baltimore) 2024; 103:e38846. [PMID: 38968451 PMCID: PMC11224857 DOI: 10.1097/md.0000000000038846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 07/07/2024] Open
Abstract
The field of regenerative medicine for sports injuries has grown significantly in the 21st century. This study attempted to provide an overview of the current state of research and key findings regarding the relationship between sport and regenerative medicine in general, identifying trends and hotspots in research topics. We gathered the literature from the Web of Science (WOS) database covering the last 10 years (2013-2023) pertaining to regenerative medicine for sporter and applied Citespace to assess the knowledge mapping. The findings demonstrated that there were 572, with a faster increase after 2018. The country, institution, and author with the most publications are the USA, Harvard University, and Maffulli Nicola. In addition, the most co-cited reference is J Acad Nutr Diet (2016) (199). Adipose tissue, high tibial osteotomy, and bone marrow are the hot spots in this field in the next few years.
Collapse
Affiliation(s)
- Lv Xiongce
- Department of Physical Education, Beijing University of Posts and Telecommunications, Beijing, China
| | - Ye Tao
- Department of Physical Education, Beijing University of Posts and Telecommunications, Beijing, China
| | - Jing Zhu
- Department of Psychology, Russian Sports University, Moscow, Russia
| | - Yan Jin
- Department of Propaganda, Hebei University of Science and Technology, Shijiazhuang, China
| | - Lixia Wang
- College of Sports, Shijiazhuang University, Shijiazhuang, China
| |
Collapse
|
12
|
Hotfiel T, Hirschmüller A, Engelhardt M, Grim C, Tischer T, Pachowsky M. Injektionstherapie bei Tendinopathien – Was gibt es (Neues) und was steckt eigentlich dahinter? SPORTS ORTHOPAEDICS AND TRAUMATOLOGY 2024; 40:103-109. [DOI: 10.1016/j.orthtr.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Carton F, Malatesta M. Nanotechnological Research for Regenerative Medicine: The Role of Hyaluronic Acid. Int J Mol Sci 2024; 25:3975. [PMID: 38612784 PMCID: PMC11012323 DOI: 10.3390/ijms25073975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/30/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Hyaluronic acid (HA) is a linear, anionic, non-sulfated glycosaminoglycan occurring in almost all body tissues and fluids of vertebrates including humans. It is a main component of the extracellular matrix and, thanks to its high water-holding capacity, plays a major role in tissue hydration and osmotic pressure maintenance, but it is also involved in cell proliferation, differentiation and migration, inflammation, immunomodulation, and angiogenesis. Based on multiple physiological effects on tissue repair and reconstruction processes, HA has found extensive application in regenerative medicine. In recent years, nanotechnological research has been applied to HA in order to improve its regenerative potential, developing nanomedical formulations containing HA as the main component of multifunctional hydrogels systems, or as core component or coating/functionalizing element of nanoconstructs. This review offers an overview of the various uses of HA in regenerative medicine aimed at designing innovative nanostructured devices to be applied in various fields such as orthopedics, dermatology, and neurology.
Collapse
Affiliation(s)
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy;
| |
Collapse
|
14
|
Alcina Navarro A, Gómez Valero S, Gimeno del Sol M, Coronel Granado MP. Navigating the New EU Medical Devices Regulation: Retrospective Post-Market Follow-Up of Hyaluronic Acid Injections for Knee Osteoarthritis. Open Access Rheumatol 2024; 16:67-73. [PMID: 38529260 PMCID: PMC10962269 DOI: 10.2147/oarrr.s446572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
Purpose The entry into force of the new Medical Device Regulation (EU) 2017/745 highlights the need for post-market clinical follow-up to ensure the safety and efficacy throughout the life cycle of medical devices. This study evaluates the efficacy and safety of a single intra-articular hyaluronic acid injection in knee osteoarthritis in real-world conditions, over a six-month period, aligning with the summary of safety and clinical performance (SSCP) required by the new regulation. Patients and Methods Patients over 18 years of age with knee osteoarthritis, treated with a single injection of HA (Adant® One, Meiji Pharma Spain, Spain) at a 3rd level hospital. Patients were treated and followed between January 1, 2020 and June 30, 2022. Demographic, clinical, and treatment-related data were collected, and efficacy regarding pain relief and/or function improvement was assessed using a Likert-type scale. Data were pseudo-anonymized and the comparison was performed using Fisher' or Mann Whitney' test. The study was approved by the Ethics Review Board of the Hospital Puerta de Hierro (Madrid, Spain). Results We followed 20 patients with knee osteoarthritis, with a mean age of 61 years, 80% women, and with a high burden of comorbidities (90%). A total of 60% of patients presented Kellgren-Lawrence grade III-IV. Four patients (20%) returned before 6 months due to lack of efficacy. Of the other patients, 65% showed a clinical response that lasted more than 12 months in 38.5% of cases. Time until medical appointment and taking concomitant medication for knee osteoarthritis were associated with better clinical response (p < 0.05). Conclusion The administration of a Adant® One single intra-articular hyaluronic acid injection in knee osteoarthritis is effective, safe, and maintains the improvement over a six-month period. Our findings also emphasize the need of using standardized tools for accurate efficacy assessment and optimal patient care.
Collapse
Affiliation(s)
| | - Sara Gómez Valero
- Rehabilitation Department, Hospital Universitario del Henares, Coslada, Madrid, Spain
| | | | | |
Collapse
|
15
|
Li P, Huang Y, Miao L, Zhu Z, Shi Z. Protective effects of ectoine on articular chondrocytes and cartilage in rats for treating osteoarthritis. PLoS One 2024; 19:e0299351. [PMID: 38421984 PMCID: PMC10903896 DOI: 10.1371/journal.pone.0299351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease that primarily includes articular cartilage destruction and inflammatory reactions, and effective treatments for this disease are still lacking. The present study aimed to explore the protective effects of ectoine, a compatible solute found in nature, on chondrocytes in rats and its possible application in OA treatment. In the in vitro studies, the morphology of the chondrocytes after trypsin digestion for 2 min and the viability of the chondrocytes at 50°C were observed after ectoine treatment. The reactive oxygen species (ROS) levels in chondrocytes pretreated with ectoine and post-stimulated with H2O2 were detected using an ROS assay. Chondrocytes were pretreated with ectoine before IL-1β stimulation. RT‒qPCR was used to measure the mRNA levels of cyclooxygenase-2 (COX-2), metallomatrix proteinase-3, -9 (MMP-3, -9), and collagen type II alpha 1 (Col2A1). In addition, immunofluorescence was used to assess the expression of type II collagen. The in vivo effect of ectoine was evaluated in a rat OA model induced by the modified Hulth method. The findings revealed that ectoine significantly increased the trypsin tolerance of chondrocytes, maintained the viability of the chondrocytes at 50°C, and improved their resistance to oxidation. Compared with IL-1β treatment alone, ectoine pretreatment significantly reduced COX-2, MMP-3, and MMP-9 expression and maintained type II collagen synthesis in chondrocytes. In vivo, the cartilage of ectoine-treated rats exhibited less degeneration and lower Osteoarthritis Research Society International (OARSI) scores. The results of this study suggest that ectoine exerts protective effects on chondrocytes and cartilage and can, therefore, be used as a potential therapeutic agent in the treatment of OA.
Collapse
Affiliation(s)
- Peng Li
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Orthopedic Surgery Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’ s Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Yong Huang
- Orthopedic Surgery Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’ s Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Lishuai Miao
- Orthopedic Surgery Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’ s Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Zhiqi Zhu
- Orthopedic Surgery Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’ s Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Zhanjun Shi
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Costa FR, Santos MDS, Martins RA, Costa CB, Hamdan PC, Da Silva MB, Azzini GOM, Pires L, Menegassi Z, Santos GS, Lana JF. The Synergistic Effects of Hyaluronic Acid and Platelet-Rich Plasma for Patellar Chondropathy. Biomedicines 2023; 12:6. [PMID: 38275367 PMCID: PMC10813186 DOI: 10.3390/biomedicines12010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
Musculoskeletal disorders are increasingly prevalent worldwide, causing significant socioeconomic burdens and diminished quality of life. Notably, patellar chondropathy (PC) is among the most widespread conditions affecting joint structures, resulting in profound pain and disability. Hyaluronic acid (HA) and platelet-rich plasma (PRP) have emerged as reliable, effective, and minimally invasive alternatives. Continuous research spanning from laboratory settings to clinical applications demonstrates the numerous advantages of both products. These encompass lubrication, anti-inflammation, and stimulation of cellular behaviors linked to proliferation, differentiation, migration, and the release of essential growth factors. Cumulatively, these benefits support the rejuvenation of bone and cartilaginous tissues, which are otherwise compromised due to the prevailing degenerative and inflammatory responses characteristic of tissue damage. While existing literature delves into the physical, mechanical, and biological facets of these products, as well as their commercial variants and distinct clinical uses, there is limited discussion on their interconnected roles. We explore basic science concepts, product variations, and clinical strategies. This comprehensive examination provides physicians with an alternative insight into the pathophysiology of PC as well as biological mechanisms stimulated by both HA and PRP that contribute to tissue restoration.
Collapse
Affiliation(s)
- Fábio Ramos Costa
- Department of Orthopedics, FC Sports Traumatology Clinic, Salvador 40296-210, Brazil; (F.R.C.); (C.B.C.)
| | | | | | - Cláudia Bruno Costa
- Department of Orthopedics, FC Sports Traumatology Clinic, Salvador 40296-210, Brazil; (F.R.C.); (C.B.C.)
| | - Paulo César Hamdan
- Department of Orthopedics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-630, Brazil; (P.C.H.); (M.B.D.S.); (Z.M.)
| | - Marcos Britto Da Silva
- Department of Orthopedics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-630, Brazil; (P.C.H.); (M.B.D.S.); (Z.M.)
| | - Gabriel Ohana Marques Azzini
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, Brazil; (G.O.M.A.); (L.P.); (J.F.L.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, Brazil
| | - Luyddy Pires
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, Brazil; (G.O.M.A.); (L.P.); (J.F.L.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, Brazil
| | - Zartur Menegassi
- Department of Orthopedics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-630, Brazil; (P.C.H.); (M.B.D.S.); (Z.M.)
| | - Gabriel Silva Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, Brazil; (G.O.M.A.); (L.P.); (J.F.L.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, Brazil
| | - José Fábio Lana
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, Brazil; (G.O.M.A.); (L.P.); (J.F.L.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, Brazil
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, Brazil
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, Brazil
| |
Collapse
|
17
|
Sprott H, Fleck C. Hyaluronic Acid in Rheumatology. Pharmaceutics 2023; 15:2247. [PMID: 37765216 PMCID: PMC10537104 DOI: 10.3390/pharmaceutics15092247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Hyaluronic acid (HA), also known as hyaluronan, is an anionic glycosaminoglycan widely distributed throughout various tissues of the human body. It stands out from other glycosaminoglycans as it lacks sulfation and can attain considerable size: the average human synovial HA molecule weighs about 7 million Dalton (Da), equivalent to roughly 20,000 disaccharide monomers; although some sources report a lower range of 3-4 million Da. In recent years, HA has garnered significant attention in the field of rheumatology due to its involvement in joint lubrication, cartilage maintenance, and modulation of inflammatory and/or immune responses. This review aims to provide a comprehensive overview of HA's involvement in rheumatology, covering its physiology, pharmacology, therapeutic applications, and potential future directions for enhancing patient outcomes. Nevertheless, the use of HA therapy in rheumatology remains controversial with conflicting evidence regarding its efficacy and safety. In conclusion, HA represents a promising therapeutic option to improve joint function and alleviate inflammation and pain.
Collapse
Affiliation(s)
- Haiko Sprott
- Medical Faculty, University of Zurich (UZH), CH-8006 Zurich, Switzerland
- Arztpraxis Hottingen, CH-8032 Zurich, Switzerland
| | | |
Collapse
|
18
|
Colombini A, Doro G, Ragni E, Forte L, de Girolamo L, Zerbinati F. Treatment with CR500® improves algofunctional scores in patients with knee osteoarthritis: a post-market confirmatory interventional, single arm clinical investigation. BMC Musculoskelet Disord 2023; 24:647. [PMID: 37573322 PMCID: PMC10422714 DOI: 10.1186/s12891-023-06754-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/25/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Knee osteoarthritis (OA) is a progressive and degenerative condition. Several pharmacological and non-pharmacological treatments are able to improve the OA symptoms and the structural characteristics of the affected joints. Among these, infiltrative therapy with hyaluronic acid (HA) is the most used and consolidated procedure for the pain management. The addition of skin conditioning peptides to HA promotes the cartilage remodeling processes and a better permeation of the HA-based gel containing a peptide mixture, CR500®. Furthermore, the topic route of administration is convenient over the routinely used intra-articular injective procedures. In this study, the effectiveness of CR500® was evaluated in terms of improvement of the algo-functional symptoms related to unilateral knee OA. METHODS 38 mild and moderate OA patients were enrolled at a screening visit (V-1), treated at baseline visit (V1), and then continued the topical application of CR500® twice a week for 4 weeks, and followed-up for 3 visits (V2-V4) from week 2 to 4. Lequesne Knee Index (LKI) and Knee injury and Osteoarthritis Outcome Score (KOOS) were collected. Synovial fluid was collected and used for the quantification of neoepitope of type II collagen (C2C), C-terminal telopeptide of type II collagen (CTX-II), type II collagen propeptide (CPII), tumor necrosis factor alpha (TNFα) and HA. The expression of CD11c and CD206 was evaluated on cell pellets. RESULTS Three patients were excluded, thus 35 patients were included in the analysis. The treatment with CR500® was safe and well tolerated, with 7.9% patients had mild adverse events, not related to the device. The LKI total score showed a significant decrease from V1 to V4. KOOS score also showed a significant improvement of patient condition at V2, V3 and V4 in comparison with V1 for all subscales, except for KOOS sport subscale which improved only from V3. At V1 a negative correlation among KOOS pain subscale values and C2C, CPII and TNFα levels was observed, as well as a positive correlation between KOOS pain subscale and CD11c/CD206 ratio. CONCLUSION CR500® is safe and appear to be effective in improving pain and function in OA patients during the 4 weeks of treatment. TRIAL REGISTRATION ClinicalTrials.gov ID: NCT05661162. This trial was registered on 22/12/2022.
Collapse
Affiliation(s)
- Alessandra Colombini
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, Milan, 20161, Italy
| | - Gianluca Doro
- Orthopedics and Traumatology Department, Humanitas Mater Domini, Varese, Italy
| | - Enrico Ragni
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, Milan, 20161, Italy
| | | | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, Milan, 20161, Italy.
| | - Fabio Zerbinati
- Orthopedics and Traumatology Department, Humanitas Mater Domini, Varese, Italy
| |
Collapse
|
19
|
Lana JF, Purita J, Everts PA, De Mendonça Neto PAT, de Moraes Ferreira Jorge D, Mosaner T, Huber SC, Azzini GOM, da Fonseca LF, Jeyaraman M, Dallo I, Santos GS. Platelet-Rich Plasma Power-Mix Gel (ppm)-An Orthobiologic Optimization Protocol Rich in Growth Factors and Fibrin. Gels 2023; 9:553. [PMID: 37504432 PMCID: PMC10379106 DOI: 10.3390/gels9070553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Platelet- and fibrin-rich orthobiologic products, such as autologous platelet concentrates, have been extensively studied and appreciated for their beneficial effects on multiple conditions. Platelet-rich plasma (PRP) and its derivatives, including platelet-rich fibrin (PRF), have demonstrated encouraging outcomes in clinical and laboratory settings, particularly in the treatment of musculoskeletal disorders such as osteoarthritis (OA). Although PRP and PRF have distinct characteristics, they share similar properties. The relative abundance of platelets, peripheral blood cells, and molecular components in these orthobiologic products stimulates numerous biological pathways. These include inflammatory modulation, augmented neovascularization, and the delivery of pro-anabolic stimuli that regulate cell recruitment, proliferation, and differentiation. Furthermore, the fibrinolytic system, which is sometimes overlooked, plays a crucial role in musculoskeletal regenerative medicine by regulating proteolytic activity and promoting the recruitment of inflammatory cells and mesenchymal stem cells (MSCs) in areas of tissue regeneration, such as bone, cartilage, and muscle. PRP acts as a potent signaling agent; however, it diffuses easily, while the fibrin from PRF offers a durable scaffolding effect that promotes cell activity. The combination of fibrin with hyaluronic acid (HA), another well-studied orthobiologic product, has been shown to improve its scaffolding properties, leading to more robust fibrin polymerization. This supports cell survival, attachment, migration, and proliferation. Therefore, the administration of the "power mix" containing HA and autologous PRP + PRF may prove to be a safe and cost-effective approach in regenerative medicine.
Collapse
Affiliation(s)
- José Fábio Lana
- OrthoRegen Group, Max-Planck University, Indaiatuba 13343-060, Brazil
| | | | | | | | | | - Tomas Mosaner
- Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, Brazil
| | - Stephany Cares Huber
- Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, Brazil
| | | | | | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Tamil Nadu 600095, India
| | - Ignacio Dallo
- SportMe Medical Center, Department of Orthopaedic Surgery and Sports Medicine, Unit of Biological Therapies and MSK Interventionism, 41013 Seville, Spain
| | - Gabriel Silva Santos
- Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, Brazil
| |
Collapse
|
20
|
Zhang S, Dong J, Pan R, Xu Z, Li M, Zang R. Structures, Properties, and Bioengineering Applications of Alginates and Hyaluronic Acid. Polymers (Basel) 2023; 15:2149. [PMID: 37177293 PMCID: PMC10181120 DOI: 10.3390/polym15092149] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
In recent years, polymeric materials have been used in a wide range of applications in a variety of fields. In particular, in the field of bioengineering, the use of natural biomaterials offers a possible new avenue for the development of products with better biocompatibility, biodegradability, and non-toxicity. This paper reviews the structural and physicochemical properties of alginate and hyaluronic acid, as well as the applications of the modified cross-linked derivatives in tissue engineering and drug delivery. This paper summarizes the application of alginate and hyaluronic acid in bone tissue engineering, wound dressings, and drug carriers. We provide some ideas on how to replace or combine alginate-based composites with hyaluronic-acid-based composites in tissue engineering and drug delivery to achieve better eco-economic value.
Collapse
Affiliation(s)
- Shuping Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.D.)
| | | | | | | | | | | |
Collapse
|