1
|
Sousa M, Machado I, Simões LC, Simões M. Biocides as drivers of antibiotic resistance: A critical review of environmental implications and public health risks. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 25:100557. [PMID: 40230384 PMCID: PMC11995807 DOI: 10.1016/j.ese.2025.100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/16/2025]
Abstract
The widespread and indiscriminate use of biocides poses significant threats to global health, socioeconomic development, and environmental sustainability by accelerating antibiotic resistance. Bacterial resistance development is highly complex and influenced significantly by environmental factors. Increased biocide usage in households, agriculture, livestock farming, industrial settings, and hospitals produces persistent chemical residues that pollute soil and aquatic environments. Such contaminants contribute to the selection and proliferation of resistant bacteria and antimicrobial resistance genes (ARGs), facilitating their dissemination among humans, animals, and ecosystems. In this review, we conduct a critical assessment of four significant issues pertaining to this topic. Specifically, (i) the role of biocides in exerting selective pressure within the environmental resistome, thereby promoting the proliferation of resistant microbial populations and contributing to the global spread of antimicrobial resistance genes (ARGs); (ii) the role of biocides in triggering transient phenotypic adaptations in bacteria, including efflux pump overexpression, membrane alterations, and reduced porin expression, which often result in cross-resistance to multiple antibiotics; (iii) the capacity of biocides to disrupt bacteria and make the genetic content accessible, releasing DNA into the environment that remains intact under certain conditions, facilitating horizontal gene transfer and the spread of resistance determinants; (iv) the capacity of biocides to disrupt bacterial cells, releasing intact DNA into the environment and enhancing horizontal gene transfer of resistance determinants; and (iv) the selective interactions between biocides and bacterial biofilms in the environment, strengthening biofilm cohesion, inducing resistance mechanisms, and creating reservoirs for resistant microorganisms and ARG dissemination. Collectively, this review highlights the critical environmental and public health implications of biocide use, emphasizing an urgent need for strategic interventions to mitigate their role in antibiotic resistance proliferation.
Collapse
Affiliation(s)
- Mariana Sousa
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical and Biological Engineering, University of Porto, 4200-465, Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal
| | - Idalina Machado
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical and Biological Engineering, University of Porto, 4200-465, Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal
| | - Lúcia C. Simões
- CEB—Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS—Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, Braga, Guimarães, Portugal
| | - Manuel Simões
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical and Biological Engineering, University of Porto, 4200-465, Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal
| |
Collapse
|
2
|
Pereira A, de Sousa T, Silva C, Igrejas G, Poeta P. Impact of Antimicrobial Resistance of Pseudomonas aeruginosa in Urine of Small Companion Animals in Global Context: Comprehensive Analysis. Vet Sci 2025; 12:157. [PMID: 40005917 PMCID: PMC11860736 DOI: 10.3390/vetsci12020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The isolation of multidrug-resistant (MDR) bacteria from the urinary tracts of pets is increasingly common, particularly in animals with concurrent health conditions. Pseudomonas aeruginosa (PA) is one of the most significant antimicrobial-resistant bacteria affecting cats and dogs within the European Union (EU). This study aims to review the prevalence and antimicrobial resistance patterns of PA isolated from urine samples of small animals globally. This pathogen is known for its opportunistic infections and is a significant concern in veterinary medicine due to its inherent resistance to multiple antibiotics and its ability to acquire additional resistance mechanisms. This review seeks to enhance educational initiatives regarding the management of emerging MDR bacteria.
Collapse
Affiliation(s)
- Ana Pereira
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.d.S.); (C.S.)
| | - Telma de Sousa
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.d.S.); (C.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Catarina Silva
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.d.S.); (C.S.)
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
| | - Patrícia Poeta
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os Montes and Alto Douro, 5000-801 Vila Real, Portugal; (T.d.S.); (C.S.)
- Associated Laboratory for Green Chemistry, University NOVA of Lisbon, 1099-085 Caparica, Portugal
- Veterinary and Animal Research Centre, Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
3
|
Azeem K, Fatima S, Ali A, Ubaid A, Husain FM, Abid M. Biochemistry of Bacterial Biofilm: Insights into Antibiotic Resistance Mechanisms and Therapeutic Intervention. Life (Basel) 2025; 15:49. [PMID: 39859989 PMCID: PMC11767195 DOI: 10.3390/life15010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Biofilms, composed of structured communities of bacteria embedded in a self-produced extracellular matrix, pose a significant challenge due to their heightened resistance to antibiotics and immune responses. This review highlights the mechanisms underpinning antibiotic resistance within bacterial biofilms, elucidating the adaptive strategies employed by microorganisms to withstand conventional antimicrobial agents. This encompasses the role of the extracellular matrix, altered gene expression, and the formation of persister cells, contributing to the recalcitrance of biofilms to eradication. A comprehensive understanding of these resistance mechanisms provides a for exploring innovative therapeutic interventions. This study explores promising avenues for future research, emphasizing the necessity of uncovering the specific genetic and phenotypic adaptations occurring within biofilms. The identification of vulnerabilities in biofilm architecture and the elucidation of key biofilm-specific targets emerge as crucial focal points for the development of targeted therapeutic strategies. In addressing the limitations of traditional antibiotics, this review discusses innovative therapeutic approaches. Nanomaterials with inherent antimicrobial properties, quorum-sensing inhibitors disrupting bacterial communication, and bacteriophages as biofilm-specific viral agents are highlighted as potential alternatives. The exploration of combination therapies, involving antimicrobial agents, biofilm-disrupting enzymes, and immunomodulators, is emphasized to enhance the efficacy of existing treatments and overcome biofilm resilience.
Collapse
Affiliation(s)
- Kashish Azeem
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (K.A.); (S.F.); (A.A.); (A.U.)
| | - Sadaf Fatima
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (K.A.); (S.F.); (A.A.); (A.U.)
| | - Asghar Ali
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (K.A.); (S.F.); (A.A.); (A.U.)
- Clinical Biochemistry Laboratory, Department of Biochemistry, School of Chemical and Life Science, Jamia Hamdard, New Delhi 110062, India
| | - Ayesha Ubaid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (K.A.); (S.F.); (A.A.); (A.U.)
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (K.A.); (S.F.); (A.A.); (A.U.)
| |
Collapse
|
4
|
Olana MD, Asrat D, Swedberg G. Antimicrobial resistance profile, biofilm forming capacity and associated factors of multidrug resistance in Pseudomonas aeruginosa among patients admitted at Tikur Anbessa Specialized Hospital and Yekatit 12 Hospital Medical College in Addis Ababa, Ethiopia. BMC Infect Dis 2024; 24:1472. [PMID: 39732630 DOI: 10.1186/s12879-024-10359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is one of the leading causes of nosocomial infections and the most common multidrug-resistant pathogen. This study aimed to determine antimicrobial resistance patterns, biofilm-forming capacity, and associated factors of multidrug resistance in P. aeruginosa isolates at two hospitals in Addis Ababa, Ethiopia. METHODS A cross-sectional study was conducted from August 2022 to August 2023 at Tikur Anbessa Specialized Hospital and Yekatit 12 Hospital Medical College. Culture and identification of P. aeruginosa were done using standard microbiological methods. An antimicrobial susceptibility test was done by Kirby-Bauer disk diffusion according to CLSI recommendations. The microtiter plate assay method was used to determine biofilm-forming capacity. SPSS version 25 was used for data analysis. Bivariate and multivariable logistic regression were used to assess factors associated with multidrug resistance in P. aeruginosa. The Spearman correlation coefficient (rs = 0.266)) was performed to evaluate the relationship between biofilm formation and drug resistance. RESULTS The overall prevalence of P. aeruginosa was 19.6%. High levels of resistance were observed for ciprofloxacin (51.8%), ceftazidime (50.6%), and cefepime (48.2%). The level of multidrug-resistance was 56.6%. The isolates showed better susceptibility to ceftazidime-avibactam (95.2%) and imipenem (79.5%). Overall, 95.2% of P. aeruginosa were biofilm-producing isolates, and 27.7% and 39.8% of isolates were strong and moderate biofilm producers, respectively. A positive correlation and statistically significant relationship was observed between resistance to multiple drugs and the level of biofilm formation (rs = 0.266; p-value = 0.015). Previous history of exposure to ciprofloxacin (OR, 5.1; CI, 1.12-24.7, p-value, 0.032) was identified as an independent associated factor for multidrug resistance in P. aeruginosa. CONCLUSION The present study indicates an association between multidrug resistance in P. aeruginosa and its biofilm formation capabilities. Additionally, over half of the isolates were resistant to multiple drugs, with prior use of ciprofloxacin linked to the development of multidrug-resistance. These findings suggest that antibiotic stewardship programs in hospital settings may be beneficial in addressing resistance.
Collapse
Affiliation(s)
- Matifan Dereje Olana
- Department of Medical Laboratory Sciences, Collage of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia.
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
- Department of Medical Biochemistry and Microbiology, Biomedical Centre, Uppsala University, Uppsala, Sweden.
| | - Daniel Asrat
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Göte Swedberg
- Department of Medical Biochemistry and Microbiology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Naim W, Manetsberger J, Lavilla Lerma L, Benomar N, Caballero Gómez N, Cuesta-Bertomeu IS, Gata Díaz JÁ, Abriouel H. Impact of disinfection methods used in the slaughterhouse environment on microbiome diversity throughout the meat production chain. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100336. [PMID: 39844919 PMCID: PMC11751542 DOI: 10.1016/j.crmicr.2024.100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Slaughterhouse environments are prone to microbial contamination, influenced by factors like set-up, size and area as well as disinfection practices. Thus, effective control measures are crucial to prevent the spread of pathogens and their contaminant genes (antimicrobial resistance genes and virulence factors) throughout the food chain. In the present study, we assessed the microbial contamination in environmental surfaces of three slaughterhouses located in the Jaén province (Spain). We also evaluated the impact of different disinfection strategies on microbial loads and diversity by means of culture dependent and independent methods. The results revealed a statistically significant inter- and intra-specific differences in microbial loads including the most important pathogens such as pseudomonads, staphylococci, Escherichia coli, Salmonella sp. and Campylobacter jejuni. Disinfection strategies using routine disinfectant (used by the slaughterhouse), HLE disinfectant, UV, or combinations thereof showed varying effectiveness. The newly developed sustainable HLE disinfectant was most effective, while UV had the lowest disinfection strength, and routine disinfectants failed to eradicate all pathogens. Metagenomic analysis identified Pseudomonadota as the dominant phylum, followed by Actinomycetota and Bacteroidota. Results furthermore indicated shifts from sacrifice to cold rooms, with an increase in Gammaproteobacteria, particularly Moraxellaceae (represented by Psychrobacter cryohalolentis) over Acinetobacter sp. In conclusion, this study highlights the potential of HLE disinfectant (alone or in combination with the routine disinfectant) as a more effective disinfection measure on environmental surfaces, particularly for combating multi-drug resistant pathogens compared to other disinfection methods currently used.
Collapse
Affiliation(s)
- Wissal Naim
- Area of Microbiology, Department of Health Sciences, Faculty of Experimental sciences, University of Jaén, Jaén, Spain
| | - Julia Manetsberger
- Area of Microbiology, Department of Health Sciences, Faculty of Experimental sciences, University of Jaén, Jaén, Spain
| | - Leyre Lavilla Lerma
- Area of Human Anatomy and Embryology, Department of Health Sciences, Faculty of Experimental sciences, University of Jaén, Jaén, Spain
| | - Nabil Benomar
- Area of Microbiology, Department of Health Sciences, Faculty of Experimental sciences, University of Jaén, Jaén, Spain
| | - Natacha Caballero Gómez
- Area of Microbiology, Department of Health Sciences, Faculty of Experimental sciences, University of Jaén, Jaén, Spain
| | | | | | - Hikmate Abriouel
- Area of Microbiology, Department of Health Sciences, Faculty of Experimental sciences, University of Jaén, Jaén, Spain
| |
Collapse
|
6
|
Tang D, Liu Y, Yao H, Lin Y, Xi Y, Li M, Mao A. Transcriptome Analysis Reveals the Mechanism of Y0-C10-HSL on Biofilm Formation and Motility of Pseudomonas aeruginosa. Pharmaceuticals (Basel) 2024; 17:1719. [PMID: 39770562 PMCID: PMC11678461 DOI: 10.3390/ph17121719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Background:Pseudomonas aeruginosa (P. aeruginosa) is a type of pathogen that takes advantage of opportunities to infect and form biofilm during infection. Inhibiting biofilm formation is a promising approach for the treatment of biofilm-related infections. Methods: Here, Y0-C10-HSL (N-cyclopentyl-n-decanamide) was designed, synthesized, and tested for its effect on biofilm formation, motility, and the Caenorhabditis elegans (C. elegans) survival assay. In addition, the molecular mechanism of Y0-C10-HSL on P. aeruginosa biofilm formation was explored using transcriptome analysis. Results: At a concentration of 200 μmol/L Y0-C10-HSL, biofilm and exopolysaccharides were decreased by 38.5% and 29.3%, respectively; Y0-C10-HSL effectively dispersed the pre-formed biofilm and inhibited the motility ability of P. aeruginosa; and the C. elegans survival assay showed that Y0-C10-HSL was safe and provided protection to C. elegans against P. aeruginosa infection (the survival rates of C. elegans were higher than 74% and increased by 39%, 35.1%, and 47.5%, respectively, when treated with 200 μmol/L Y0-C10-HSL at 24, 48, and 80 h). Transcriptome analysis showed that 585 differentially expressed genes (DEGs) were found after treatment with 200 μmol/L Y0-C10-HSL, including 254 up-regulated DEGs and 331 down-regulated DEGs. The genes involved in the quorum sensing system and biofilm formation were down-regulated. Conclusions: Y0-C10-HSL inhibited the biofilm formation and dispersed the pre-formed biofilm of P. aeruginosa through down-regulated genes related to quorum sensing pathways and biofilm formation. These findings provide a theoretical foundation for the treatment and prevention of antibiotic resistance in clinical and environmental microorganisms such as P. aeruginosa.
Collapse
Affiliation(s)
- Deping Tang
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (D.T.)
| | - Yali Liu
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (D.T.)
| | - Huihui Yao
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (D.T.)
| | - Yanyan Lin
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (D.T.)
| | - Yanpeng Xi
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (D.T.)
| | - Mengjiao Li
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (D.T.)
| | - Aihong Mao
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (D.T.)
- Gansu Provincial Academic Institute for Medical Research, Lanzhou 730050, China
| |
Collapse
|
7
|
Sakalauskienė GV, Radzevičienė A. Antimicrobial Resistance: What Lies Beneath This Complex Phenomenon? Diagnostics (Basel) 2024; 14:2319. [PMID: 39451642 PMCID: PMC11506786 DOI: 10.3390/diagnostics14202319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Antimicrobial Resistance (AMR) has evolved from a mere concern into a significant global threat, with profound implications for public health, healthcare systems, and the global economy. Since the introduction of antibiotics between 1945 and 1963, their widespread and often indiscriminate use in human medicine, agriculture, and animal husbandry has led to the emergence and rapid spread of antibiotic-resistant genes. Bacteria have developed sophisticated mechanisms to evade the effects of antibiotics, including drug uptake limitation, drug degradation, target modification, efflux pumps, biofilm formation, and outer membrane vesicles production. As a result, AMR now poses a threat comparable to climate change and the COVID-19 pandemic, and projections suggest that death rates will be up to 10 million deaths annually by 2050, along with a staggering economic cost exceeding $100 trillion. Addressing AMR requires a multifaceted approach, including the development of new antibiotics, alternative therapies, and a significant shift in antibiotic usage and regulation. Enhancing global surveillance systems, increasing public awareness, and prioritizing investments in research, diagnostics, and vaccines are critical steps. By recognizing the gravity of the AMR threat and committing to collaborative action, its impact can be mitigated, and global health can be protected for future generations.
Collapse
Affiliation(s)
- Giedrė Valdonė Sakalauskienė
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | | |
Collapse
|
8
|
Vadakkan K, Sathishkumar K, Mapranathukaran VO, Ngangbam AK, Nongmaithem BD, Hemapriya J, Nair JB. Critical review on plant-derived quorum sensing signaling inhibitors in pseudomonas aeruginosa. Bioorg Chem 2024; 151:107649. [PMID: 39029321 DOI: 10.1016/j.bioorg.2024.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/21/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Pseudomonas aeruginosa, a biofilm-forming organism with complex quorum mechanisms (Las, Rhl, PQS, and IQS), poses an imminent danger to the healthcare sector and renders current treatment options for chemotherapy ineffectual. The pathogen's diverse pathogenicity, antibiotic resistance, and biofilms make it difficult to eradicate it effectively. Quorum sensing, a complex system reliant on cell density, controls P. aeruginosa's pathogenesis. Quorum-sensing genes are key components of P. aeruginosa's pathogenic arsenal, and their expression determines how severe the spread of infection becomes. Over the past ten years, there has been a noticeable increase in the quest for and development of new antimicrobial medications. Quorum sensing may be an effective treatment for infections triggered by bacteria. Introducing quorum-sensing inhibitors as an anti-virulent strategy might be an intriguing therapeutic method that can be effectively employed along with current medications. Amongst the several speculated processes, a unique anti-virulence strategy using anti-quorum sensing and antibiofilm medications for targeting pseudomonal infestations seems to be at the forefront. Due to their noteworthy quorum quenching capabilities, biologically active phytochemicals have become more well-known in the realm of science in this context. Recent research showed how different phytochemical quorum quenching actions affect P. aeruginosa's QS-dependent pathogenicity. This review focuses on the most current data supporting the implementation of plant bio-actives to treat P.aeruginosa-associated diseases, as well as the benefits and future recommendationsof employing them in anti-virulence therapies as a supplementary drug development approach towards conventional antibiotic approaches.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu 602105, India
| | | | | | | | - Janarthanam Hemapriya
- Department of Microbiology, DKM College for Women, Vellore, Tamil Nadu 632001, India
| | - Jyotsna B Nair
- Department of Biotechnology, JDT Islam College of Arts and Science, Vellimadukunnu, Kozhikode, Kerala 673012, India
| |
Collapse
|
9
|
Nam JH, Yoo JS. Sublethal Sodium Hypochlorite Exposure: Impact on Resistance-Nodulation-Cell Division Efflux Pump Overexpression and Cross-Resistance to Imipenem. Antibiotics (Basel) 2024; 13:828. [PMID: 39335002 PMCID: PMC11429293 DOI: 10.3390/antibiotics13090828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Sodium hypochlorite (NaOCl) is widely used in public healthcare facilities; this exposure can result in the development of bacterial tolerance to disinfectants, which has known links to antibiotic cross-resistance. However, the mechanism through which cross-resistance to antibiotics and disinfectants develops remains ambiguous. Therefore, this study aimed to examine the phenotypic and transcriptomic changes caused by disinfectant exposure in Gram-negative bacteria and determine the cause of cross-resistance to antibiotics. The results demonstrated that the misuse of disinfectants plays an important role in the emergence of disinfectant resistance and in the increase in antibiotic resistance. Antibiotic resistance may occur from the exposure of Gram-negative bacteria to subminimal inhibitory concentrations (MICs) of NaOCl. Ten passages of Gram-negative bacteria in increasingly higher subMICs of the NaOCl disinfectant were sufficient to increase the MIC to >2500 µg/mL NaOCl, particularly in K. pneumoniae and P. aeruginosa. To determine the development of cross-resistance to antibiotics due to NaOCl exposure, the MICs for each antibiotic before and after the exposure of each strain to sublethal concentrations of NaOCl were compared. After overnight incubation with a sublethal concentration of NaOCl, a statistically significant increase in MIC was only observed for imipenem (p < 0.01). An investigation of the mechanism of cross-resistance by means of transcriptome analysis revealed that 1250 µg/mL of NaOCl-adapted K. pneumoniae and P. aeruginosa strains increased resistance to imipenem due to the increased expression of resistance-nodulation-cell division (RND) efflux pumps, such as AcrAB-TolC and MexAB/XY-OprM. Therefore, we suggest that exposure to NaOCl can influence the expression of RND efflux pump genes, contributing to imipenem cross-resistance.
Collapse
Affiliation(s)
- Ji-Hyun Nam
- Division of Antimicrobial Resistance Research, National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Republic of Korea;
| | | |
Collapse
|
10
|
Maity S, Leton N, Nayak N, Jha A, Anand N, Thompson K, Boothe D, Cromer A, Garcia Y, Al-Islam A, Nauhria S. A systematic review of diabetic foot infections: pathogenesis, diagnosis, and management strategies. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2024; 5:1393309. [PMID: 39165660 PMCID: PMC11333436 DOI: 10.3389/fcdhc.2024.1393309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024]
Abstract
Background Diabetic foot infection represents a significant complication of diabetes mellitus, contributing substantially to morbidity, mortality, and healthcare expenditure worldwide. Accurate diagnosis relies on a comprehensive assessment integrating clinical evaluation, imaging studies, and microbiological analysis. Management necessitates a multidisciplinary approach, encompassing surgical intervention, antimicrobial therapy, and advanced wound care strategies. Preventive measures are paramount in reducing the incidence and severity, emphasizing patient education, regular foot screenings, and early intervention. Methods The researchers performed a systematic review of literature using PUBMED MESH keywords. Additionally, the study was registered in the International Prospective Register of Systematic Reviews at the Center for Reviews and Dissemination, University of York (CRD42021277788). This review provides a comprehensive overview of the microbial spectrum and antibiotic susceptibility patterns observed in diabetic foot infections. Results The search through the databases finally identified 13 articles with 2545 patients from 2021 to 2023. Overall, the predominant Gram-positive microbial species isolated were Staphylococcus aureus, Enterococcus fecalis, Streptococcus pyogenes, Streptococcus agalactiae, and Staphylococcus epidermidis. Whereas the predominant Gram-negative included Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis and Pseudomonas aeruginosa. Conclusion Diabetic foot infections represent a complex and multifaceted clinical entity, necessitating a holistic approach to diagnosis, management, and prevention. Limited high-quality research data on outcomes and the effectiveness of guideline recommendations pose challenges in updating and refining existing DFI management guidelines. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021277788, identifier CRD42021277788.
Collapse
Affiliation(s)
- Sabyasachi Maity
- Department of Physiology, Neuroscience, and Behavioral Sciences, St. George’s University School of Medicine, St. George’s, Grenada
| | - Noah Leton
- Department of Physiology, Neuroscience, and Behavioral Sciences, St. George’s University School of Medicine, St. George’s, Grenada
| | - Narendra Nayak
- Department of Microbiology, St. Matthews University School of Medicine, Grand Cayman, Cayman Islands
| | - Ameet Jha
- Department of Anatomy, St. Matthews University School of Medicine, Grand Cayman, Cayman Islands
| | - Nikhilesh Anand
- Department of Medical Education, School of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Kamala Thompson
- Department of Pathology, St. Matthews University School of Medicine, Grand Cayman, Cayman Islands
| | - Danielle Boothe
- Department of Pathology, St. Matthews University School of Medicine, Grand Cayman, Cayman Islands
| | - Alexandra Cromer
- Department of Pathology, St. Matthews University School of Medicine, Grand Cayman, Cayman Islands
| | - Yaliana Garcia
- Department of Pathology, St. Matthews University School of Medicine, Grand Cayman, Cayman Islands
| | - Aliyah Al-Islam
- Department of Pathology, St. Matthews University School of Medicine, Grand Cayman, Cayman Islands
| | - Samal Nauhria
- Department of Pathology, St. Matthews University School of Medicine, Grand Cayman, Cayman Islands
| |
Collapse
|
11
|
Sendra E, Fernández-Muñoz A, Zamorano L, Oliver A, Horcajada JP, Juan C, Gómez-Zorrilla S. Impact of multidrug resistance on the virulence and fitness of Pseudomonas aeruginosa: a microbiological and clinical perspective. Infection 2024; 52:1235-1268. [PMID: 38954392 PMCID: PMC11289218 DOI: 10.1007/s15010-024-02313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Pseudomonas aeruginosa is one of the most common nosocomial pathogens and part of the top emergent species associated with antimicrobial resistance that has become one of the greatest threat to public health in the twenty-first century. This bacterium is provided with a wide set of virulence factors that contribute to pathogenesis in acute and chronic infections. This review aims to summarize the impact of multidrug resistance on the virulence and fitness of P. aeruginosa. Although it is generally assumed that acquisition of resistant determinants is associated with a fitness cost, several studies support that resistance mutations may not be associated with a decrease in virulence and/or that certain compensatory mutations may allow multidrug resistance strains to recover their initial fitness. We discuss the interplay between resistance profiles and virulence from a microbiological perspective but also the clinical consequences in outcomes and the economic impact.
Collapse
Affiliation(s)
- Elena Sendra
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
| | - Almudena Fernández-Muñoz
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Laura Zamorano
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Antonio Oliver
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Pablo Horcajada
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Juan
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Silvia Gómez-Zorrilla
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
12
|
Donkor ES, Odoom A, Osman AH, Darkwah S, Kotey FCN. A Systematic Review on Antimicrobial Resistance in Ghana from a One Health Perspective. Antibiotics (Basel) 2024; 13:662. [PMID: 39061344 PMCID: PMC11274323 DOI: 10.3390/antibiotics13070662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) poses a global health threat, with lower-middle-income countries bearing a disproportionate burden. Surveillance of AMR under a One Health framework is needed to elucidate the associations among clinical, animal, and environmental AMR. This review aimed to describe the state of AMR in Ghana, focusing on One Health. METHOD This review utilized the PRISMA guidelines and major databases to systematically search and analyze AMR in Ghana published from 1 January 2014 to 1 May 2023. RESULTS Out of the 48 articles that met the inclusion criteria, 28 studies were conducted on humans, 14 studies involved animals, and 6 studies focused on the environment. A total of 48 different pathogens were identified across the human, animal, and environmental sectors, with the most common being Escherichia coli (67%, n = 32), Klebsiella spp. (52%, n = 25), Pseudomonas spp. (40%, n = 19), and Salmonella spp. (38%, n = 18). Generally, a high prevalence of antibiotic resistance was observed among various bacterial species across the sectors. These bacteria exhibited resistance to commonly used antibiotics, with resistance to ampicillin and tetracycline exceeding 80%, and multidrug resistance (MDR) ranging from 17.6% in Shigella spp. to 100% in Acinetobacter spp. CONCLUSION This review reaffirms the significant challenge of AMR in Ghana, with a high prevalence observed in the human, animal, and environmental sectors. Key pathogens (e.g., Staphylococcus aureus and Escherichia coli) found across the sectors emphasize the urgent need for a One Health approach to tackle AMR in Ghana.
Collapse
Affiliation(s)
- Eric S. Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra P.O. Box KB 4236, Ghana; (A.O.); (A.-H.O.); (S.D.); (F.C.N.K.)
| | | | | | | | | |
Collapse
|
13
|
Boukhira S, Amrati FEZ, Chebaibi M, Grafov A, Mothana RA, Al-Yousef HM, Bousta D. The chemical composition and the preservative, antimicrobial, and antioxidant effects of Thymus broussonetii Boiss. essential oil: an in vitro and in silico approach. Front Chem 2024; 12:1402310. [PMID: 39027726 PMCID: PMC11254817 DOI: 10.3389/fchem.2024.1402310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/30/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction The aim of this study was to evaluate the antioxidant, antimicrobial, and preservative efficacy of Thymus broussonetii Boiss. essential oil (EO) in a topically applied formulation using a challenge test. Methods The essential oil was extracted from the aerial part of T. broussonetii using hydrodistillation, and the obtained EO was further analyzed by gas chromatography/mass spectrometry (GC/MS). The antioxidant effect of the EO was evaluated using three methods: the inhibition of free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH), β-carotene-linoleic acid, and the ferric reducing antioxidant power (FRAP) methods. The antimicrobial activity and the minimum inhibitory concentration (MIC) of this EO were assayed by the disk-diffusion method and the broth microdilution method, respectively. The preservative efficacy of T. broussonetii EO was assayed at 1% and 2% (v/w) in a topical cream formulation using a challenge test against standard-specific microorganisms recommended by the European Pharmacopoeia. Furthermore, the identified phytochemical compounds were docked for their effect on nicotinamide adenine dinucleotide phosphate oxidase, human casein kinase 1 alpha 1 (CSNK1A1), glycogen synthase kinase 3, Staphylococcus aureus nucleoside diphosphate kinase, Escherichia coli beta-ketoacyl-[acyl-carrier protein] synthase, Pseudomonas aeruginosa LasR ligand-binding domain, and sterol 14-alpha demethylase (CYP51) from Candida albicans. The ADME/toxicity was predicted by analyzing the absorption, distribution, metabolism, and excretion parameters. Results and discussion chemical composition of the EO revealed the presence of thymol (63.09%), p-cymene (11%), and γ-terpinene (8.99%) as the major components. The antioxidant assays revealed that the essential oil exhibited strong antioxidant activity, as indicated by the minimum inhibitory concentration IC50 (IC50 = 210 ± 0.3 μg/mL for the DPPH assay, IC50 = 145 ± 0.1 μg/mL for the β-carotene assay, and IC50 = 84 ± 0.21 μg/mL for the FRAP assay) when compared to quercetin and butylated hydroxytoluene (BHT) as controls. The investigated essential oil exhibited important antimicrobial activity against all the tested microorganisms, and the MICs of the EO against bacteria and fungi were 0.02%-1%. Moreover, the EO of T. broussonetii evaluated at 2% (v/w) in a cream formulation succeeded in satisfying the A criteria for preservation efficacy against S. aureus, E. coli, and Aspergillus brasiliensis but exhibited less efficacy against P. aeruginosa (1.78 log reduction in the number of CFU/g after 7 days of evaluation) and C. albicans (1.09 log reduction in the number of CFU/g after 14 days of evaluation) when compared to the synthetic preservative phenoxyethanol 1% (v/w). In silico results showed that the antimicrobial activity of T. broussonetii EO is mostly attributed to thymol, terpinen-4-ol, and aromadendrene, while the antioxidant activity is attributed to thymol. These results indicate that the EO of T. broussonetii possesses important antimicrobial and antioxidant properties and can, therefore, be used as a natural preservative ingredient in the cosmetic industry.
Collapse
Affiliation(s)
- Smahane Boukhira
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Guelmim, Morocco
- National Agency of Medicinal and Aromatic Plants, Taounate, Morocco
| | - Fatima Ez-Zahra Amrati
- Laboratory of Cell Biology and Molecular Genetics (LBCGM), Department of Biology, Faculty of Sciences, Faculty of Sciences, Ibn Zohr University, Agadir, Souss-Massa, Morocco
| | - Mohamed Chebaibi
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez, Morocco
| | - Andriy Grafov
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanan M. Al-Yousef
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Dalila Bousta
- National Agency of Medicinal and Aromatic Plants, Taounate, Morocco
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
14
|
Xu C, Zhang Y, Hu C, Shen C, Li F, Xu Y, Liu W, Shi D. From disinfection to pathogenicity: Occurrence, resistome risks and assembly mechanism of biocide and metal resistance genes in hospital wastewaters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123910. [PMID: 38570158 DOI: 10.1016/j.envpol.2024.123910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/20/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Hospital wastewaters (HWWs) represent critical reservoir for the accumulation and propagation of resistance genes. However, studies on biocide and metal resistance genes (BMRGs) and their associated resistome risks and driving mechanisms in HWWs are still in their infancy. Here, metagenomic assembly was firstly used to investigate host pathogenicity and transferability profiles of BMGRs in a typical HWWs system. As a result, genes conferring resistance to Ethidium Bromide, Benzylkonium Chloride, and Cetylpyridinium Chloride dominated biocide resistance genes (BRGs), whereas Cu resistance gene was the largest contributor of metal resistance genes (MRGs). Most BMRGs experienced significant reduction from anoxic-aerobic treatment to sedimentation stages but exhibited enrichment after chlorine disinfection. Network analysis indicated intense interactions between BMRGs and virulence factors (VFs). Polar_flagella, belonging to the adherence was identified to play important role in the network. Contig-based analysis further revealed noteworthy shifts in host associations along the treatment processes, with Pseudomonadota emerging as the primary carrier, hosting 91.1% and 85.3% of the BRGs and MRGs. A total of 199 opportunistic pathogens were identified to carry 285 BMRG subtypes, which mainly included Pseudomonas alcaligenes, Pseudomonas lundensis, and Escherichia coli. Notably, ruvB conferring resistance to Cr, Cetylpyridinium Chloride, and Dodine were characterized with the highest frequency carried by pathogens. Diverse co-occurrence patterns between BMRGs and mobile genetic elements (MGEs) were found from the raw influent to final effluent. Overall, 10.5% BRGs and 8.84% MRGs were mobile and among the 4 MGEs, transposase exhibited the greatest potential for the BMRGs dissemination. Furthermore, deterministic processes played a dominant role in bacterial communities and BMRGs assembly in HWWs. Bacterial communities contributed more than MGEs in shaping the resistome. Taken together, this work demonstrated widespread BMRGs pollution throughout the HWWs treatment system, emphasizing the potential for informing resistome risk and ecological mechanism in medical practice.
Collapse
Affiliation(s)
- Chenye Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yibo Zhang
- Department of Infection Control, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chun Hu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Fang Li
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yumin Xu
- Department of Infection Control, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Dake Shi
- Department of Infection Control, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
15
|
Bereanu AS, Bereanu R, Mohor C, Vintilă BI, Codru IR, Olteanu C, Sava M. Prevalence of Infections and Antimicrobial Resistance of ESKAPE Group Bacteria Isolated from Patients Admitted to the Intensive Care Unit of a County Emergency Hospital in Romania. Antibiotics (Basel) 2024; 13:400. [PMID: 38786129 PMCID: PMC11117271 DOI: 10.3390/antibiotics13050400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
The ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella Pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) is a group of bacteria very difficult to treat due to their high ability to acquire resistance to antibiotics and are the main cause of nosocomial infections worldwide, posing a threat to global public health. Nosocomial infections with MDR bacteria are found mainly in Intensive Care Units, due to the multitude of maneuvers and invasive medical devices used, the prolonged antibiotic treatments, the serious general condition of these critical patients, and the prolonged duration of hospitalization. MATERIALS AND METHODS During a period of one year, from January 2023 to December 2023, this cross-sectional study was conducted on patients diagnosed with sepsis admitted to the Intensive Care Unit of the Sibiu County Emergency Clinical Hospital. Samples taken were tracheal aspirate, catheter tip, pharyngeal exudate, wound secretion, urine culture, blood culture, and peritoneal fluid. RESULTS The most common bacteria isolated from patients admitted to our Intensive Care Unit was Klebsiella pneumoniae, followed by Acinetobacter baumanii and Pseudomonas aeruginosa. Gram-positive cocci (Enterococcus faecium and Staphilococcus aureus) were rarely isolated. Most of the bacteria isolated were MDR bacteria. CONCLUSIONS The rise of antibiotic and antimicrobial resistance among strains in the nosocomial environment and especially in Intensive Care Units raises serious concerns about limited treatment options.
Collapse
Affiliation(s)
- Alina-Simona Bereanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Rareș Bereanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
| | - Cosmin Mohor
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Bogdan Ioan Vintilă
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Ioana Roxana Codru
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Ciprian Olteanu
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| | - Mihai Sava
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (B.I.V.); (I.R.C.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu, nr. 2-4, 550245 Sibiu, Romania;
| |
Collapse
|
16
|
Thomsen J, Menezes GA, Abdulrazzaq NM, Moubareck CA, Senok A, Everett DB. Evolving trends among Pseudomonas aeruginosa: a 12-year retrospective study from the United Arab Emirates. Front Public Health 2023; 11:1243973. [PMID: 38106909 PMCID: PMC10721971 DOI: 10.3389/fpubh.2023.1243973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023] Open
Abstract
INTRODUCTION Pseudomonas is a group of ubiquitous non-fermenting Gram-negative bacteria (NFGNB). Of the several species associated with humans, Pseudomonas aeruginosa (PA) can acclimate to diverse environments. The global frequency of PA infections is rising and is complicated by this organism's high intrinsic and acquired resistance to several clinically relevant antibiotics. Data on the epidemiology, levels, and trends of antimicrobial resistance of PA in clinical settings in the MENA/GCC region is scarce. METHODS A retrospective 12-year analysis of 56,618 non-duplicate diagnostic Pseudomonas spp. from the United Arab Emirates (UAE) was conducted. Data was generated at 317 surveillance sites by routine patient care during 2010-2021, collected by trained personnel and reported by participating surveillance sites to the UAE National antimicrobial resistance (AMR) Surveillance program. Data analysis was conducted with WHONET (https://whonet.org/). RESULTS Among the total isolates (N = 56,618), the majority were PA (95.6%). Data on nationality revealed 44.1% were UAE nationals. Most isolates were from soft tissue (55.7%), followed by respiratory tract (26.7%). PA was more commonly found among inpatients than among outpatients, followed by ICUs. PA showed a horizontal trend for resistance to fluoroquinolones, 3rd- and 4th-generation cephalosporins, and decreasing trends of resistance for aminoglycosides and meropenem. The highest percentage of multidrug resistant (MDR) isolates was reported in 2011 at 35.6%. As an overall trend, the percentage of MDR, extensively drug-resistant (XDR), and possible pandrug-resistant (PDR) isolates generally declined over the study period. Carbapenem-resistant PA (CRPA) were associated with a higher mortality (RR: 2.7), increased admission to ICU (RR: 2.3), and increased length of stay (LOS) (12 excess inpatient days per case), as compared to carbapenem-susceptible PA (CSPA). CONCLUSION The resistance trends in Pseudomonas species in the UAE indicated a decline in AMR and in percentages of Pseudomonas isolates with MDR and XDR profiles. The sustained Pseudomonas spp. circulation particularly in the hospital settings highlights the importance of surveillance techniques, infection control strategies, and stewardship to limit the continued dissemination. This data also shows that CRPA are associated with higher mortality, increased ICU admission rates, and a longer hospitalization, thus higher costs due to increased number of in-hospital and ICU days.
Collapse
Affiliation(s)
- Jens Thomsen
- Department of Occupational and Environmental Health and Safety, Abu Dhabi Public Health Center, Abu Dhabi, United Arab Emirates
- Department of Pathology and Infectious Diseases, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Godfred A. Menezes
- Department of Medical Microbiology and Immunology, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Najiba M. Abdulrazzaq
- Al Kuwait Hospital Dubai, Emirates Health Services Establishment, Dubai, United Arab Emirates
| | | | | | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Dean B. Everett
- Department of Pathology and Infectious Diseases, Khalifa University, Abu Dhabi, United Arab Emirates
- Biotechnology Research Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Infection Research Unit, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
17
|
Furlan JPR, Stehling EG. Genomic Insights into Pluralibacter gergoviae Sheds Light on Emergence of a Multidrug-Resistant Species Circulating between Clinical and Environmental Settings. Pathogens 2023; 12:1335. [PMID: 38003800 PMCID: PMC10675545 DOI: 10.3390/pathogens12111335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Pluralibacter gergoviae is a member of the Enterobacteriaceae family that has been reported sporadically. Although P. gergoviae strains exhibiting multidrug-resistant profiles have been identified an in-depth genomic analysis focusing on antimicrobial resistance (AMR) has been lacking, and was therefore performed in this study. Forty-eight P. gergoviae strains, isolated from humans, animals, foods, and the environment during 1970-2023, were analyzed. A large number of single-nucleotide polymorphisms were found, indicating a highly diverse population. Whilst P. gergoviae strains were found to be circulating at the One Health interface, only human and environmental strains exhibited multidrug resistance genotypes. Sixty-one different antimicrobial resistance genes (ARGs) were identified, highlighting genes encoding mobile colistin resistance, carbapenemases, and extended-spectrum β-lactamases. Worryingly, the co-occurrence of mcr-9.1, blaKPC-2, blaCTX-M-9, and blaSHV-12, as well as mcr-10.1, blaNDM-5, and blaSHV-7, was detected. Plasmid sequences were identified as carrying clinically important ARGs, evidencing IncX3 plasmids harboring blaKPC-2, blaNDM-5, or blaSHV-12 genes. Virulence genotyping underlined P. gergoviae as being a low-virulence species. In this regard, P. gergoviae is emerging as a new multidrug-resistant species belonging to the Enterobacteriaceae family. Therefore, continuous epidemiological genomic surveillance of P. gergoviae is required.
Collapse
Affiliation(s)
| | - Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil;
| |
Collapse
|
18
|
Ali ASBE, Ozler B, Baddal B. Characterization of Virulence Genes Associated with Type III Secretion System and Biofilm Formation in Pseudomonas aeruginosa Clinical Isolates. Curr Microbiol 2023; 80:389. [PMID: 37880467 DOI: 10.1007/s00284-023-03498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/15/2023] [Indexed: 10/27/2023]
Abstract
Pseudomonas aeruginosa is a common pathogen with an increasing multidrug resistance (MDR) phenotype. Its virulence determinants include many factors such as antimicrobial resistance, biofilm formation, and type III secretion system (T3SS) which correlate with disease severity. There are no reports regarding the virulence features of P. aeruginosa in Cyprus. The aim of this study was to investigate the frequency and distribution of selected virulence-encoding genes and evaluate the biofilm formation potential as well as antibiotic resistance rates of isolates in the region. One hundred clinical P. aeruginosa isolates were obtained from clinical specimens and were identified using standard microbiological techniques. Antimicrobial susceptibility was assessed using the VITEK-2 system and biofilm quantification was performed by the microtiter plate assay with crystal violet staining. The presence of algD, exoU, exoT, and exoS was evaluated using polymerase chain reaction (PCR). Among all isolates, 35% were strong biofilm former, 28% were moderate biofilm former, 19% were weak biofilm former, and 18% were non-biofilm former. The rates of MDR and extensive drug resistance (XDR) were 26% and 1%. PCR analysis indicated that 93% of the isolates were algD positive. T3SS genes exoT, exoS, and exoU were detected in 91%, 63%, and 32% of the isolates, respectively. There was a high frequency of exoT + /exoS + genotype (61%), whereas exoT + /exoU + (32%) and exoS + /exoU + (2%) genotypes were relatively uncommon. This study reports the first dataset on the molecular profile of P. aeruginosa in Cyprus. Our results demonstrated that most strains have the biofilm-forming capacity with an algD-positive genotype and the majority carry exoT and exoS with a high frequency of exoT + /exoS + genotype.
Collapse
Affiliation(s)
- Afnan S B E Ali
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, 99138, Nicosia, Cyprus
| | - Batur Ozler
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, 99138, Nicosia, Cyprus
| | - Buket Baddal
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, 99138, Nicosia, Cyprus.
- Microbial Pathogenesis Research Group, DESAM Research Institute, Near East University, 99138, Nicosia, Cyprus.
| |
Collapse
|
19
|
Zhao NL, Zhu ZQ, Feng HZ, Song YJ, Huang Q, Mou XY, Nong C, He YX, Bao R. Host-derived peptide signals regulate Pseudomonas aeruginosa virulence stress via the ParRS and CprRS two-component systems. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132512. [PMID: 37703740 DOI: 10.1016/j.jhazmat.2023.132512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
Pseudomonas aeruginosa, a versatile bacterium, has dual significance because of its beneficial roles in environmental soil processes and its detrimental effects as a nosocomial pathogen that causes clinical infections. Understanding adaptability to environmental stress is essential. This investigation delves into the complex interplay of two-component system (TCS), specifically ParRS and CprRS, as P. aeruginosa interprets host signals and navigates stress challenges. In this study, through phenotypic and proteomic analyses, the nuanced contributions of ParRS and CprRS to the pathogenesis and resilience mechanisms were elucidated. Furthermore, the indispensable roles of the ParS and CprS extracellular sensor domains in orchestrating signal perception remain unknown. Structural revelations imply a remarkable convergence of TCS sensors in interacting with host peptides, suggesting evolutionary strategies for bacterial adaptation. This pioneering work not only established links between cationic antimicrobial peptide (CAMP) resistance-associated TCSs and virulence modulation in nosocomial bacteria, but also transcended conventional boundaries. These implications extend beyond clinical resistance, permeating into the realm of soil revitalization and environmental guardianship. As it unveils P. aeruginosa intricacies, this study assumes a mantle of guiding strategies to mitigate clinical hazards, harness environmental advantages, and propel sustainable solutions forward.
Collapse
Affiliation(s)
- Ning-Lin Zhao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zi-Qi Zhu
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Han-Zhong Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ying-Jie Song
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Qin Huang
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xing-Yu Mou
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng Nong
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Rui Bao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
20
|
Aqel H, Sannan N, Foudah R, Al-Hunaiti A. Enzyme Production and Inhibitory Potential of Pseudomonas aeruginosa: Contrasting Clinical and Environmental Isolates. Antibiotics (Basel) 2023; 12:1354. [PMID: 37760651 PMCID: PMC10525495 DOI: 10.3390/antibiotics12091354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: This study summarizes the findings of two studies investigating the inhibitory effects of Pseudomonas aeruginosa strains from clinical and environmental sources against gram-positive and gram-negative bacteria and fungi. The studies also analyzed the correlation between enzyme production and inhibitory effects to gain insights into the antimicrobial capabilities of P. aeruginosa strains; (2) Methods: Both studies employed similar methodologies, including the use of disk diffusion and well diffusion methods to assess the inhibitory effects of P. aeruginosa strains against target pathogens. Enzyme production was analyzed through various biochemical assays to determine the diversity and frequencies of enzyme secretion among the strains; (3) Results: A comparative analysis of enzyme production in P. aeruginosa strains from clinical sources revealed significant variations in enzyme production, with hemolysin and protease being the most commonly produced enzymes. Gelatinase production showed lower rates, whereas chondroitinase and hyaluronidase were absent or occurred less frequently. In contrast, a comparative analysis of enzyme production in environmental isolates showed different patterns, indicating adaptation to environmental conditions. Pyocyanin production was absent in all environmental isolates. The inhibitory effects against gram-positive and gram-negative bacteria varied among different P. aeruginosa strains, with strain-specific variations observed. Limited inhibitory effects were observed against fungi, primarily toward gram-positive bacteria; (4) Conclusions: The findings highlight the strain-specific nature of inhibitory effects and enzyme production in P. aeruginosa strains. The correlation between enzyme production and inhibitory effects against gram-positive bacteria suggest a potential role of specific enzymes, such as hemolysin and protease, in the antimicrobial activity. The complexity of the relationship between enzyme production and the inhibition of different pathogens requires further investigation. The results emphasize the potential of P. aeruginosa strains as sources for antimicrobial strategies, particularly against gram-positive bacteria. Future research should focus on understanding the mechanisms underlying these inhibitory effects and exploring their therapeutic applications.
Collapse
Affiliation(s)
- Hazem Aqel
- Basic Medical Sciences Department, College of Medicine, Al-Balqa’ Applied University, Salt 19117, Jordan
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Jeddah 22384, Saudi Arabia;
| | - Naif Sannan
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Jeddah 22384, Saudi Arabia;
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
| | - Ramy Foudah
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia;
| | - Afnan Al-Hunaiti
- Chemistry Department, College of Science, Jordan University, Amman 11942, Jordan;
| |
Collapse
|
21
|
Oliveira M, Cunha E, Tavares L, Serrano I. P. aeruginosa interactions with other microbes in biofilms during co-infection. AIMS Microbiol 2023; 9:612-646. [PMID: 38173971 PMCID: PMC10758579 DOI: 10.3934/microbiol.2023032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 01/05/2024] Open
Abstract
This review addresses the topic of biofilms, including their development and the interaction between different counterparts. There is evidence that various diseases, such as cystic fibrosis, otitis media, diabetic foot wound infections, and certain cancers, are promoted and aggravated by the presence of polymicrobial biofilms. Biofilms are composed by heterogeneous communities of microorganisms protected by a matrix of polysaccharides. The different types of interactions between microorganisms gives rise to an increased resistance to antimicrobials and to the host's defense mechanisms, with the consequent worsening of disease symptoms. Therefore, infections caused by polymicrobial biofilms affecting different human organs and systems will be discussed, as well as the role of the interactions between the gram-negative bacteria Pseudomonas aeruginosa, which is at the base of major polymicrobial infections, and other bacteria, fungi, and viruses in the establishment of human infections and diseases. Considering that polymicrobial biofilms are key to bacterial pathogenicity, it is fundamental to evaluate which microbes are involved in a certain disease to convey an appropriate and efficacious antimicrobial therapy.
Collapse
Affiliation(s)
- Manuela Oliveira
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Eva Cunha
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Tavares
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Isa Serrano
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|