Pöstges F, Lenhart J, Stoyanov E, Lunter DJ, Wagner KG. Phase homogeneity in ternary amorphous solid dispersions and its impact on solubility, dissolution and supersaturation - Influence of processing and hydroxypropyl cellulose grade.
Int J Pharm X 2023;
6:100222. [PMID:
38162398 PMCID:
PMC10755049 DOI:
10.1016/j.ijpx.2023.100222]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
As performance of ternary amorphous solid dispersions (ASDs) depends on the solid-state characteristics and polymer mixing, a comprehensive understanding of synergistic interactions between the polymers in regard of dissolution enhancement of poorly soluble drugs and subsequent supersaturation stabilization is necessary. By choosing hot-melt extrusion (HME) and vacuum compression molding (VCM) as preparation techniques, we manipulated the phase behavior of ternary efavirenz (EFV) ASDs, comprising of either hydroxypropyl cellulose (HPC)-SSL or HPC-UL in combination with Eudragit® L 100-55 (EL 100-55) (50:50 polymer ratio), leading to single-phased (HME) and heterogeneous ASDs (VCM). Due to higher kinetic solid-state solubility of EFV in HPC polymers compared to EL 100-55, we visualized higher drug distribution into HPC-rich phases of the phase-separated ternary VCM ASDs via confocal Raman microscopy. Additionally, we observed differences in the extent of phase-separation in dependence on the selected HPC grade. As HPC-UL exhibited decisive lower melt viscosity than HPC-SSL, formation of partially miscible phases between HPC-UL and EL 100-55 was facilitated. Consequently, as homogeneously mixed polymer phases were required for optimal extent of solubility improvement, the manufacturing-dependent differences in dissolution performances were smaller using HPC-UL, instead of HPC-SSL, i.e. using HPC-UL was less demanding on shear stress provided by the process.
Collapse