1
|
Tamarindo GH, Novais AA, Frigieri BM, Alves DL, de Souza CA, Amadeu A, da Silveira JC, Souza FF, Bordin NA, Chuffa LGA, Zuccari DAPC. Distinct proteomic profiles of plasma-derived extracellular vesicles in healthy, benign, and triple-negative breast cancer: candidate biomarkers for liquid biopsy. Sci Rep 2025; 15:12122. [PMID: 40204835 PMCID: PMC11982211 DOI: 10.1038/s41598-025-95232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/19/2025] [Indexed: 04/11/2025] Open
Abstract
Extracellular vesicles (EVs) derived from plasma, measuring up to 150 nm, act as molecular messengers transmitting critical information to recipient cells, making them valuable candidates for liquid biopsy applications in cancer diagnostics. Triple-negative breast cancer (TNBC) is particularly challenging due to its aggressive nature, metastasis potential, and limited treatment options. This study aimed to identify EV-associated proteins in blood samples that could serve as potential TNBC biomarkers. Using mass spectrometry-based proteomic analysis, we detected unique and differentially expressed proteins across healthy individuals, patients with benign breast conditions, and those with TNBC. While EVs size and concentration showed no differences, the proteomic profile varied significantly among these groups. Several immune-related proteins were found exclusively in healthy individuals but were diminished in both benign and malignant cases. We also assessed the impact of surgery on EVs protein content and identified Histone H2A as a TNBC-specific marker present before surgery. Its expression was further validated through immunohistochemistry and Western blotting in TNBC biopsies and cell lines. Notably, surgical intervention enhanced immune response pathways in TNBC patients. In conclusion, liquid biopsy has the potential to serve as a non-invasive tool for TNBC diagnosis and monitoring, revealing a post-surgery molecular landscape that supports combining immunotherapy with mastectomy.
Collapse
Affiliation(s)
- G H Tamarindo
- Molecular Investigation of Cancer Laboratory (MICL), Department of Molecular Biology, Faculdade de Medicina de São José do Rio Preto/(FAMERP), São José do Rio Preto, SP, 15090-000, Brazil
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-100, Brazil
| | - A A Novais
- Institute of Health Science (ICS), Universidade Federal de Mato Grosso (UFMT), Sinop, MT, 78550-728, Brazil
| | - B M Frigieri
- Molecular Investigation of Cancer Laboratory (MICL), Department of Molecular Biology, Faculdade de Medicina de São José do Rio Preto/(FAMERP), São José do Rio Preto, SP, 15090-000, Brazil
- Institute of Biosciences, Letters and Exact Sciences (IBILCE), UNESP, São José do Rio Preto, SP, Brazil
| | - D L Alves
- Molecular Investigation of Cancer Laboratory (MICL), Department of Molecular Biology, Faculdade de Medicina de São José do Rio Preto/(FAMERP), São José do Rio Preto, SP, 15090-000, Brazil
- Institute of Biosciences, Letters and Exact Sciences (IBILCE), UNESP, São José do Rio Preto, SP, Brazil
| | - C A de Souza
- Laboratory of Molecular Morphophysiology and Development (LMMD/ZMV), University of São Paulo, Pirassununga, SP, Brazil
| | - A Amadeu
- Molecular Investigation of Cancer Laboratory (MICL), Department of Molecular Biology, Faculdade de Medicina de São José do Rio Preto/(FAMERP), São José do Rio Preto, SP, 15090-000, Brazil
| | - J C da Silveira
- Laboratory of Molecular Morphophysiology and Development (LMMD/ZMV), University of São Paulo, Pirassununga, SP, Brazil
| | - F F Souza
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, São Paulo State University (UNESP), Botucatu, SP, 18618-681, Brazil
| | - N A Bordin
- Hospital de Base, FAMERP, Faculdade de Medicina de São José do Rio Preto/(FAMERP), São José do Rio Preto, SP, 15090-000, Brazil
| | - L G A Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences, UNESP - São Paulo State University, Botucatu, São Paulo, 18618-689, Brazil
| | - D A P C Zuccari
- Molecular Investigation of Cancer Laboratory (MICL), Department of Molecular Biology, Faculdade de Medicina de São José do Rio Preto/(FAMERP), São José do Rio Preto, SP, 15090-000, Brazil.
| |
Collapse
|
2
|
Azar BKY, Vakhshiteh F. The Pre-metastatic Niche: How Cancer Stem Cell-Derived Exosomal MicroRNA Fit into the Puzzle. Stem Cell Rev Rep 2025:10.1007/s12015-025-10866-z. [PMID: 40095238 DOI: 10.1007/s12015-025-10866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
Cancer metastasis is a complicated biological process that critically affects cancer progression, patient outcomes, and treatment plans. A significant step in metastasis is the formation of a pre-metastatic niche (PMN). A small subset of cells within tumors, known as cancer stem cells (CSCs), possess unique characteristics including, differentiation into different cell types within the tumor, self-renewal, and resistance to conventional therapies, that enable them to initiate tumors and drive metastasis. PMN plays an important role in preparing secondary organs for the arrival and proliferation of CSCs, thereby facilitating metastasis. CSC-derived exosomes are crucial components in the complex interplay between CSCs and the tumor microenvironment. These exosomes function as transporters of various substances that can promote cancer progression, metastasis, and modulation of pre-metastatic environments by delivering microRNA (miRNA, miR) cargo. This review aims to illustrate how exosomal miRNAs (exo-miRs) secreted by CSCs can predispose PMN and promote angiogenesis and metastasis.
Collapse
Affiliation(s)
- Behjat Kheiri Yeghaneh Azar
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faezeh Vakhshiteh
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
3
|
Youssef E, Palmer D, Fletcher B, Vaughn R. Exosomes in Precision Oncology and Beyond: From Bench to Bedside in Diagnostics and Therapeutics. Cancers (Basel) 2025; 17:940. [PMID: 40149276 PMCID: PMC11940788 DOI: 10.3390/cancers17060940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Exosomes have emerged as pivotal players in precision oncology, offering innovative solutions to longstanding challenges such as metastasis, therapeutic resistance, and immune evasion. These nanoscale extracellular vesicles facilitate intercellular communication by transferring bioactive molecules that mirror the biological state of their parent cells, positioning them as transformative tools for cancer diagnostics and therapeutics. Recent advancements in exosome engineering, artificial intelligence (AI)-driven analytics, and isolation technologies are breaking barriers in scalability, reproducibility, and clinical application. Bioengineered exosomes are being leveraged for CRISPR-Cas9 delivery, while AI models are enhancing biomarker discovery and liquid biopsy accuracy. Despite these advancements, key obstacles such as heterogeneity in exosome populations and the lack of standardized isolation protocols persist. This review synthesizes pioneering research on exosome biology, molecular engineering, and clinical translation, emphasizing their dual roles as both mediators of tumor progression and tools for intervention. It also explores emerging areas, including microbiome-exosome interactions and the integration of machine learning in exosome-based precision medicine. By bridging innovation with translational strategies, this work charts a forward-looking path for integrating exosomes into next-generation cancer care, setting it apart as a comprehensive guide to overcoming clinical and technological hurdles in this rapidly evolving field.
Collapse
|
4
|
Orefice NS, Petrillo G, Pignataro C, Mascolo M, De Luca G, Verde S, Pentimalli F, Condorelli G, Quintavalle C. Extracellular vesicles and microRNAs in cancer progression. Adv Clin Chem 2025; 125:23-54. [PMID: 39988407 DOI: 10.1016/bs.acc.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Extracellular vesicles (EVs) have emerged as critical mediators of intercellular communication in cancer. These membranous structures, secreted by normal and cancerous cells, carry a cargo of bioactive molecules including microRNAs (miRNAs) that modulate various cellular processes. miRNAs are small non-coding RNAs that play pivotal roles in post-transcriptional gene regulation and have been implicated in cancer initiation, progression, and metastasis. In cancer, tumor-derived EVs transport specific miRNAs to recipient cells, modulating tumorigenesis, growth, angiogenesis, and metastasis. Dysregulation of miRNA expression profiles within EVs contributes to the acquisition of cancer hallmarks that include increased proliferation, survival, and migration. EV miRNAs influence the tumor microenvironment, promoting immune evasion, remodeling the extracellular matrix, and establishing pre-metastatic niches. Understanding the complex interplay between EVs, miRNAs, and cancer holds significant promise for developing novel diagnostic and therapeutic strategies. This chapter provides insights into the role of EV-mediated miRNA signaling in cancer pathogenesis, highlighting its potential as a biomarker for cancer detection, prognosis, and treatment response assessment.
Collapse
Affiliation(s)
- Nicola S Orefice
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| | - Gianluca Petrillo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Claudia Pignataro
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Martina Mascolo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Giada De Luca
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI) National Research Council (CNR), Naples, Italy
| | - Sara Verde
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy; Aka biotech S.r.l., Napoli, Italy
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University "Giuseppe DeGennaro", Bari, Italy
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy; Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI) National Research Council (CNR), Naples, Italy.
| | - Cristina Quintavalle
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI) National Research Council (CNR), Naples, Italy
| |
Collapse
|
5
|
Agrawal P, Olgun G, Singh A, Gopalan V, Hannenhalli S. Characterizing the pan-cancer role of exosomal miRNAs in metastasis across cancers. Comput Struct Biotechnol J 2024; 27:252-264. [PMID: 39866667 PMCID: PMC11763893 DOI: 10.1016/j.csbj.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025] Open
Abstract
Exosomal microRNAs (exomiRs) play a critical role in intercellular communication, especially in cancer, where they regulate key cellular processes like proliferation, angiogenesis, and metastasis, highlighting their significance as potential diagnostic and therapeutic targets. Here, we aimed to characterize the role of exomiRs, derived from seven cancer types (four cell lines and three tumors), in influencing the pre-metastatic niche (PMN). In each cancer type we extracted high confidence exomiRs (LogFC >= 2 in exosomes relative to control), their experimentally validated targets, and the enriched pathways among those targets. We then selected the top100 high-confidence targets based on their frequency of appearance in the enriched pathways. We observed significantly higher GC content in exomiRs relative to genomic background. Gene Ontology analysis revealed both general cancer processes, such as wound healing and epithelial cell proliferation, as well as cancer-specific processes, such as "angiogenesis" in the kidney and "ossification" in the lung. ExomiR targets were enriched for cancer-specific tumor suppressor genes and downregulated in PMN formed in lungs compared to normal. Motif analysis showed high inter-cancer similarity among motifs enriched in exomiRs. Our analysis recapitulated exomiRs associated with M2 macrophage differentiation and chemoresistance, such as miR-21 and miR-222-3p, regulating signaling pathways like PTEN/PI3/Akt, NF-kB, etc. Additionally, Cox regression analysis in TCGA indicated that exomiR targets are significantly associated with better overall survival of patients. Lastly, support vector machine model using exomiR targets gene expression classified responders and non-responders to therapy with an AUROC ranging from 0.72 to 0.96, higher than previously reported gene signatures.
Collapse
Affiliation(s)
- Piyush Agrawal
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Gulden Olgun
- Department of Computer Engineering, Hacettepe University, Ankara 06800, Turkey
| | - Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
6
|
Das A, Nyahatkar S, Sonar S, Kalele K, Subramaniyan V. Unlocking the potential of exosomes: A new frontier in liver cancer liquid biopsy. THE JOURNAL OF LIQUID BIOPSY 2024; 6:100166. [PMID: 40027309 PMCID: PMC11863868 DOI: 10.1016/j.jlb.2024.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 03/05/2025]
Abstract
Liquid biopsy has emerged as one of the non-invasive diagnostic strategies for cancer, offering significant advantages over traditional tissue biopsies. Exosomes the nanoscale extracellular vesicles, have significantly been in the spotlight of research and investigation as highly informative biomarkers in liquid biopsy. These vesicles, which are secreted by a variety of cells, including tumor cells, contain useful information on the molecular characteristics of the parent cell and could be used as a mirror into the processes underlying cancer biology. The analysis of the biomolecular exosomal cargo, including proteins, nucleic acids, and lipids, has shown great promise for the development of sensitive and specific liquid biopsy-based biomarkers for cancer detection, monitoring, and prognosis. This review discusses the role of exosomes in the liver cancer development and metastatic process, including their ability to transfer oncogenic material and facilitate tumor progression. It also explores the application of exosomes as a tool for early cancer detection, monitoring disease status, and predicting prognosis, with a specific focus on liver cancer. Exosomes hold great promise as a minimally invasive liquid biopsy approach that could revolutionize the way we diagnose and manage this deadly disease.
Collapse
Affiliation(s)
- Asmit Das
- Department of Oncology, Neuron Institute of Applied Research, Amravati, Maharashtra, India
| | - Sidhanti Nyahatkar
- Department of Dentistry, VYWS Dental College & Hospital, Amravati, Maharashtra, India
| | - Swarup Sonar
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Ketki Kalele
- Department of Oncology, Neuron Institute of Applied Research, Amravati, Maharashtra, India
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
7
|
Zabeti Touchaei A, Norollahi SE, Najafizadeh A, Babaei K, Bakhshalipour E, Vahidi S, Samadani AA. Therapeutic combinations of exosomes alongside cancer stem cells (CSCs) and of CSC-derived exosomes (CSCEXs) in cancer therapy. Cancer Cell Int 2024; 24:334. [PMID: 39369258 PMCID: PMC11453077 DOI: 10.1186/s12935-024-03514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/22/2024] [Indexed: 10/07/2024] Open
Abstract
Exosomes which are membrane vesicles released by cells have gained significant interest in the field of cancer therapy as a novel means of intercellular communication. Their role in immune activation and their pathophysiological functions in cancer therapy have been recognized. Exosomes carry diverse bioactive components including proteins, mRNA, microRNAs, and bioactive lipids. These molecules have therapeutic potential in promoting tissue regeneration, supporting stem cell activity, preventing cell death, modulating immune responses, and promoting the growth of new blood vessels. However, the precise roles of exosomes derived from mesenchymal stem cells (MSCs) in the treatment of various cancers are still not fully understood. Consequently, cancer stem cells (CSCs) can self-renew and differentiate into various cell types. Understanding the mechanisms that sustain their persistence is crucial for developing effective therapies. Exosomes have recently gained interest as vehicles for intercellular communication between CSCs and non-CSCs, influencing cancer progression and the microenvironment. Research is ongoing on the utilization of exosomes derived from cancer stem cells (CSC-Exosome) for cancer treatment. The composition of extracellular vesicles is influenced by the specific type and condition of the cells from which they are secreted. Circulating exosomes contain stable RNA molecules such as mRNAs, microRNAs, and long non-coding RNAs (lncRNAs). In this review, we will explore the significance of exosomes and their diverse cellular combinations in the context of cancer therapy.
Collapse
Affiliation(s)
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Najafizadeh
- School of Paramedicine Sciences, Guilan University of Medical Sciences, Langarud, Iran
| | - Kosar Babaei
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Elahe Bakhshalipour
- School of Paramedicine Sciences, Guilan University of Medical Sciences, Langarud, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Akbar Samadani
- Neuroscience Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
8
|
Nieszporek A, Wierzbicka M, Labedz N, Zajac W, Cybinska J, Gazinska P. Role of Exosomes in Salivary Gland Tumors and Technological Advances in Their Assessment. Cancers (Basel) 2024; 16:3298. [PMID: 39409917 PMCID: PMC11475412 DOI: 10.3390/cancers16193298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Backgroud: Salivary gland tumors (SGTs) are rare and diverse neoplasms, presenting significant challenges in diagnosis and management due to their rarity and complexity. Exosomes, lipid bilayer vesicles secreted by almost all cell types and present in all body fluids, have emerged as crucial intercellular communication agents. They play multifaceted roles in tumor biology, including modulating the tumor microenvironment, promoting metastasis, and influencing immune responses. Results: This review focuses on the role of exosomes in SGT, hypothesizing that novel diagnostic and therapeutic approaches can be developed by exploring the mechanisms through which exosomes influence tumor occurrence and progression. By understanding these mechanisms, we can leverage exosomes as diagnostic and prognostic biomarkers, and target them for therapeutic interventions. The exploration of exosome-mediated pathways contributing to tumor progression and metastasis could lead to more effective treatments, transforming the management of SGT and improving patient outcomes. Ongoing research aims to elucidate the specific cargo and signaling pathways involved in exosome-mediated tumorigenesis and to develop standardized techniques for exosome-based liquid biopsies in clinical settings. Conclusions: Exosome-based liquid biopsies have shown promise as non-invasive, real-time systemic profiling tools for tumor diagnostics and prognosis, offering significant potential for enhancing patient care through precision and personalized medicine. Methods like fluorescence, electrochemical, colorimetric, and surface plasmon resonance (SPR) biosensors, combined with artificial intelligence, improve exosome analysis, providing rapid, precise, and clinically valid cancer diagnostics for difficult-to-diagnose cancers.
Collapse
Affiliation(s)
- Artur Nieszporek
- Biobank Research Group, Łukasiewicz Research Network–PORT Polish Centre for Technology Development, Stablowicka Street 147, 54-066 Wroclaw, Poland
| | - Małgorzata Wierzbicka
- Institute of Human Genetics Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
- Department of Otolaryngology, Regional Specialist Hospital Wroclaw, Research & Development Centre, Kamienskiego Street 73a, 51-124 Wroclaw, Poland
| | - Natalia Labedz
- Biobank Research Group, Łukasiewicz Research Network–PORT Polish Centre for Technology Development, Stablowicka Street 147, 54-066 Wroclaw, Poland
| | - Weronika Zajac
- Faulty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
- Materials Science and Engineering Center, Łukasiewicz Research Network–PORT Polish Centre for Technology Development, Stablowicka Street 147, 54-066 Wroclaw, Poland
| | - Joanna Cybinska
- Faulty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
- Materials Science and Engineering Center, Łukasiewicz Research Network–PORT Polish Centre for Technology Development, Stablowicka Street 147, 54-066 Wroclaw, Poland
| | - Patrycja Gazinska
- Biobank Research Group, Łukasiewicz Research Network–PORT Polish Centre for Technology Development, Stablowicka Street 147, 54-066 Wroclaw, Poland
| |
Collapse
|
9
|
Agrawal P, Olgun G, Singh A, Gopalan V, Hannenhalli S. Characterizing the role of exosomal miRNAs in metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608894. [PMID: 39372783 PMCID: PMC11451750 DOI: 10.1101/2024.08.20.608894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Exosomal microRNAs (exomiRs), transported via exosomes, play a pivotal role in intercellular communication. In cancer, exomiRs influence tumor progression by regulating key cellular processes such as proliferation, angiogenesis, and metastasis. Their role in mediating communication between cancer cells and the tumor microenvironment highlights their significance as potential diagnostic and therapeutic targets. Methodology In this study, we aimed to characterize the role of exomiRs in influencing the pre-metastatic niche (PMN). Across 7 tumor types, including 4 cell lines and three tumors, we extracted high confidence exomiRs (Log FC >= 2 in exosomes relative to control) and their targets (experimentally identified and targeted by at least 2 exomiRs). Subsequently, we identified enriched pathways and selected the top 100 high-confidence exomiR targets based on the frequency of their appearance in the enriched pathways. These top 100 targets were consistently used throughout the analysis. Results Cancer cell line and tumor derived ExomiRs have significantly higher GC content relative to genomic background. Pathway enriched among the top exomiR targets included general cancer-associated processes such as "wound healing" and "regulation of epithelial cell proliferation", as well as cancer-specific processes, such as "regulation of angiogenesis in kidney" (KIRC), "ossification" in lung (LUAD), and "positive regulation of cytokine production" in pancreatic cancer (PAAD). Similarly, 'Pathways in cancer' and 'MicroRNAs in cancer' ranked among the top 10 enriched KEGG pathways in all cancer types. ExomiR targets were not only enriched for cancer-specific tumor suppressor genes (TSG) but are also downregulated in pre-metastatic niche formed in lungs compared to normal lung. Motif analysis shows high similarity among motifs identified from exomiRs across cancer types. Our analysis recapitulates exomiRs associated with M2 macrophage differentiation and chemoresistance such as miR-21 and miR-222-3p, regulating signaling pathways such as PTEN/PI3/Akt, NF-κB, etc. Cox regression indicated that exomiR targets are significantly associated with overall survival of patients in TCGA. Lastly, a Support Vector Machine (SVM) model using exomiR target gene expression classified responders and non-responders to neoadjuvant chemotherapy with an AUROC of 0.96 (in LUAD), higher than other previously reported gene signatures. Conclusion Our study characterizes the pivotal role of exomiRs in shaping the PMN in diverse cancers, underscoring their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Piyush Agrawal
- Department of Medical Research, SRM Medical College Hospital & Research Centre, SRMIST, Kattankulathur, Chennai, Tamil Nadu, India
| | - Gulden Olgun
- Department of Computer Engineering, Hacettepe University, 06800, Ankara, Turkey
| | - Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
10
|
Racca L, Liuzzi E, Comparato S, Giordano G, Pignochino Y. Nanoparticles-Delivered Circular RNA Strategy as a Novel Antitumor Approach. Int J Mol Sci 2024; 25:8934. [PMID: 39201617 PMCID: PMC11354327 DOI: 10.3390/ijms25168934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Anticancer therapy urgently needs the development of novel strategies. An innovative molecular target is represented by circular RNAs (circRNAs), single-strand RNA molecules with the 5' and 3' ends joined, characterized by a high stability. Although circRNA properties and biological functions have only been partially elucidated, their relationship and involvement in the onset and progression of cancer have emerged. Specific targeting of circRNAs may be obtained with antisense oligonucleotides and silencing RNAs. Nanotechnology is at the forefront of research for perfecting their delivery. Continuous efforts have been made to develop novel nanoparticles (NPs) and improve their performance, materials, and properties regarding biocompatibility and targeting capabilities. Applications in various fields, from imaging to gene therapy, have been explored. This review sums up the smart strategies developed to directly target circRNAs with the fruitful application of NPs in this context.
Collapse
Affiliation(s)
- Luisa Racca
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (L.R.); (S.C.)
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), Università del Piemonte Orientale, 28100 Novara, Italy
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Elisabetta Liuzzi
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
| | - Simona Comparato
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (L.R.); (S.C.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
| | - Giorgia Giordano
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
- Department of Oncology, University of Turin, 10060 Turin, Italy
| | - Ymera Pignochino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (L.R.); (S.C.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy;
| |
Collapse
|
11
|
Wang Z, Zhang Y, Li X. Mitigation of Oxidative Stress in Idiopathic Pulmonary Fibrosis Through Exosome-Mediated Therapies. Int J Nanomedicine 2024; 19:6161-6176. [PMID: 38911503 PMCID: PMC11193999 DOI: 10.2147/ijn.s453739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/01/2024] [Indexed: 06/25/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) poses a formidable clinical challenge, characterized by the thickening of alveolar septa and the onset of pulmonary fibrosis. The pronounced activation of oxidative stress emerges as a pivotal hallmark of inflammation. Traditional application of exogenous antioxidants proves inadequate in addressing oxidative stress, necessitating exploration into strategies to augment their antioxidant efficacy. Exosomes, nano-sized extracellular vesicles harboring a diverse array of bioactive factors, present as promising carriers with the potential to meet this challenge. Recent attention has been directed towards the clinical applications of exosomes in IPF, fueling the impetus for this comprehensive review. We have compiled fresh insights into the role of exosomes in modulating oxidative stress in IPF and delved into their potential as carriers for regulating endogenous reactive oxygen species generation. This review endeavors to bridge the divide between exosome research and IPF, traversing from bedside to bench. Through the synthesis of recent findings, we propose exosomes as a novel and promising strategy for improving the outcomes of IPF therapy.
Collapse
Affiliation(s)
- Zaiyan Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, People’s Republic of China
| | - Yuan Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
| | - Xiaoning Li
- Department of Geriatric Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, People’s Republic of China
| |
Collapse
|
12
|
Si G, Chen X, Li Y, Yuan X. Exosomes promote pre-metastatic niche formation in colorectal cancer. Heliyon 2024; 10:e27572. [PMID: 38509970 PMCID: PMC10950591 DOI: 10.1016/j.heliyon.2024.e27572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
It is well known that colorectal cancer (CRC) has a high morbidity rate, a poor prognosis when metastasized, and a greatly shortened 5-year survival rate. Therefore, understanding the mechanism of tumor metastasis is still important. Based on the "seed and soil" theory, the concept of " premetastatic niche (PMN)" was introduced by Kaplan et al. The complex interaction between primary tumors and the metastatic organ provides a beneficial microenvironment for tumor cells to colonize at a distance. With further exploration of the PMN, exosomes have gradually attracted interest from researchers. Exosomes are extracellular vesicles secreted from cells that include various biological information and are involved in communication between cells. As a key molecule in the PMN, exosomes are closely related to tumor metastasis. In this article, we obtained information by conducting a comprehensive search across academic databases including PubMed and Web of Science using relevant keywords. Only recent, peer-reviewed articles published in the English language were considered for inclusion. This study aims to explore in depth how exosomes promote the formation of pre-metastatic microenvironment (PMN) in colorectal cancer and its related mechanisms.
Collapse
Affiliation(s)
- Guifei Si
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, 261000, China
| | - Xuemei Chen
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, 261000, China
| | - Yuquan Li
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, 261000, China
| | - Xuemin Yuan
- Department of Gastroenterology, Linyi People's Hospital, Linyi, Shandong, 276000, China
| |
Collapse
|
13
|
Mierke CT. Phenotypic Heterogeneity, Bidirectionality, Universal Cues, Plasticity, Mechanics, and the Tumor Microenvironment Drive Cancer Metastasis. Biomolecules 2024; 14:184. [PMID: 38397421 PMCID: PMC10887446 DOI: 10.3390/biom14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Tumor diseases become a huge problem when they embark on a path that advances to malignancy, such as the process of metastasis. Cancer metastasis has been thoroughly investigated from a biological perspective in the past, whereas it has still been less explored from a physical perspective. Until now, the intraluminal pathway of cancer metastasis has received the most attention, while the interaction of cancer cells with macrophages has received little attention. Apart from the biochemical characteristics, tumor treatments also rely on the tumor microenvironment, which is recognized to be immunosuppressive and, as has recently been found, mechanically stimulates cancer cells and thus alters their functions. The review article highlights the interaction of cancer cells with other cells in the vascular metastatic route and discusses the impact of this intercellular interplay on the mechanical characteristics and subsequently on the functionality of cancer cells. For instance, macrophages can guide cancer cells on their intravascular route of cancer metastasis, whereby they can help to circumvent the adverse conditions within blood or lymphatic vessels. Macrophages induce microchannel tunneling that can possibly avoid mechanical forces during extra- and intravasation and reduce the forces within the vascular lumen due to vascular flow. The review article highlights the vascular route of cancer metastasis and discusses the key players in this traditional route. Moreover, the effects of flows during the process of metastasis are presented, and the effects of the microenvironment, such as mechanical influences, are characterized. Finally, the increased knowledge of cancer metastasis opens up new perspectives for cancer treatment.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
14
|
Neagu AN, Whitham D, Bruno P, Arshad A, Seymour L, Morrissiey H, Hukovic AI, Darie CC. Onco-Breastomics: An Eco-Evo-Devo Holistic Approach. Int J Mol Sci 2024; 25:1628. [PMID: 38338903 PMCID: PMC10855488 DOI: 10.3390/ijms25031628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Known as a diverse collection of neoplastic diseases, breast cancer (BC) can be hyperbolically characterized as a dynamic pseudo-organ, a living organism able to build a complex, open, hierarchically organized, self-sustainable, and self-renewable tumor system, a population, a species, a local community, a biocenosis, or an evolving dynamical ecosystem (i.e., immune or metabolic ecosystem) that emphasizes both developmental continuity and spatio-temporal change. Moreover, a cancer cell community, also known as an oncobiota, has been described as non-sexually reproducing species, as well as a migratory or invasive species that expresses intelligent behavior, or an endangered or parasite species that fights to survive, to optimize its features inside the host's ecosystem, or that is able to exploit or to disrupt its host circadian cycle for improving the own proliferation and spreading. BC tumorigenesis has also been compared with the early embryo and placenta development that may suggest new strategies for research and therapy. Furthermore, BC has also been characterized as an environmental disease or as an ecological disorder. Many mechanisms of cancer progression have been explained by principles of ecology, developmental biology, and evolutionary paradigms. Many authors have discussed ecological, developmental, and evolutionary strategies for more successful anti-cancer therapies, or for understanding the ecological, developmental, and evolutionary bases of BC exploitable vulnerabilities. Herein, we used the integrated framework of three well known ecological theories: the Bronfenbrenner's theory of human development, the Vannote's River Continuum Concept (RCC), and the Ecological Evolutionary Developmental Biology (Eco-Evo-Devo) theory, to explain and understand several eco-evo-devo-based principles that govern BC progression. Multi-omics fields, taken together as onco-breastomics, offer better opportunities to integrate, analyze, and interpret large amounts of complex heterogeneous data, such as various and big-omics data obtained by multiple investigative modalities, for understanding the eco-evo-devo-based principles that drive BC progression and treatment. These integrative eco-evo-devo theories can help clinicians better diagnose and treat BC, for example, by using non-invasive biomarkers in liquid-biopsies that have emerged from integrated omics-based data that accurately reflect the biomolecular landscape of the primary tumor in order to avoid mutilating preventive surgery, like bilateral mastectomy. From the perspective of preventive, personalized, and participatory medicine, these hypotheses may help patients to think about this disease as a process governed by natural rules, to understand the possible causes of the disease, and to gain control on their own health.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Aneeta Arshad
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Angiolina I. Hukovic
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| |
Collapse
|
15
|
Chen Z, Xiong M, Tian J, Song D, Duan S, Zhang L. Encapsulation and assessment of therapeutic cargo in engineered exosomes: a systematic review. J Nanobiotechnology 2024; 22:18. [PMID: 38172932 PMCID: PMC10765779 DOI: 10.1186/s12951-023-02259-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Exosomes are nanoscale extracellular vesicles secreted by cells and enclosed by a lipid bilayer membrane containing various biologically active cargoes such as proteins, lipids, and nucleic acids. Engineered exosomes generated through genetic modification of parent cells show promise as drug delivery vehicles, and they have been demonstrated to have great therapeutic potential for treating cancer, cardiovascular, neurological, and immune diseases, but systematic knowledge is lacking regarding optimization of drug loading and assessment of delivery efficacy. This review summarizes current approaches for engineering exosomes and evaluating their drug delivery effects, and current techniques for assessing exosome drug loading and release kinetics, cell targeting, biodistribution, pharmacokinetics, and therapeutic outcomes are critically examined. Additionally, this review synthesizes the latest applications of exosome engineering and drug delivery in clinical translation. The knowledge compiled in this review provides a framework for the rational design and rigorous assessment of exosomes as therapeutics. Continued advancement of robust characterization methods and reporting standards will accelerate the development of exosome engineering technologies and pave the way for clinical studies.
Collapse
Affiliation(s)
- Zhen Chen
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
- Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan, 250001, China
- School of Public Health, Weifang Medical University, Weifang, 261000, China
| | - Min Xiong
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China
| | - Jiaqi Tian
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
- Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan, 250001, China
| | - Dandan Song
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
- Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan, 250001, China
| | - Shuyin Duan
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250001, China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China.
- Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan, 250001, China.
| |
Collapse
|
16
|
Al-Jipouri A, Eritja À, Bozic M. Unraveling the Multifaceted Roles of Extracellular Vesicles: Insights into Biology, Pharmacology, and Pharmaceutical Applications for Drug Delivery. Int J Mol Sci 2023; 25:485. [PMID: 38203656 PMCID: PMC10779093 DOI: 10.3390/ijms25010485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles released from various cell types that have emerged as powerful new therapeutic option for a variety of diseases. EVs are involved in the transmission of biological signals between cells and in the regulation of a variety of biological processes, highlighting them as potential novel targets/platforms for therapeutics intervention and/or delivery. Therefore, it is necessary to investigate new aspects of EVs' biogenesis, biodistribution, metabolism, and excretion as well as safety/compatibility of both unmodified and engineered EVs upon administration in different pharmaceutical dosage forms and delivery systems. In this review, we summarize the current knowledge of essential physiological and pathological roles of EVs in different organs and organ systems. We provide an overview regarding application of EVs as therapeutic targets, therapeutics, and drug delivery platforms. We also explore various approaches implemented over the years to improve the dosage of specific EV products for different administration routes.
Collapse
Affiliation(s)
- Ali Al-Jipouri
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
| | - Àuria Eritja
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| | - Milica Bozic
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| |
Collapse
|
17
|
Patel U, Susman D, Allan AL. Influence of Extracellular Vesicles on Lung Stromal Cells during Breast Cancer Metastasis. Int J Mol Sci 2023; 24:11801. [PMID: 37511559 PMCID: PMC10380344 DOI: 10.3390/ijms241411801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer is a prominent cause of cancer diagnosis and death in women globally, with over 90% of deaths being attributed to complications that arise from metastasis. One of the common locations for breast cancer metastasis is the lung, which is associated with significant morbidity and mortality. Curative treatments for metastatic breast cancer patients are not available and the molecular mechanisms that underlie lung metastasis are not fully understood. In order to better treat these patients, identifying events that occur both prior to and during metastatic spread to the lung is essential. Several studies have demonstrated that breast cancer-derived extracellular vesicles secreted from the primary breast tumor play a key role in establishing the lung pre-metastatic niche to support colonization of metastatic tumor cells. In this review, we summarize recent work supporting the influence of extracellular vesicles on stromal components of the lung to construct the pre-metastatic niche and support metastasis. Furthermore, we discuss the potential clinical applications of utilizing extracellular vesicles for diagnosis and treatment. Together, this review highlights the dynamic nature of extracellular vesicles, their roles in breast cancer metastasis to the lung, and their value as potential biomarkers and therapeutics for cancer prevention.
Collapse
Affiliation(s)
- Urvi Patel
- Department of Anatomy & Cell Biology, Western University, London, ON N6A 5W9, Canada
| | - David Susman
- Department of Anatomy & Cell Biology, Western University, London, ON N6A 5W9, Canada
| | - Alison L Allan
- Departments of Anatomy & Cell Biology and Oncology, Western University, London, ON N6A 5W9, Canada
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Lawson Health Research Institute, London, ON N6A 5W9, Canada
| |
Collapse
|