1
|
Shen Z, Bao N, Chen J, Tang M, Yang L, Yang Y, Zhang H, Han J, Yu P, Zhang S, Yang H, Jiang G. Neuromolecular and behavioral effects of cannabidiol on depressive-associated behaviors and neuropathic pain conditions in mice. Neuropharmacology 2024; 261:110153. [PMID: 39245142 DOI: 10.1016/j.neuropharm.2024.110153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND AND AIMS Neuropathic pain (NP) has a high incidence in the general population, is closely related to anxiety disorders, and has a negative impact on the quality of life. Cannabidiol (CBD), as a natural product, has been extensively studied for its potential therapeutic effects on symptoms such as pain and depression (DP). However, the mechanism of CBD in improving NP with depression is not fully understood. METHODS First, we used bioinformatics tools to deeply mine the intersection genes associated with NP, DP, and CBD. Secondly, the core targets were screened by Protein-protein interaction network, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes analysis, molecular docking and molecular dynamics simulation. Next, the effects of CBD intervention on pain and depressive behaviors in the spinal nerve ligation (SNL) mouse model were evaluated using behavioral tests, and dose-response curves were plotted. After the optimal intervention dose was determined, the core targets were verified by Western blot (WB) and Quantitative Polymerase Chain Reaction (qPCR). Finally, we investigated the potential mechanism of CBD by Nissl staining, Immunofluorescence (IF) and Transmission Electron Microscopy (TEM). RESULTS A total of five core genes of CBD most associated with NP and DP were screened by bioinformatics analysis, including PTGS2, GPR55, SOD1, CYP1A2 and NQO1. Behavioral test results showed that CBD by intraperitoneal administration 5 mg/kg can significantly improve the pain behavior and depressive state of SNL mice. WB, qPCR, IF, and TEM experiments further confirmed the regulatory effects of CBD on key molecules. CONCLUSION In this study, we found five targets of CBD in the treatment of NP with DP. These findings provide further theoretical and experimental basis for CBD as a potential therapeutic agent.
Collapse
Affiliation(s)
- Ziyi Shen
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Nana Bao
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Junwen Chen
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Ming Tang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Linfeng Yang
- Institute of Morphology, College of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Yang Yang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Haoran Zhang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jingyu Han
- Institute of medical imaging, North Sichuan Medical College, Nanchong, China
| | - Peilu Yu
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Shushan Zhang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hanfeng Yang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
2
|
Aboutaleb AS, Allam A, Zaky HS, Harras MF, Farag FSAA, Abdel-Sattar SA, El-Said NT, Ahmed HI, Abd El-Mordy FM. Novel insights into the molecular mechanisms underlying anti-nociceptive effect of myricitrin against reserpine-induced fibromyalgia model in rats: Implication of SIRT1 and miRNAs. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118623. [PMID: 39059685 DOI: 10.1016/j.jep.2024.118623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Manilkara zapota (L.) P. Royen, also termed sapodilla or chikoo, is a significant plant in ethnomedicine because of its long history of traditional medical applications. In diverse cultures, sapodilla is believed to protect against oxidative stress, inflammation, and some chronic diseases because of its high antioxidant content. The naturally occurring antioxidant myricitrin (MYR) flavonoid is primarily found in the leaves and other plant parts of sapodilla and it is well-known for having therapeutic qualities and possible health advantages. AIM OF THE STUDY To appraise the possible impact of MYR on a rat model of reserpine-induced fibromyalgia (FM) and explore its mechanism of action. MATERIALS AND METHODS Isolation and identification of MYR with more than 99% purity from Manilkara zapota leaves were primarily done and confirmed through chromatographic and spectrophotometric techniques. To develop FM model, reserpine (RSP) was injected daily (1 mg/kg, s.c.) for three successive days. Then, MYR (10 mg/kg, i.p.) and pregabalin (PGB, 30 mg/kg, p.o.) were given daily for another five days. Behavioral changes were assessed through open field test (OFT), hot plate test, and forced swimming test (FST). Further analyses of different brain parameters and signaling pathways were performed to assess monoamines levels, oxidative stress, inflammatory response, apoptotic changes as well as silent information regulator 1 (SIRT1) and micro RNAs (miRNAs) expressions. RESULTS From High-Performance Liquid Chromatography (HPLC) analysis, the methanol extract of sapodilla leaves contains 166.17 μg/ml of MYR. Results of behavioral tests showed a significant improvement in RSP-induced nociceptive stimulation, reduced locomotion and exploration and depressive-like behavior by MYR. Biochemical analyses showed that MYR significantly ameliorated the RSP-induced imbalance in brain monoamine neurotransmitters. In addition, MYR significantly attenuated oxidative stress elicited by RSP via up-regulating nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) protein expressions, enhancing superoxide dismutase (SOD) and catalase (CAT) activities, and reducing malondialdehyde (MDA) content in brain. The RSP-provoked inflammatory response was also diminished by MYR treatment as shown by a significant decreased NOD-like receptor protein 3 (NLRP3) inflammasome expression along with reduced levels of interleukin 1 beta (IL-1β) and nuclear factor-κB (NF-κB). Furthermore, the anti-apoptotic activity of MYR was demonstrated by a marked rise in Bcl-2-associated X protein (BAX)/B cell lymphoma-2 (Bcl-2) ratio by lowering Bcl-2 while increasing BAX levels. In addition, MYR treatment significantly boosted the expression of SIRT1 deacetylase in RSP-treated animals. Interestingly, molecular docking showed the ability of MYR to form a stable complex in the binding site of SIRT1. Regarding miRNAs, MYR effectively ameliorated RSP-induced changes in miR-320 and miR-107 gene expressions. CONCLUSION Our findings afford new insights into the anti-nociceptive profile of MYR in the RSP-induced FM model in rats. The underlying mechanisms involved direct binding and activation of SIRT1 to influence different signaling cascades, including Nrf2 and NF-κB/NLRP3 together with modulation of miRNAs. However, more in-depth studies are needed before proposing MYR as a new clinically relevant drug in the management of FM.
Collapse
Affiliation(s)
- Amany S Aboutaleb
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Albatoul Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Heba S Zaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Marwa F Harras
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Fatma Sayed Abdel-Aal Farag
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Somaia A Abdel-Sattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| | - Nermin T El-Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Hebatalla I Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Fatma Mohamed Abd El-Mordy
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
Badaeva A, Danilov A, Kosareva A, Lepshina M, Novikov V, Vorobyeva Y, Danilov A. Neuronutritional Approach to Fibromyalgia Management: A Narrative Review. Pain Ther 2024; 13:1047-1061. [PMID: 39042252 PMCID: PMC11393252 DOI: 10.1007/s40122-024-00641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024] Open
Abstract
Fibromyalgia (FM) is a complex and common syndrome characterized by chronic widespread pain, fatigue, sleep disturbances, and various functional symptoms without clear structural or pathological causes. Affecting approximately 1-5% of the global population, with a higher prevalence in women, FM significantly impacts patients' quality of life, often leading to considerable healthcare costs and loss of productivity. Despite its prevalence, the etiology of FM remains elusive, with genetic, environmental, and psychological factors, including nutrition, being implicated. Currently, no universally accepted treatment guidelines exist, and management strategies are often symptomatic. This narrative review explores the potential of a neuronutritional approach to FM management. It synthesizes existing research on the relationship between FM and nutrition, suggesting that dietary interventions could be a promising complementary treatment strategy. Various nutritional interventions, including vitamin D, magnesium, iron, and probiotics supplementation, have shown potential in reducing FM symptoms, such as chronic pain, anxiety, depression, cognitive dysfunction, sleep disturbances, and gastrointestinal issues. Additionally, weight loss has been associated with reduced inflammation and improved quality of life in FM patients. The review highlights the anti-inflammatory benefits of plant-based diets and the low-FODMAPs diet, which have shown promise in managing FM symptoms and related gastrointestinal disorders. Supplements such as vitamin D, magnesium, vitamin B12, coenzyme Q10, probiotics, omega-3 fatty acids, melatonin, S-adenosylmethionine, and acetyl-L-carnitine are discussed for their potential benefits in FM management through various mechanisms, including anti-inflammatory effects, modulation of neurotransmitters, and improvement of mitochondrial function. In conclusion, this review underscores the importance of considering neuronutrition as a holistic approach to FM treatment, advocating for further research and clinical trials to establish comprehensive dietary guidelines and to optimize management strategies for FM patients.
Collapse
Affiliation(s)
- Anastasiia Badaeva
- Department for Pathological Physiology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991, Moscow, Russia.
| | - Alexey Danilov
- Department for Nervous Diseases, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991, Moscow, Russia
| | - Anastasiia Kosareva
- Department for Nervous Diseases, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991, Moscow, Russia
| | - Mariia Lepshina
- Department for Nervous Diseases, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991, Moscow, Russia
| | - Viacheslav Novikov
- Department for Nervous Diseases, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991, Moscow, Russia
| | - Yulia Vorobyeva
- Department for Nervous Diseases, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991, Moscow, Russia
| | - Andrey Danilov
- Department for Nervous Diseases, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991, Moscow, Russia
| |
Collapse
|
4
|
Marino Y, Inferrera F, D'Amico R, Impellizzeri D, Cordaro M, Siracusa R, Gugliandolo E, Fusco R, Cuzzocrea S, Di Paola R. Role of mitochondrial dysfunction and biogenesis in fibromyalgia syndrome: Molecular mechanism in central nervous system. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167301. [PMID: 38878832 DOI: 10.1016/j.bbadis.2024.167301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 08/18/2024]
Abstract
A critical role for mitochondrial dysfunction has been shown in the pathogenesis of fibromyalgia. It is a chronic pain syndrome characterized by neuroinflammation and impaired oxidative balance in the central nervous system. Boswellia serrata (BS), a natural polyphenol, is a well-known able to influence the mitochondrial metabolism. The objective of this study was to evaluate the mitochondrial dysfunction and biogenesis in fibromyalgia and their modulation by BS. To induce the model reserpine (1 mg/Kg) was subcutaneously administered for three consecutive days and BS (100 mg/Kg) was given orally for twenty-one days. BS reduced pain like behaviors in reserpine-injected rats and the astrocytes activation in the dorsal horn of the spinal cord and prefrontal cortex that are recognized as key regions associated with the neuropathic pain. Vulnerability to neuroinflammation and impaired neuronal plasticity have been described as consequences of mitochondrial dysfunction. BS administration increased PGC-1α expression in the nucleus of spinal cord and brain tissues, promoting the expression of regulatory genes for mitochondrial biogenesis (NRF-1, Tfam and UCP2) and cellular antioxidant defence mechanisms (catalase, SOD2 and Prdx 3). According with these data BS reduced lipid peroxidation and the GSSG/GSH ratio and increased SOD activity in the same tissues. Our results also showed that BS administration mitigates cytochrome-c leakage by promoting mitochondrial function and supported the movement of PGC-1α protein into the nucleus restoring the quality control of mitochondria. Additionally, BS reduced Drp1 and Fis1, preventing both mitochondrial fission and cell death, and increased the expression of Mfn2 protein, facilitating mitochondrial fusion. Overall, our results showed important mitochondrial dysfunction in central nervous system in fibromyalgia syndrome and the role of BS in restoring mitochondrial dynamics.
Collapse
Affiliation(s)
- Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Francesca Inferrera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy.
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy.
| |
Collapse
|
5
|
Terribili R, Vallifuoco G, Bardelli M, Frediani B, Gentileschi S. A Fixed Combination of Palmitoylethanolamide and Melatonin (PEATONIDE) for the Management of Pain, Sleep, and Disability in Patients with Fibromyalgia: A Pilot Study. Nutrients 2024; 16:2785. [PMID: 39203921 PMCID: PMC11357461 DOI: 10.3390/nu16162785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Fibromyalgia is characterized by chronic widespread pain, fatigue, and sleep disturbances. Recent theories attribute fibromyalgia to central sensitization syndromes, suggesting altered nociceptive processing leads to hyperalgesia and allodynia. Standardized effective treatments are currently lacking. Palmitoylethanolamide and melatonin have shown pain-relieving effects in chronic pain conditions, including fibromyalgia, with excellent safety. Our open-label study assessed the impact of a daily combination of 1200 mg of palmitoylethanolamide and 0.2 mg of melatonin on pain, sleep, and quality of life in fibromyalgia patients. Between June 2023 and March 2024, 50 patients (2016 ACR criteria) were treated and evaluated at baseline, 1 month, 3 months, and 4 months (1 month discontinuation). The assessments included VAS for pain, ISI for insomnia, HAQ for health assessments, and a tender points evaluation. The patients, averaging 54.12 years old with a 3:1 female-to-male ratio, showed significant improvements in VAS, ISI, and HAQ scores relative to their own baselines and a reduction in tender points at 1 and 3 months, which was maintained at 4 months. No adverse events were reported. This study is the first to demonstrate the efficacy of a palmitoylethanolamide and melatonin combination as an adjunct therapy in fibromyalgia, highlighting its potential to reduce pain and improve sleep and quality of life.
Collapse
Affiliation(s)
| | | | - Marco Bardelli
- Rheumatology Department, Siena University Hospital, Viale Mario Bracci 16, 53100 Siena, Italy; (R.T.); (G.V.); (B.F.); (S.G.)
| | | | | |
Collapse
|
6
|
Ju J, Li Z, Jia X, Peng X, Wang J, Gao F. Interleukin-18 in chronic pain: Focus on pathogenic mechanisms and potential therapeutic targets. Pharmacol Res 2024; 201:107089. [PMID: 38295914 DOI: 10.1016/j.phrs.2024.107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Chronic pain has been proven to be an independent disease, other than an accompanying symptom of certain diseases. Interleukin-18 (IL-18), a pro-inflammatory cytokine with pleiotropic biological effects, participates in immune modulation, inflammatory response, tumor growth, as well as the process of chronic pain. Compelling evidence suggests that IL-18 is upregulated in the occurrence of chronic pain. Antagonism or inhibition of IL-18 expression can alleviate the occurrence and development of chronic pain. And IL-18 is located in microglia, while IL-18R is mostly located in astrocytes in the spinal cord. This indicates that the interaction between microglia and astrocytes mediated by the IL-18/IL-18R axis is involved in the occurrence of chronic pain. In this review, we described the role and mechanism of IL-18 in different types of chronic pain. This review provides strong evidence that IL-18 is a potential therapeutic target in pain management.
Collapse
Affiliation(s)
- Jie Ju
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqian Jia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoling Peng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Wang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|