1
|
Yang R, Xiang D, Yuan F, Yang Y, Wang P, Xu B, Li X. Unraveling Neurotoxicity Discrepancies: Comparative In vitro and In vivo Analysis of Colistin and Polymyxin B and the Underlying Mechanisms. Mol Neurobiol 2025; 62:4562-4575. [PMID: 39467983 DOI: 10.1007/s12035-024-04577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Polymyxins, including colistin and polymyxin B, are the final resort against Gram-negative bacterial infections. However, its clinical application is restricted due to concerns related to neurotoxicity. Despite the similar antibacterial spectrum and mode of action shared between colistin and polymyxin B, there is still a lack of definitive evidence to support the idea that their neurotoxicity profiles are identical. To comprehensively compare the neurotoxicity between colistin and polymyxin B both in vivo and in vitro and establish a theoretical foundation to guide the rational use of polymyxins within clinical settings. in vitro experiments simulated nerve damage by exposing N2a and RSC96 cells to colistin and polymyxin B. The evaluation of nerve injury included assessments of cell viability and apoptosis. To discern the variance in the mechanisms of nerve injury between colistin and polymyxin B, oxidative stress levels were examined, such as SOD, CAT, GSH, and malondialdehyde (MDA). In in vivo experiments, a rat nerve injury model was created by intraventricular injections of colistin and polymyxin B, respectively. The impact of these drugs on brain injury in rats, particularly within the hippocampus and medulla oblongata, was measured using HE and Nissl staining. The potential influence of polymyxins on the ferroptosis pathway was evaluated by assessing LPO and Fe2+ levels and the degree of mitochondrial impairment. At equivalent doses, colistin demonstrated a reduced level of neurotoxicity compared to polymyxin B, both in vitro and in vivo. in vitro experiments revealed greater cell viability and a lower apoptosis rate after colistin treatment than after polymyxin B treatment. This variance in outcomes could be attributed to the comparatively lower levels of oxidative stress associated with colistin administration. In a rat model, nerve injury resulted in observable damage to both the hippocampus and the medulla oblongata. A comprehensive assessment of the extent of damage in the CA1 to CA4 regions of the hippocampus, and the solitary tract nucleus of the medulla oblongata underscored that the neurotoxic effects of colistin remained milder compared to those elicited by polymyxin B. Even when evaluated at equivalent multiples of clinically recommended doses, colistin exhibited lower neurotoxicity in vivo than polymyxin B. For the first time, this study demonstrated the role of ferroptosis in polymyxin B-induced nerve damage. The activation levels observed within the ferroptosis pathway due to polymyxin B exceeded those triggered by colistin. Colistin exhibited a marked reduction in neurotoxicity compared to polymyxin B, evident in both the equivalent and clinically recommended doses. These findings suggest that, from the perspective of neurotoxicity, colistin presents a more favorable option for clinical use.
Collapse
Affiliation(s)
- Rui Yang
- Hunan University of Chinese Medicine, Changsha, China
- The Third Hospital of Changsha, Changsha, China
| | - Debiao Xiang
- The Third Hospital of Changsha, Changsha, China
- Antibiotic Clinical Application Research Institute of Changsha, Changsha, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, China
| | - Fang Yuan
- The Third Hospital of Changsha, Changsha, China
- Antibiotic Clinical Application Research Institute of Changsha, Changsha, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, China
| | - Yuan Yang
- Hunan University of Chinese Medicine, Changsha, China
- The Third Hospital of Changsha, Changsha, China
| | - Pengkai Wang
- Hunan University of Chinese Medicine, Changsha, China
- The Third Hospital of Changsha, Changsha, China
| | - Bing Xu
- The Third Hospital of Changsha, Changsha, China
- Antibiotic Clinical Application Research Institute of Changsha, Changsha, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, China
| | - Xin Li
- The Third Hospital of Changsha, Changsha, China.
- Antibiotic Clinical Application Research Institute of Changsha, Changsha, China.
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, China.
| |
Collapse
|
2
|
Giannakis A, Sioka C, Kloufetou E, Konitsiotis S. Cognitive impairment in Parkinson's disease and other parkinsonian syndromes. J Neural Transm (Vienna) 2025; 132:341-355. [PMID: 39614911 DOI: 10.1007/s00702-024-02865-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/22/2024] [Indexed: 03/03/2025]
Abstract
In this narrative review, we address mild cognitive impairment, a frequent complication of Parkinson's disease (PD) and atypical parkinsonian disorders (APDs). Recent diagnostic criteria have blurred the lines between PD and dementia with Lewy bodies (DLB), particularly in the cognitive domain. Additionally, atypical parkinsonian syndromes like progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) often present with significant cognitive decline. Even multiple system atrophy (MSA) can be associated with cognitive impairment in some cases. Several biomarkers, including imaging techniques, such brain magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET), as well as pathological proteins either of the cerebrospinal fluid (CSF), such as Tau, amyloid beta, and synuclein, or of the serum, such as neurofilament light chain (Nfl) are more and more often utilized in the early differential diagnosis of APDs. The complex interplay between these conditions and the evolving understanding of their underlying pathologies highlight the need for further research to refine diagnostic criteria, possibly incorporate the new findings from the biomarker's field into the diagnostic criteria and develop targeted therapeutic strategies.
Collapse
Affiliation(s)
- Alexandros Giannakis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Stavrou Niarchou Av., University Campus, Ioannina, Greece.
| | - Chrissa Sioka
- Department of Nuclear Medicine, Faculty of Medicine, University of Ioannina, Stavrou Niarchou Av., University Campus, Ioannina, Greece
| | - Eugenia Kloufetou
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Stavrou Niarchou Av., University Campus, Ioannina, Greece
| | - Spiridon Konitsiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Stavrou Niarchou Av., University Campus, Ioannina, Greece
| |
Collapse
|
3
|
Zhang S, Geng Y, Jiang X, Sun Z, Yan M, Bi J, Tian X, Wang Q. Investigating the mechanisms of inflammation and immune alterations in Parkinson's disease using spatial transcriptomics techniques. Brain Res Bull 2024; 217:111076. [PMID: 39306046 DOI: 10.1016/j.brainresbull.2024.111076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024]
Abstract
In recent years, overwhelming evidence has emphasized the crucial role of inflammation in the pathogenesis of PD. However, the exact mechanisms by which inflammation damages dopaminergic neurons in PD are still unclear. Therefore, we generated a MPTP-induced PD mouse model and performed spatial transcriptomic sequencing to provide more insight into the process of PD development at specific brain regions. Our results indicate that the pathological changes of PD are mainly manifested in the midbrain, especially in the substantia nigra region, with significant reductions in oligodendrocytes and Agt-labeled astrocytes and an increase in Gfap-labeled astrocytes. Macrophages displayed an increasing trend in the PD environment, indicating a pattern of immune modulation induced by PD. Moreover, pathway analysis revealed significant impairments in ion migration ability, abnormal Ca2+ channels, cAMP signaling, and synaptic damage in PD. Significant downregulation of Mt1 and Mt2 and upregulation of Atp1b2, Gpi1, and Cox6a1 in PD further underscored the occurrence of intense inflammation and immune alterations. On the basis of these findings, we have validated the significant accumulation of Ca2+ in the midbrain tissue in the PD environment by measuring its content. Additionally, we have demonstrated a close association between the reduction of dopaminergic neurons, represented by the midbrain region, and ferroptosis by evaluating the iron content, malondialdehyde (MDA) levels, and the protein expression of GPX4 and TH in the tissue. We propose the hypothesis that PD-related inflammation and immune changes can induce neuronal and oligodendrocyte damage through the induction of ferroptosis, thereby further accelerating the progression of PD.
Collapse
Affiliation(s)
- Sen Zhang
- Graduate School of Education, Shandong Sport University, Jinan, Shandong 250102, China
| | - Yifan Geng
- Xuzhou Clinical School, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xing Jiang
- Graduate School of Education, Shandong Sport University, Jinan, Shandong 250102, China
| | - Zhiyuan Sun
- Graduate School of Education, Shandong Sport University, Jinan, Shandong 250102, China
| | - Min Yan
- Graduate School of Education, Shandong Sport University, Jinan, Shandong 250102, China
| | - Jun Bi
- Graduate School of Education, Shandong Sport University, Jinan, Shandong 250102, China
| | - Xuewen Tian
- Graduate School of Education, Shandong Sport University, Jinan, Shandong 250102, China.
| | - Qinglu Wang
- Graduate School of Education, Shandong Sport University, Jinan, Shandong 250102, China.
| |
Collapse
|
4
|
Zhuang Y, Li C, Zhao F, Yan Y, Pan H, Zhan J, Behnisch T. E3 Ubiquitin Ligase Uhrf2 Knockout Reveals a Critical Role in Social Behavior and Synaptic Plasticity in the Hippocampus. Int J Mol Sci 2024; 25:1543. [PMID: 38338822 PMCID: PMC10855348 DOI: 10.3390/ijms25031543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The hippocampal formation, particularly the CA2 subregion, is critical for social memory formation and memory processing, relying on synaptic plasticity-a fundamental mechanism by which synapses strengthen. Given the role of the ubiquitin-proteasome system (UPS) in various nervous system processes, including learning and memory, we were particularly interested in exploring the involvement of RING-type ubiquitin E3 ligases, such as UHRF2 (NIRF), in social behavior and synaptic plasticity. Our results revealed altered social behavior in mice with systemic Uhrf2 knockout, including changes in nest building, tube dominance, and the three-chamber social novelty test. In Uhrf2 knockout mice, the entorhinal cortex-CA2 circuit showed significant reductions in synaptic plasticity during paired-pulse facilitation and long-term potentiation, while the inability to evoke synaptic plasticity in the Schaffer-collateral CA2 synapses remained unaffected. These changes in synaptic plasticity correlated with significant changes in gene expression including genes related to vesicle trafficking and transcriptional regulation. The effects of Uhrf2 knockout on synaptic plasticity and the observed gene expression changes highlight UHRF2 as a regulator of learning and memory processes at both the cellular and systemic levels. Targeting E3 ubiquitin ligases, such as UHRF2, may hold therapeutic potential for memory-related disorders, warranting further investigation.
Collapse
Affiliation(s)
- Yinghan Zhuang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Chuhan Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Fang Zhao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yan Yan
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Hongjie Pan
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Jianmin Zhan
- National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, China
| | - Thomas Behnisch
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|