1
|
Ali A, Younas K, Khatoon A, Murtaza B, Ji Z, Akbar K, Tanveer Q, Bahadur SUK, Su Z. Immune watchdogs: Tissue-resident lymphocytes as key players in cancer defense. Crit Rev Oncol Hematol 2025; 208:104644. [PMID: 39900319 DOI: 10.1016/j.critrevonc.2025.104644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025] Open
Abstract
Tissue-resident lymphocytes play a crucial role in immune surveillance against cancer, yet their complex interactions and regulatory pathways remain underexplored, highlighting the need for a deeper understanding to enhance cancer immunotherapy strategies. Lymphocytes across the range of innate-adaptive responses can establish long-lasting presence in tissues, exerting a vital function in the local immune response against diverse antigens. These tissue-resident lymphocytes identify antigens and alarmins secreted by microbial infections and non-infectious stresses at barrier locations by closely interacting with epithelial and endothelial cells. Then they initiate effector responses to restore tissue homeostasis. Significantly, this immune defense system has been demonstrated to monitor the processes of epithelial cell transformation, carcinoma advancement, and cancer metastasis at remote locations, so establishing it as an essential element of cancer immunological surveillance. This review aims to elucidate the roles of diverse tissue-resident lymphocyte populations in shaping cancer immune responses and to investigate their synergistic effector mechanisms for advancing cancer immunotherapy.
Collapse
Affiliation(s)
- Ashiq Ali
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China.
| | - Khadija Younas
- Department of Theriogenology, University of Agriculture, Faisalabad, Pakistan
| | - Aisha Khatoon
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Bilal Murtaza
- Dalian University of Science and Technology, Dalian, China
| | - Ziyi Ji
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Kaynaat Akbar
- Department of Zoology, Wildlife and Fisheries, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Qaisar Tanveer
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, EH25 9RG, UK
| | - Sami Ullah Khan Bahadur
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Colins, CO 80523, USA
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China.
| |
Collapse
|
2
|
Mathews P, Wang X, Wu J, Jabbar S, Burcher K, Rein L, Kang Y. β-Arrestin 2 as a Prognostic Indicator and Immunomodulatory Factor in Multiple Myeloma. Cells 2025; 14:496. [PMID: 40214450 PMCID: PMC11987970 DOI: 10.3390/cells14070496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
β-arrestin 2 (ARRB2) is involved in the desensitization and trafficking of G protein-coupled receptors (GPCRs) and plays a critical role in cell proliferation, apoptosis, chemotaxis, and immune response modulation. The role of ARRB2 in the pathogenesis of multiple myeloma (MM) has not been elucidated. This study addressed this question by evaluating the expression of ARRB2 in bone marrow (BM) samples from newly diagnosed MM patients and deriving correlations with key clinical outcomes. In light of recent trends towards the use of immune checkpoint inhibitors across malignancies, the effect of ARRB2 in the regulation of the PD-1/PD-L1 axis was also investigated. The expression of ARRB2 was significantly higher in MM patients resistant to proteosome inhibitor (bortezomib) treatment compared to those who responded. Higher ARRB2 expression in the BM of newly diagnosed MM patients was associated with inferior progression-free survival and overall survival. PD-1 expression was downregulated in CD3 T cells isolated from ARRB2 knockout (KO) mice. Furthermore, knockdown of ARRB2 with siRNA reduced PD-1 expression in murine CD3 T cells and PD-L1 expression in murine myeloid-derived suppressor cells. These findings suggest an important role of ARRB2 in MM pathogenesis, potentially mediated via modulation of immune checkpoints in the tumor microenvironment. Our study provides new evidence that ARRB2 may have non-canonical functions independent of GPCRs with relevance to the understanding of MM pathobiology as well as immunotherapy and checkpoint inhibitor escape/resistance more broadly.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, Durham, NC 27710, USA; (P.M.); (X.W.); (J.W.); (S.J.); (K.B.); (L.R.)
| |
Collapse
|
3
|
Das G, Ptacek J, Campbell J, Li X, Havlinova B, Noonepalle SK, Villagra A, Barinka C, Novakova Z. Targeting prostate cancer by new bispecific monocyte engager directed to prostate-specific membrane antigen. PLoS One 2025; 20:e0307353. [PMID: 40096254 PMCID: PMC11913275 DOI: 10.1371/journal.pone.0307353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/28/2025] [Indexed: 03/19/2025] Open
Abstract
Prostate cancer (PCa) ranks as the second leading cause of cancer-related deaths among men in the United States. Prostate-specific membrane antigen (PSMA) represents a well-established biomarker of PCa, and its levels correlate positively with the disease progression, culminating at the stage of metastatic castration-resistant prostate cancer. Due to its tissue-specific expression and cell surface localization, PSMA shows superior potential for precise imaging and therapy of PCa. Antibody-based immunotherapy targeting PSMA offers the promise of selectively engaging the host immune system with minimal off-target effects. Here we report on the design, expression, purification, and characterization of a bispecific engager, termed 5D3-CP33, that efficiently recruits macrophages to the vicinity of PSMA-positive cancer cells mediating PCa death. The engager was engineered by fusing the anti-PSMA 5D3 antibody fragment to a cyclic peptide 33 (CP33), selectively binding the Fc gamma receptor I (FcγRI/CD64) on the surface of phagocytes. Functional parts of the 5D3-CP33 engager revealed a nanomolar affinity for PSMA and FcγRI/CD64 with dissociation constants of KD = 3 nM and KD = 140 nM, respectively. At a concentration as low as 0.3 nM, the engager was found to trigger the production of reactive oxygen species by U937 monocytic cells in the presence of PSMA-positive cells. Moreover, flow cytometry analysis demonstrated antibody-dependent cell-mediated phagocytosis of PSMA-positive cancer cells by U937 monocytes when exposed to 0.15 nM 5D3-CP33. Our findings illustrate that 5D3-CP33 effectively and specifically activates monocytes upon PSMA-positive target engagement, resulting in the elimination of tumor cells. The 5D3-CP33 engager can thus serve as a promising lead for developing new immunotherapy tools for the efficient treatment of PCa.
Collapse
Affiliation(s)
- Gargi Das
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jakub Ptacek
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jana Campbell
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Xintang Li
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
| | - Barbora Havlinova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Satish kumar Noonepalle
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
| | - Alejandro Villagra
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
| | - Cyril Barinka
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Zora Novakova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| |
Collapse
|
4
|
Cheng B, Lv J, Xiao Y, Song C, Chen J, Shao C. Small molecule inhibitors targeting PD-L1, CTLA4, VISTA, TIM-3, and LAG3 for cancer immunotherapy (2020-2024). Eur J Med Chem 2025; 283:117141. [PMID: 39653621 DOI: 10.1016/j.ejmech.2024.117141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025]
Abstract
Cancer immunotherapy, leveraging antibodies, excels in targeting efficacy but faces hurdles in tissue penetration, oral delivery, and prolonged half-life, with costly production and risk of adverse immunogenic effects. In contrast, small molecule immuno-oncology agents provide favorable pharmacokinetic properties and benign toxicity profiles. These agents are well-positioned to address the limitations of antibody-based immunotherapies, augment existing treatment modalities, and achieve synergistic effects when combined with antibodies. This review, for the first time, summarizes the recent advances (2020-2024) in small molecule inhibitors targeting PD-1/PD-L1, CTLA4, VISTA, TIM-3, and LAG3, highlighting rational design, benefits, and potential limitations. It also outlines the prospects for small-molecule immunotherapy.
Collapse
Affiliation(s)
- Binbin Cheng
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, China; Hubei Polytechnic University, Huangshi, Hubei 435003, China
| | - Jinke Lv
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan 528000, China
| | - Yao Xiao
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital, Wuchang 430063, China
| | - Changshan Song
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan 528000, China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Chuxiao Shao
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, China.
| |
Collapse
|
5
|
Aden D, Sureka N, Zaheer S, Chaurasia JK, Zaheer S. Metabolic Reprogramming in Cancer: Implications for Immunosuppressive Microenvironment. Immunology 2025; 174:30-72. [PMID: 39462179 DOI: 10.1111/imm.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
Cancer is a complex and heterogeneous disease characterised by uncontrolled cell growth and proliferation. One hallmark of cancer cells is their ability to undergo metabolic reprogramming, which allows them to sustain their rapid growth and survival. This metabolic reprogramming creates an immunosuppressive microenvironment that facilitates tumour progression and evasion of the immune system. In this article, we review the mechanisms underlying metabolic reprogramming in cancer cells and discuss how these metabolic alterations contribute to the establishment of an immunosuppressive microenvironment. We also explore potential therapeutic strategies targeting metabolic vulnerabilities in cancer cells to enhance immune-mediated anti-tumour responses. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02044861, NCT03163667, NCT04265534, NCT02071927, NCT02903914, NCT03314935, NCT03361228, NCT03048500, NCT03311308, NCT03800602, NCT04414540, NCT02771626, NCT03994744, NCT03229278, NCT04899921.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical Science and Research, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
6
|
Goswami A, Goyal S, Khurana P, Singh K, Deb B, Kulkarni A. Small molecule innate immune modulators in cancer therapy. Front Immunol 2024; 15:1395655. [PMID: 39318624 PMCID: PMC11419979 DOI: 10.3389/fimmu.2024.1395655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Immunotherapy has proved to be a breakthrough in cancer treatment. So far, a bulk of the approved/late-stage cancer immunotherapy are antibody-based. Although these antibody-based drugs have demonstrated great promise, a majority of them are limited due to their access to extracellular targets, lack of oral bioavailability, tumor microenvironment penetration, induction of antibody dependent cytotoxicity etc. In recent times, there has been an increased research focus on the development of small molecule immunomodulators since they have the potential to overcome the aforementioned limitations posed by antibodies. Furthermore, while most biologics based therapeutics that are in clinical use are limited to modulating the adaptive immune system, very few clinically approved therapeutic modalities exist that modulate the innate immune system. The innate immune system, which is the body's first line of defense, has the ability to turn cold tumors hot and synergize strongly with existing adaptive immune modulators. In preclinical studies, small molecule innate immune modulators have demonstrated synergistic efficacy as combination modalities with current standard-of-care immune checkpoint antibodies. In this review, we highlight the recent advances made by small molecule innate immunomodulators in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Barnali Deb
- Aten Porus Lifesciences Pvt. Ltd., Bengaluru, India
| | - Aditya Kulkarni
- Aten Porus Lifesciences Pvt. Ltd., Bengaluru, India
- Avammune Therapeutics, Philadelphia, PA, United States
| |
Collapse
|
7
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
8
|
Prasad S, Singh S, Menge S, Mohapatra I, Kim S, Helland L, Singh G, Singh A. Gut redox and microbiome: charting the roadmap to T-cell regulation. Front Immunol 2024; 15:1387903. [PMID: 39234241 PMCID: PMC11371728 DOI: 10.3389/fimmu.2024.1387903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
The gastrointestinal (GI) tract redox environment, influenced by commensal microbiota and bacterial-derived metabolites, is crucial in shaping T-cell responses. Specifically, metabolites from gut microbiota (GM) exhibit robust anti-inflammatory effects, fostering the differentiation and regulation of CD8+ tissue-resident memory (TRM) cells, mucosal-associated invariant T (MAIT) cells, and stabilizing gut-resident Treg cells. Nitric oxide (NO), a pivotal redox mediator, emerges as a central regulator of T-cell functions and gut inflammation. NO impacts the composition of the gut microbiome, driving the differentiation of pro-inflammatory Th17 cells and exacerbating intestinal inflammation, and supports Treg expansion, showcasing its dual role in immune homeostasis. This review delves into the complex interplay between GI redox balance and GM metabolites, elucidating their profound impact on T-cell regulation. Additionally, it comprehensively emphasizes the critical role of GI redox, particularly reactive oxygen species (ROS) and NO, in shaping T-cell phenotype and functions. These insights offer valuable perspectives on disease mechanisms and potential therapeutic strategies for conditions associated with oxidative stress. Understanding the complex cross-talk between GI redox, GM metabolites, and T-cell responses provides valuable insights into potential therapeutic avenues for immune-mediated diseases, underscoring the significance of maintaining GI redox balance for optimal immune health.
Collapse
Affiliation(s)
- Sujata Prasad
- Translational Division, MLM Labs, LLC, Oakdale, MN, United States
| | - Shilpi Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Samuel Menge
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Iteeshree Mohapatra
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States
| | - Stefan Kim
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Logan Helland
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Gatikrushna Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Amar Singh
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
9
|
Singh S, Barik D, Lawrie K, Mohapatra I, Prasad S, Naqvi AR, Singh A, Singh G. Unveiling Novel Avenues in mTOR-Targeted Therapeutics: Advancements in Glioblastoma Treatment. Int J Mol Sci 2023; 24:14960. [PMID: 37834408 PMCID: PMC10573615 DOI: 10.3390/ijms241914960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
The mTOR signaling pathway plays a pivotal and intricate role in the pathogenesis of glioblastoma, driving tumorigenesis and proliferation. Mutations or deletions in the PTEN gene constitutively activate the mTOR pathway by expressing growth factors EGF and PDGF, which activate their respective receptor pathways (e.g., EGFR and PDGFR). The convergence of signaling pathways, such as the PI3K-AKT pathway, intensifies the effect of mTOR activity. The inhibition of mTOR has the potential to disrupt diverse oncogenic processes and improve patient outcomes. However, the complexity of the mTOR signaling, off-target effects, cytotoxicity, suboptimal pharmacokinetics, and drug resistance of the mTOR inhibitors pose ongoing challenges in effectively targeting glioblastoma. Identifying innovative treatment strategies to address these challenges is vital for advancing the field of glioblastoma therapeutics. This review discusses the potential targets of mTOR signaling and the strategies of target-specific mTOR inhibitor development, optimized drug delivery system, and the implementation of personalized treatment approaches to mitigate the complications of mTOR inhibitors. The exploration of precise mTOR-targeted therapies ultimately offers elevated therapeutic outcomes and the development of more effective strategies to combat the deadliest form of adult brain cancer and transform the landscape of glioblastoma therapy.
Collapse
Affiliation(s)
- Shilpi Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Debashis Barik
- Center for Computational Natural Science and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Karl Lawrie
- College of Saint Benedict, Saint John’s University, Collegeville, MN 56321, USA
| | - Iteeshree Mohapatra
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Sujata Prasad
- MLM Medical Laboratories, LLC, Oakdale, MN 55128, USA
| | - Afsar R. Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois, Chicago, IL 60612, USA
| | - Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gatikrushna Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|