1
|
Wheatley E, Melnychenko H, Silvi M. Iterative One-Carbon Homologation of Unmodified Carboxylic Acids. J Am Chem Soc 2024; 146:34285-34291. [PMID: 39656028 DOI: 10.1021/jacs.4c13630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The one-carbon homologation of carboxylic acids is a valuable route to construct families of homologues, which play fundamental roles in chemistry and biology. However, known procedures are based on multistep sequences, use harsh conditions or are limited in scope. Thus, almost a century after the discovery of the original Arndt-Eistert homologation sequence, a general method to directly convert carboxylic acids into their corresponding homologues remains elusive. Exploiting the photoredox reactivity of nitroethylene, we disclose a practical visible-light-induced homologation of unmodified carboxylic acids. Iterations of the procedure reveal an exceptionally tunable strategy for the construction of inert carbon spacers, opening new opportunities in synthesis.
Collapse
Affiliation(s)
- Emilie Wheatley
- The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Heorhii Melnychenko
- The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Mattia Silvi
- The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
2
|
Ma J, Zhao J, Wu Z, Tan J, Xu M, Ye W, Zhong M, Xiong Y, Pan G, Zhou H, Zhou S, Hong X. Dehydroabietylamine exerts antitumor effects by affecting nucleotide metabolism in gastric cancer. Carcinogenesis 2024; 45:759-772. [PMID: 38869064 PMCID: PMC11464700 DOI: 10.1093/carcin/bgae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/28/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024] Open
Abstract
Nucleotide metabolism is the ultimate and most critical link in the self-replication process of tumors, including gastric cancer (GC). However, in clinical treatment, classic antitumor drugs such as 5-fluorouracil (5-FU) are mostly metabolic analogs of purines or pyrimidines, which lack specificity for tumor cells and therefore have significant side effects. It is unclear whether there are other drugs that can target nucleotide metabolism, except for nucleic acid analogs. Here, we found that a natural compound, dehydroabietylamine (DHAA), significantly reduced the viability and proliferation of GC cells and organoids. DHAA disrupts the purine and pyrimidine metabolism of GC cells, causing DNA damage and further inducing apoptosis. DHAA treatment decreased transcription and protein levels of key enzymes involved in the nucleotide metabolism pathway, with significant reductions in the expression of pyrimidine metabolism key enzymes CAD, DHODH, and purine metabolism key enzymes PAICS. We also found that DHAA directly binds to and reduces the expression of Forkhead box K2 (FOXK2), a common transcription factor for these metabolic enzymes. Ultimately, DHAA was shown to delay tumorigenesis in K19-Wnt1/C2mE transgenic mice model and reduce levels of CAD, DHODH, and PAICS in vivo. We demonstrate that DHAA exerts an anticancer effect on GC by targeting transcription factor FOXK2, reducing transcription of key genes for nucleotide metabolism and impairing nucleotide biosynthesis, thus DHAA is a promising candidate for GC therapy.
Collapse
Affiliation(s)
- Jingsong Ma
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361000, China
| | - Jiabao Zhao
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361000, China
| | - Zhengxin Wu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Jinshui Tan
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361000, China
| | - Meijuan Xu
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361000, China
| | - Wenjie Ye
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361000, China
| | - Mengya Zhong
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Yubo Xiong
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Guangchao Pan
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361000, China
| | - Huiwen Zhou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361000, China
| | - Shengyi Zhou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361000, China
| | - Xuehui Hong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361000, China
| |
Collapse
|
3
|
Heise NV, Meyer SJ, Csuk R, Mueller T. Dehydroabietylamine-substituted trifluorobenzene sulfonamide rhodamine B hybrids as anticancer agents overcoming drug resistance. Eur J Med Chem 2024; 276:116667. [PMID: 38996651 DOI: 10.1016/j.ejmech.2024.116667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Attachment of a conjugate assembled from a novel fluorinated carbonic anhydrase inhibitor and rhodamine B onto dehydroabietylamine (DHA) or cyclododecylamine led to first-in-class conjugates of good cytotoxicity; thereby IC50 values (from SRB assays; employed tumor cell lines A2780, A2780Cis, A549, HT29, MCF7, and non-malignant human fibroblasts CCD18Co) between 0.2 and 0.7 μM were found. Both conjugates showed similar cytotoxic activity but the dehydroabietylamine derived conjugate outperformed its cyclododecyl analog in terms of tumor cell/non-tumor cell selectivity. Both conjugates accumulate intracellular, and the DHA conjugate was able to overcome drug resistance which is effective independent of the expression status of carbonic anhydrase IX.
Collapse
Affiliation(s)
- Niels V Heise
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120, Halle (Saale), Germany
| | - Sven J Meyer
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120, Halle (Saale), Germany
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120, Halle (Saale), Germany.
| | - Thomas Mueller
- University Clinic for Internal Medicine IV, Hematology/Oncology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, D-06120, Halle (Saale), Germany
| |
Collapse
|
4
|
Mohapatra B, Pakala SB. Emerging roles of the chromatin remodeler MORC2 in cancer metabolism. Med Oncol 2024; 41:221. [PMID: 39117768 DOI: 10.1007/s12032-024-02464-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Cancer is characterized by metabolic reprogramming in cancer cells, which is crucial for tumorigenesis. The highly deregulated chromatin remodeler MORC2 contributes to cell proliferation, invasion, migration, DNA repair, and chemoresistance. MORC2 also plays a key role in metabolic reprogramming, including lipogenesis, glucose, and glutamine metabolism. A recent study showed that MORC2-regulated glucose metabolism affects the expression of E-cadherin, a crucial protein in the epithelial-to-mesenchymal transition. This review discusses recent developments in MORC2 regulated cancer cell metabolism and its role in cancer progression.
Collapse
Affiliation(s)
- Bibhukalyan Mohapatra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India
| | - Suresh B Pakala
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India.
| |
Collapse
|
5
|
Park W, Wei S, Xie CL, Han JH, Kim BS, Kim B, Jin JS, Yang ES, Cho MK, Ryu D, Yang HX, Bae SJ, Ha KT. Targeting pyruvate dehydrogenase kinase 1 overcomes EGFR C797S mutation-driven osimertinib resistance in non-small cell lung cancer. Exp Mol Med 2024; 56:1137-1149. [PMID: 38689087 PMCID: PMC11148081 DOI: 10.1038/s12276-024-01221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 05/02/2024] Open
Abstract
Osimertinib, a selective third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), effectively targets the EGFR T790M mutant in non-small cell lung cancer (NSCLC). However, the newly identified EGFR C797S mutation confers resistance to osimertinib. In this study, we explored the role of pyruvate dehydrogenase kinase 1 (PDK1) in osimertinib resistance. Patients exhibiting osimertinib resistance initially displayed elevated PDK1 expression. Osimertinib-resistant cell lines with the EGFR C797S mutation were established using A549, NCI-H292, PC-9, and NCI-H1975 NSCLC cells for both in vitro and in vivo investigations. These EGFR C797S mutant cells exhibited heightened phosphorylation of EGFR, leading to the activation of downstream oncogenic pathways. The EGFR C797S mutation appeared to increase PDK1-driven glycolysis through the EGFR/AKT/HIF-1α axis. Combining osimertinib with the PDK1 inhibitor leelamine helped successfully overcome osimertinib resistance in allograft models. CRISPR-mediated PDK1 knockout effectively inhibited tumor formation in xenograft models. Our study established a clear link between the EGFR C797S mutation and elevated PDK1 expression, opening new avenues for the discovery of targeted therapies and improving our understanding of the roles of EGFR mutations in cancer progression.
Collapse
Affiliation(s)
- Wonyoung Park
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Shibo Wei
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Chu-Long Xie
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jung Ho Han
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, 41062, Republic of Korea
| | - Bo-Sung Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Bosung Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Jung-Sook Jin
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Eun-Sun Yang
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Min Kyoung Cho
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hao-Xian Yang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan, 49267, Republic of Korea.
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
| |
Collapse
|
6
|
Chauhan N, Patro BS. Emerging roles of lysosome homeostasis (repair, lysophagy and biogenesis) in cancer progression and therapy. Cancer Lett 2024; 584:216599. [PMID: 38135207 DOI: 10.1016/j.canlet.2023.216599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
In the era of personalized therapy, precise targeting of subcellular organelles holds great promise for cancer modality. Taking into consideration that lysosome represents the intersection site in numerous endosomal trafficking pathways and their modulation in cancer growth, progression, and resistance against cancer therapies, the lysosome is proposed as an attractive therapeutic target for cancer treatment. Based on the recent advances, the current review provides a comprehensive understanding of molecular mechanisms of lysosome homeostasis under 3R responses: Repair, Removal (lysophagy) and Regeneration of lysosomes. These arms of 3R responses have distinct role in lysosome homeostasis although their interdependency along with switching between the pathways still remain elusive. Recent advances underpinning the crucial role of (1) ESCRT complex dependent/independent repair of lysosome, (2) various Galectins-based sensing and ubiquitination in lysophagy and (3) TFEB/TFE proteins in lysosome regeneration/biogenesis of lysosome are outlined. Later, we also emphasised how these recent advancements may aid in development of phytochemicals and pharmacological agents for targeting lysosomes for efficient cancer therapy. Some of these lysosome targeting agents, which are now at various stages of clinical trials and patents, are also highlighted in this review.
Collapse
Affiliation(s)
- Nitish Chauhan
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, 400094, India
| | - Birija Sankar Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, 400094, India.
| |
Collapse
|
7
|
Han Y, Mao L, Zhang QW, Tian Y. Sub-100 ms Level Ultrafast Detection and Near-Infrared Ratiometric Fluorescence Imaging of Norepinephrine in Live Neurons and Brains. J Am Chem Soc 2023; 145:23832-23841. [PMID: 37850961 DOI: 10.1021/jacs.3c09239] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Norepinephrine (NE) is a key neurotransmitter in the central and sympathetic nervous systems, whose content fluctuates dynamically and rapidly in various brain regions during different physiological and pathophysiological processes. However, it remains a great challenge to directly visualize and precisely quantify the transient NE dynamics in living systems with high accuracy, specificity, sensitivity, and, in particular, high temporal resolution. Herein, we developed a series of small-molecular probes that can specifically detect NE through a sequential nucleophilic substitution-cyclization reaction, accompanied by a ratiometric near-infrared fluorescence response, within an impressively short time down to 60 ms, which is 3 orders of magnitude faster than that of present small-molecular probes. A unique water-promoted intermolecular proton transfer mechanism is disclosed, which dramatically boosted the recognition kinetics by ∼680 times. Benefiting from these excellent features, we quantitatively imaged the transient endogenous NE dynamics under external stimuli at the single living neuron level and further revealed the close correlations between NE fluctuations and Parkinson's disease pathology at the level of acute brain slices and live mouse brains in vivo.
Collapse
Affiliation(s)
- Yujie Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| | - Leiwen Mao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| | - Qi-Wei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| |
Collapse
|
8
|
Sin ZW, Mohan CD, Chinnathambi A, Govindasamy C, Rangappa S, Rangappa KS, Jung YY, Ahn KS. Leelamine Exerts Antineoplastic Effects in Association with Modulating Mitogen‑Activated Protein Kinase Signaling Cascade. Nutr Cancer 2022; 74:3375-3387. [PMID: 35579498 DOI: 10.1080/01635581.2022.2059092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitogen‑activated protein kinase (MAPK) pathway is a prominent signaling cascade that modulates cell proliferation, apoptosis, stress response, drug resistance, immune response, and cell motility. Activation of MAPK by various small molecules/natural compounds has been demonstrated to induce apoptosis in cancer cells. Herein, the effect of leelamine (LEE, a triterpene derived from bark of pine trees) on the activation of MAPK in hepatocellular carcinoma (HCC) and breast cancer (BC) cells was investigated. LEE induced potent cytotoxicity of HCC (HepG2 and HCCLM3) and BC (MDA-MB-231 and MCF7) cells over normal counterparts (MCF10A). LEE significantly enhanced the phosphorylation of p38 and JNK MAPKs in a dose-dependent fashion and it did not affect the phosphorylation of ERK in HCC and BC cells. The apoptosis-driving effect of LEE was further demonstrated by cleavage of procaspase-3/Bid and suppression of prosurvival proteins (Bcl-xL and XIAP). Furthermore, LEE also reduced the SDF1-induced-migration and -invasion of HCC and BC cells. Taken together, the data demonstrated that LEE promotes apoptosis and induces an anti-motility effect by activating p38 and JNK MAPKs in HCC and BC cells.
Collapse
Affiliation(s)
- Zi Wayne Sin
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri University, BG Nagara, India
| | | | - Young Yun Jung
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Leelamine Modulates STAT5 Pathway Causing Both Autophagy and Apoptosis in Chronic Myelogenous Leukemia Cells. BIOLOGY 2022; 11:biology11030366. [PMID: 35336740 PMCID: PMC8945775 DOI: 10.3390/biology11030366] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 01/07/2023]
Abstract
Simple Summary Autophagy is a cellular mechanism that is essential for removing misfolded proteins and damaged organelles. Moreover, the aberrant activation of signal transducer and activator of transcription 5 (STAT5), which can regulate cellular survival and homeostasis, has been often observed in different malignancies. In this study, we demonstrate that leelamine inhibits the STAT5 phosphorylation while inducing autophagy as well as apoptosis in chronic myeloid leukemia cells. Leelamine induces autophagy by stimulating the expression of Atg7, beclin-1, and the production of autophagosomes, which leads to substantial inhibition of STAT5 activation. Abstract Leelamine (LEE) has recently attracted significant attention for its growth inhibitory effects against melanoma, breast cancer, and prostate cancer cells; however, its impact on hematological malignancies remains unclear. Here, we first investigate the cytotoxic effects of LEE on several human chronic myeloid leukemia (CML) cells. We noted that LEE stimulated both apoptosis and autophagy in CML cells. In addition, the constitutive activation of signal transducer and activator of transcription 5 (STAT5) was suppressed substantially upon LEE treatment. Moreover, STAT5 knockdown with small interfering RNA (siRNA) increased LEE-induced apoptosis as well as autophagy and affected the levels of various oncogenic proteins. Thus, the targeted mitigation of STAT5 activation by LEE can contribute to its diverse anticancer effects by enhancing two distinct cell death pathways.
Collapse
|
10
|
Halaby R. Natural Products Induce Lysosomal Membrane Permeabilization as an Anticancer Strategy. MEDICINES 2021; 8:medicines8110069. [PMID: 34822366 PMCID: PMC8624533 DOI: 10.3390/medicines8110069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022]
Abstract
Cancer is a global health and economic issue. The majority of anticancer therapies become ineffective due to frequent genomic turnover and chemoresistance. Furthermore, chemotherapy and radiation are non-specific, killing all rapidly dividing cells including healthy cells. In this review, we examine the ability of some natural products to induce lysosomal-mediated cell death in neoplastic cells as a way to kill them more specifically than conventional therapies. This list is by no means exhaustive. We postulate mechanisms to explain lysosomal membrane permeabilization and its role in triggering cell death in cancer cells.
Collapse
Affiliation(s)
- Reginald Halaby
- Department of Biology, Montclair State University, Montclair, NJ 07043, USA
| |
Collapse
|
11
|
Singh KB, Hahm ER, Singh SV. Leelamine suppresses cMyc expression in prostate cancer cells in vitro and inhibits prostate carcinogenesis in vivo. JOURNAL OF CANCER METASTASIS AND TREATMENT 2021; 7. [PMID: 34660908 DOI: 10.20517/2394-4722.2021.08] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aim Leelamine (LLM) inhibits growth of human prostate cancer cells but the underlying mechanism is not fully understood. The present study was undertaken to determine the effect of LLM on cMyc, which is overexpressed in a subset of human prostate cancers. Methods The effect of LLM on cMyc expression and activity was determined by western blotting/confocal microscopy and luciferase reporter assay, respectively. A transgenic mouse model of prostate cancer (Hi-Myc) was used to determine chemopreventive efficacy of LLM. Results Exposure of androgen sensitive (LNCaP) and castration-resistant (22Rv1) human prostate cancer cells to LLM resulted in downregulation of protein and mRNA levels of cMyc. Overexpression of cMyc partially attenuated LLM-mediated inhibition of colony formation, cell viability, and cell migration in 22Rv1 and/or PC-3 cells. LLM treatment decreased protein levels of cMyc targets (e.g., lactate dehydrogenase), however, overexpression of cMyc did not attenuate these effects. A trend for a decrease in expression level of cMyc protein was discernible in 22Rv1 xenografts from LLM-treated mice compared with control mice. The LLM treatment (10 mg/kg body weight, 5 times/week) was well-tolerated by Hi-Myc transgenic mice. The incidence of high-grade prostatic intraepithelial neoplasia, adenocarcinoma in situ, and microinvasion was lower in LLM-treated Hi-Myc mice but the difference was not statistically significant. Conclusion The present study reveals that LLM inhibits cMyc expression in human prostate cancer cells in vitro but concentrations higher than 10 mg/kg may be required to achieve chemoprevention of prostate cancer.
Collapse
Affiliation(s)
- Krishna B Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Learning from Yeast about Mitochondrial Carriers. Microorganisms 2021; 9:microorganisms9102044. [PMID: 34683364 PMCID: PMC8539049 DOI: 10.3390/microorganisms9102044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are organelles that play an important role in both energetic and synthetic metabolism of eukaryotic cells. The flow of metabolites between the cytosol and mitochondrial matrix is controlled by a set of highly selective carrier proteins localised in the inner mitochondrial membrane. As defects in the transport of these molecules may affect cell metabolism, mutations in genes encoding for mitochondrial carriers are involved in numerous human diseases. Yeast Saccharomyces cerevisiae is a traditional model organism with unprecedented impact on our understanding of many fundamental processes in eukaryotic cells. As such, the yeast is also exceptionally well suited for investigation of mitochondrial carriers. This article reviews the advantages of using yeast to study mitochondrial carriers with the focus on addressing the involvement of these carriers in human diseases.
Collapse
|
13
|
Jung YY, Um JY, Nasif O, Alharbi SA, Sethi G, Ahn KS. Blockage of the JAK/STAT3 signaling pathway in multiple myeloma by leelamine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 87:153574. [PMID: 34006448 DOI: 10.1016/j.phymed.2021.153574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Leelamine (LEE) is a lipophilic diterpene amine phytochemical, which can be naturally extracted from pine's bark trees. It has been extensively studied recently for its promising chemopreventive and anti-cancer effects against various cancers such as that of prostate and breast. HYPOTHESIS We examined the potential impact of LEE in affecting the activation of signal transducer and activator of transcription 3 (STAT3) and promoting apoptosis in human multiple myeloma (MM) cells. METHODS We evaluated the effect of LEE on STAT3 signaling pathway in MM cells by using Western blot analysis and reverse transcription polymerase chain reaction (RT-PCR). Thereafter, apoptosis was evaluated using cell cycle analysis and Annexin V assay. RESULTS We noted that LEE could attenuate the phosphorylation of STAT3 and other up-stream signaling molecules such as JAK1, JAK2, and Src activation in U266 and MM.1S cells. It also diminished STAT3 translocation into the nucleus and enhanced the expression of protein-tyrosine phosphatase epsilon (PTPε). Additionally, LEE caused cell cycle arrest and synergistically augmented the apoptotic actions of bortezomib against MM cells. CONCLUSIONS Our data indicates that LEE could block STAT3 signaling cascade linked to tumorigenesis and can be used in combination with approved anti-cancer agents in attenuating MM growth and survival.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Omaima Nasif
- Department of Physiology, College of Medicine, King Saud University, [Medical City], King Khalid University Hospital, PO Box-2925, Riyadh -11461, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh -11451, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
14
|
Ghaffari T, Hong JH, Asnaashari S, Farajnia S, Delazar A, Hamishehkar H, Kim KH. Natural Phytochemicals Derived from Gymnosperms in the Prevention and Treatment of Cancers. Int J Mol Sci 2021; 22:6636. [PMID: 34205739 PMCID: PMC8234227 DOI: 10.3390/ijms22126636] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence of various types of cancer is increasing globally. To reduce the critical side effects of cancer chemotherapy, naturally derived compounds have been considered for cancer treatment. Gymnosperms are a group of plants found worldwide that have traditionally been used for therapeutic applications. Paclitaxel is a commercially available anticancer drug derived from gymnosperms. Other natural compounds with anticancer activities, such as pinostrobin and pinocembrin, are extracted from pine heartwood, and pycnogenol and enzogenol from pine bark. Gymnosperms have great potential for further study for the discovery of new anticancer compounds. This review aims to provide a rational understanding and the latest developments in potential anticancer compounds derived from gymnosperms.
Collapse
Affiliation(s)
- Tayyebeh Ghaffari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran; (T.G.); (S.F.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 15731, Iran
| | - Joo-Hyun Hong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Solmaz Asnaashari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran;
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran; (T.G.); (S.F.)
| | - Abbas Delazar
- Research Center for Evidence based Medicine, Tabriz University of Medical Sciences, Tabriz 15731, Iran;
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran; (T.G.); (S.F.)
| | - Ki-Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| |
Collapse
|
15
|
Shen T, Lambert TH. C-H Amination via Electrophotocatalytic Ritter-type Reaction. J Am Chem Soc 2021; 143:8597-8602. [PMID: 34076424 DOI: 10.1021/jacs.1c03718] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A method for C-H bond amination via an electrophotocatalytic Ritter-type reaction is described. The reaction is catalyzed by a trisaminocyclopropenium (TAC) ion in an electrochemical cell under irradiation. These conditions convert benzylic C-H bonds to acetamides without the use of a stoichiometric chemical oxidant. A range of functionality is shown to be compatible with this transformation, and several complex substrates are demonstrated.
Collapse
Affiliation(s)
- Tao Shen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
16
|
Ahmed SA, Parama D, Daimari E, Girisa S, Banik K, Harsha C, Dutta U, Kunnumakkara AB. Rationalizing the therapeutic potential of apigenin against cancer. Life Sci 2020; 267:118814. [PMID: 33333052 DOI: 10.1016/j.lfs.2020.118814] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite the remarkable advances made in the diagnosis and treatment of cancer during the past couple of decades, it remains the second largest cause of mortality in the world, killing approximately 9.6 million people annually. The major challenges in the treatment of the advanced stage of this disease are the development of chemoresistance, severe adverse effects of the drugs, and high treatment cost. Therefore, the development of drugs that are safe, efficacious, and cost-effective remains a 'Holy Grail' in cancer research. However, the research over the past four decades shed light on the cancer-preventive and therapeutic potential of natural products and their underlying mechanism of action. Apigenin is one such compound, which is known to be safe and has significant potential in the prevention and therapy of this disease. AIM To assess the literature available on the potential of apigenin and its analogs in modulating the key molecular targets leading to the prevention and treatment of different types of cancer. METHOD A comprehensive literature search has been carried out on PubMed for obtaining information related to the sources and analogs, chemistry and biosynthesis, physicochemical properties, biological activities, bioavailability and toxicity of apigenin. KEY FINDINGS The literature search resulted in many in vitro, in vivo and a few cohort studies that evidenced the effectiveness of apigenin and its analogs in modulating important molecular targets and signaling pathways such as PI3K/AKT/mTOR, JAK/STAT, NF-κB, MAPK/ERK, Wnt/β-catenin, etc., which play a crucial role in the development and progression of cancer. In addition, apigenin was also shown to inhibit chemoresistance and radioresistance and make cancer cells sensitive to these agents. Reports have further revealed the safety of the compound and the adaptation of nanotechnological approaches for improving its bioavailability. SIGNIFICANCE Hence, the present review recapitulates the properties of apigenin and its pharmacological activities against different types of cancer, which warrant further investigation in clinical settings.
Collapse
Affiliation(s)
- Semim Akhtar Ahmed
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Enush Daimari
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
17
|
Montesdeoca N, López M, Ariza X, Herrero L, Makowski K. Inhibitors of lipogenic enzymes as a potential therapy against cancer. FASEB J 2020; 34:11355-11381. [PMID: 32761847 DOI: 10.1096/fj.202000705r] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/10/2020] [Accepted: 07/18/2020] [Indexed: 01/05/2023]
Abstract
Cancer cells rely on several metabolic pathways such as lipid metabolism to meet the increase in energy demand, cell division, and growth and successfully adapt to challenging environments. Fatty acid synthesis is therefore commonly enhanced in many cancer cell lines. Thus, relevant efforts are being made by the scientific community to inhibit the enzymes involved in lipid metabolism to disrupt cancer cell proliferation. We review the rapidly expanding body of inhibitors that target lipid metabolism, their side effects, and current status in clinical trials as potential therapeutic approaches against cancer. We focus on their molecular, biochemical and structural properties, selectivity and effectiveness and discuss their potential role as antitumor drugs.
Collapse
Affiliation(s)
- Nicolás Montesdeoca
- School of Chemical Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Marta López
- School of Chemical Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Xavier Ariza
- Department of Inorganic and Organic Chemistry, School of Chemistry, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Herrero
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Kamil Makowski
- School of Chemical Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| |
Collapse
|