1
|
Olejnik P, Roszkowska Z, Adamus S, Kasarełło K. Multiple sclerosis: a narrative overview of current pharmacotherapies and emerging treatment prospects. Pharmacol Rep 2024; 76:926-943. [PMID: 39177889 PMCID: PMC11387431 DOI: 10.1007/s43440-024-00642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease characterized by pathological processes of demyelination, subsequent axonal loss, and neurodegeneration within the central nervous system. Despite the availability of numerous disease-modifying therapies that effectively manage this condition, there is an emerging need to identify novel therapeutic targets, particularly for progressive forms of MS. Based on contemporary insights into disease pathophysiology, ongoing efforts are directed toward developing innovative treatment modalities. Primarily, monoclonal antibodies have been extensively investigated for their efficacy in influencing specific pathological pathways not yet targeted. Emerging approaches emphasizing cellular mechanisms, such as chimeric antigen receptor T cell therapy targeting immunological cells, are attracting increasing interest. The evolving understanding of microglia and the involvement of ferroptotic mechanisms in MS pathogenesis presents further avenues for targeted therapies. Moreover, innovative treatment strategies extend beyond conventional approaches to encompass interventions that target alterations in microbiota composition and dietary modifications. These adjunctive therapies hold promise as complementary methods for the holistic management of MS. This narrative review aims to summarize current therapies and outline potential treatment methods for individuals with MS.
Collapse
Affiliation(s)
- Piotr Olejnik
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Roszkowska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Sylwia Adamus
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Kaja Kasarełło
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
2
|
Yousef H, Malagurski Tortei B, Castiglione F. Predicting multiple sclerosis disease progression and outcomes with machine learning and MRI-based biomarkers: a review. J Neurol 2024; 271:6543-6572. [PMID: 39266777 PMCID: PMC11447111 DOI: 10.1007/s00415-024-12651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/14/2024]
Abstract
Multiple sclerosis (MS) is a demyelinating neurological disorder with a highly heterogeneous clinical presentation and course of progression. Disease-modifying therapies are the only available treatment, as there is no known cure for the disease. Careful selection of suitable therapies is necessary, as they can be accompanied by serious risks and adverse effects such as infection. Magnetic resonance imaging (MRI) plays a central role in the diagnosis and management of MS, though MRI lesions have displayed only moderate associations with MS clinical outcomes, known as the clinico-radiological paradox. With the advent of machine learning (ML) in healthcare, the predictive power of MRI can be improved by leveraging both traditional and advanced ML algorithms capable of analyzing increasingly complex patterns within neuroimaging data. The purpose of this review was to examine the application of MRI-based ML for prediction of MS disease progression. Studies were divided into five main categories: predicting the conversion of clinically isolated syndrome to MS, cognitive outcome, EDSS-related disability, motor disability and disease activity. The performance of ML models is discussed along with highlighting the influential MRI-derived biomarkers. Overall, MRI-based ML presents a promising avenue for MS prognosis. However, integration of imaging biomarkers with other multimodal patient data shows great potential for advancing personalized healthcare approaches in MS.
Collapse
Affiliation(s)
- Hibba Yousef
- Technology Innovation Institute, Biotechnology Research Center, P.O.Box: 9639, Masdar City, Abu Dhabi, United Arab Emirates.
| | - Brigitta Malagurski Tortei
- Technology Innovation Institute, Biotechnology Research Center, P.O.Box: 9639, Masdar City, Abu Dhabi, United Arab Emirates
| | - Filippo Castiglione
- Technology Innovation Institute, Biotechnology Research Center, P.O.Box: 9639, Masdar City, Abu Dhabi, United Arab Emirates
- Institute for Applied Computing (IAC), National Research Council of Italy, Rome, Italy
| |
Collapse
|
3
|
Pilehvari S, Morgan Y, Peng W. An analytical review on the use of artificial intelligence and machine learning in diagnosis, prediction, and risk factor analysis of multiple sclerosis. Mult Scler Relat Disord 2024; 89:105761. [PMID: 39018642 DOI: 10.1016/j.msard.2024.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
Medical research offers potential for disease prediction, like Multiple Sclerosis (MS). This neurological disorder damages nerve cell sheaths, with treatments focusing on symptom relief. Manual MS detection is time-consuming and error prone. Though MS lesion detection has been studied, limited attention has been paid to clinical analysis and computational risk factor prediction. Artificial intelligence (AI) techniques and Machine Learning (ML) methods offer accurate and effective alternatives to mapping MS progression. However, there are challenges in accessing clinical data and interdisciplinary collaboration. By analyzing 103 papers, we recognize the trends, strengths and weaknesses of AI, ML, and statistical methods applied to MS diagnosis. AI/ML-based approaches are suggested to identify MS risk factors, select significant MS features, and improve the diagnostic accuracy, such as Rule-based Fuzzy Logic (RBFL), Adaptive Fuzzy Inference System (ANFIS), Artificial Neural Network methods (ANN), Support Vector Machine (SVM), and Bayesian Networks (BNs). Meanwhile, applications of the Expanded Disability Status Scale (EDSS) and Magnetic Resonance Imaging (MRI) can enhance MS diagnostic accuracy. By examining established risk factors like obesity, smoking, and education, some research tackled the issue of disease progression. The performance metrics varied across different aspects of MS studies: Diagnosis: Sensitivity ranged from 60 % to 98 %, specificity from 60 % to 98 %, and accuracy from 61 % to 97 %. Prediction: Sensitivity ranged from 76 % to 98 %, specificity from 65 % to 98 %, and accuracy from 62 % to 99 %. Segmentation: Accuracy ranged up to 96.7 %. Classification: Sensitivity ranged from 78 % to 97.34 %, specificity from 65 % to 99.32 %, and accuracy from 71 % to 97.94 %. Furthermore, the literature shows that combining techniques can improve efficiency, exploiting their strengths for better overall performance.
Collapse
Affiliation(s)
- Shima Pilehvari
- University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada
| | - Yasser Morgan
- University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada
| | - Wei Peng
- University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada.
| |
Collapse
|
4
|
Sempik I, Dziadkowiak E, Moreira H, Zimny A, Pokryszko-Dragan A. Primary Progressive Multiple Sclerosis-A Key to Understanding and Managing Disease Progression. Int J Mol Sci 2024; 25:8751. [PMID: 39201438 PMCID: PMC11354232 DOI: 10.3390/ijms25168751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Primary progressive multiple sclerosis (PPMS), the least frequent type of multiple sclerosis (MS), is characterized by a specific course and clinical symptoms, and it is associated with a poor prognosis. It requires extensive differential diagnosis and often a long-term follow-up before its correct recognition. Despite recent progress in research into and treatment for progressive MS, the diagnosis and management of this type of disease still poses a challenge. Considering the modern concept of progression "smoldering" throughout all the stages of disease, a thorough exploration of PPMS may provide a better insight into mechanisms of progression in MS, with potential clinical implications. The goal of this study was to review the current evidence from investigations of PPMS, including its background, clinical characteristics, potential biomarkers and therapeutic opportunities. Processes underlying CNS damage in PPMS are discussed, including chronic immune-mediated inflammation, neurodegeneration, and remyelination failure. A review of potential clinical, biochemical and radiological biomarkers is presented, which is useful in monitoring and predicting the progression of PPMS. Therapeutic options for PPMS are summarized, with approved therapies, ongoing clinical trials and future directions of investigations. The clinical implications of findings from PPMS research would be associated with reliable assessments of disease outcomes, improvements in individualized therapeutic approaches and, hopefully, novel therapeutic targets, relevant for the management of progression.
Collapse
Affiliation(s)
- Izabela Sempik
- Department of Neurology, Regional Hospital in Legnica, Iwaszkiewicza 5, 59-220 Legnica, Poland;
| | - Edyta Dziadkowiak
- Clinical Department of Neurology, University Centre of Neurology and Neurosurgery, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Helena Moreira
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Anna Zimny
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Anna Pokryszko-Dragan
- Clinical Department of Neurology, University Centre of Neurology and Neurosurgery, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| |
Collapse
|
5
|
Chitnis T, Qureshi F, Gehman VM, Becich M, Bove R, Cree BAC, Gomez R, Hauser SL, Henry RG, Katrib A, Lokhande H, Paul A, Caillier SJ, Santaniello A, Sattarnezhad N, Saxena S, Weiner H, Yano H, Baranzini SE. Inflammatory and neurodegenerative serum protein biomarkers increase sensitivity to detect clinical and radiographic disease activity in multiple sclerosis. Nat Commun 2024; 15:4297. [PMID: 38769309 PMCID: PMC11106245 DOI: 10.1038/s41467-024-48602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
The multifaceted nature of multiple sclerosis requires quantitative biomarkers that can provide insights related to diverse physiological pathways. To this end, proteomic analysis of deeply-phenotyped serum samples, biological pathway modeling, and network analysis were performed to elucidate inflammatory and neurodegenerative processes, identifying sensitive biomarkers of multiple sclerosis disease activity. Here, we evaluated the concentrations of > 1400 serum proteins in 630 samples from three multiple sclerosis cohorts for association with clinical and radiographic new disease activity. Twenty proteins were associated with increased clinical and radiographic multiple sclerosis disease activity for inclusion in a custom assay panel. Serum neurofilament light chain showed the strongest univariate correlation with gadolinium lesion activity, clinical relapse status, and annualized relapse rate. Multivariate modeling outperformed univariate for all endpoints. A comprehensive biomarker panel including the twenty proteins identified in this study could serve to characterize disease activity for a patient with multiple sclerosis.
Collapse
Affiliation(s)
| | | | | | | | - Riley Bove
- Department of Neurology. Weill Institute for Neurosciences. University of California San Francisco, San Francisco, CA, USA
| | - Bruce A C Cree
- Department of Neurology. Weill Institute for Neurosciences. University of California San Francisco, San Francisco, CA, USA
| | - Refujia Gomez
- Department of Neurology. Weill Institute for Neurosciences. University of California San Francisco, San Francisco, CA, USA
| | - Stephen L Hauser
- Department of Neurology. Weill Institute for Neurosciences. University of California San Francisco, San Francisco, CA, USA
| | - Roland G Henry
- Department of Neurology. Weill Institute for Neurosciences. University of California San Francisco, San Francisco, CA, USA
| | | | | | - Anu Paul
- Brigham and Women's Hospital, Boston, MA, USA
| | - Stacy J Caillier
- Department of Neurology. Weill Institute for Neurosciences. University of California San Francisco, San Francisco, CA, USA
| | - Adam Santaniello
- Department of Neurology. Weill Institute for Neurosciences. University of California San Francisco, San Francisco, CA, USA
| | | | | | | | - Hajime Yano
- Brigham and Women's Hospital, Boston, MA, USA
| | - Sergio E Baranzini
- Department of Neurology. Weill Institute for Neurosciences. University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Lomer NB, Asalemi KA, Saberi A, Sarlak K. Predictors of multiple sclerosis progression: A systematic review of conventional magnetic resonance imaging studies. PLoS One 2024; 19:e0300415. [PMID: 38626023 PMCID: PMC11020451 DOI: 10.1371/journal.pone.0300415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/26/2024] [Indexed: 04/18/2024] Open
Abstract
INTRODUCTION Multiple Sclerosis (MS) is a chronic neurodegenerative disorder that affects the central nervous system (CNS) and results in progressive clinical disability and cognitive decline. Currently, there are no specific imaging parameters available for the prediction of longitudinal disability in MS patients. Magnetic resonance imaging (MRI) has linked imaging anomalies to clinical and cognitive deficits in MS. In this study, we aimed to evaluate the effectiveness of MRI in predicting disability, clinical progression, and cognitive decline in MS. METHODS In this study, according to PRISMA guidelines, we comprehensively searched the Web of Science, PubMed, and Embase databases to identify pertinent articles that employed conventional MRI in the context of Relapsing-Remitting and progressive forms of MS. Following a rigorous screening process, studies that met the predefined inclusion criteria were selected for data extraction and evaluated for potential sources of bias. RESULTS A total of 3028 records were retrieved from database searching. After a rigorous screening, 53 records met the criteria and were included in this study. Lesions and alterations in CNS structures like white matter, gray matter, corpus callosum, thalamus, and spinal cord, may be used to anticipate disability progression. Several prognostic factors associated with the progression of MS, including presence of cortical lesions, changes in gray matter volume, whole brain atrophy, the corpus callosum index, alterations in thalamic volume, and lesions or alterations in cross-sectional area of the spinal cord. For cognitive impairment in MS patients, reliable predictors include cortical gray matter volume, brain atrophy, lesion characteristics (T2-lesion load, temporal, frontal, and cerebellar lesions), white matter lesion volume, thalamic volume, and corpus callosum density. CONCLUSION This study indicates that MRI can be used to predict the cognitive decline, disability progression, and disease progression in MS patients over time.
Collapse
Affiliation(s)
| | | | - Alia Saberi
- Department of Neurology, Poursina Hospital, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Kasra Sarlak
- Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
7
|
Lace JW, Sanborn V, Galioto R. Standalone Performance Validity Tests May Be Differentially Related to Measures of Working Memory, Processing Speed, and Verbal Memory in Patients With Multiple Sclerosis. Assessment 2024; 31:732-744. [PMID: 37303186 DOI: 10.1177/10731911231178289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cognitive functioning may account for minimal levels (i.e., 5%-14%) of variance of performance validity test (PVT) scores in clinical examinees. The present study extended this research twofold: (a) by determining the variance cognitive functioning explains within three distinct PVTs (b) in a sample of patients with multiple sclerosis (pwMS). Seventy-five pwMS (Mage = 48.50, 70.6% female, 80.9% White) completed the Victoria Symptom Validity Test (VSVT), Word Choice Test (WCT), Dot Counting Test (DCT), and three objective measures of working memory, processing speed, and verbal memory as part of clinical neuropsychological assessment. Regression analyses in credible groups (ns ranged from 54 to 63) indicated that cognitive functioning explained 24% to 38% of the variance in logarithmically transformed PVT variables. Variance from cognitive testing differed across PVTs: verbal memory significantly influenced both VSVT and WCT scores; working memory influenced VSVT and DCT scores; and processing speed influenced DCT scores. The WCT appeared least related to cognitive functioning of the included PVTs. Alternative plausible explanations, including the apparent domain/modality specificity hypothesis of PVTs versus the potential sensitivity of these PVTs to neurocognitive dysfunction in pwMS were discussed. Continued psychometric investigations into factors affecting performance validity, especially in multiple sclerosis, are warranted.
Collapse
Affiliation(s)
- John W Lace
- Cleveland Clinic Foundation, OH, USA
- Prevea Health, Green Bay, WI, USA
| | - Victoria Sanborn
- Kent State University, OH, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Rachel Galioto
- Cleveland Clinic Foundation, Mellen Center for Multiple Sclerosis, OH, USA
| |
Collapse
|
8
|
Hu F, Zhu Y, Tian J, Xu H, Xue Q. Single-Cell Sequencing Combined with Transcriptome Sequencing Constructs a Predictive Model of Key Genes in Multiple Sclerosis and Explores Molecular Mechanisms Related to Cellular Communication. J Inflamm Res 2024; 17:191-210. [PMID: 38226354 PMCID: PMC10788626 DOI: 10.2147/jir.s442684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024] Open
Abstract
Background Multiple sclerosis (MS) causes chronic inflammation and demyelination of the central nervous system and comprises a class of neurodegenerative diseases in which interactions between multiple immune cell types mediate the involvement of MS development. However, the early diagnosis and treatment of MS remain challenging. Methods Gene expression profiles of MS patients were obtained from the Gene Expression Omnibus (GEO) database. Single-cell and intercellular communication analyses were performed to identify candidate gene sets. Predictive models were constructed using LASSO regression. Relationships between genes and immune cells were analyzed by single sample gene set enrichment analysis (ssGSEA). The molecular mechanisms of key genes were explored using gene enrichment analysis. An miRNA network was constructed to search for target miRNAs related to key genes, and related transcription factors were searched by transcriptional regulation analysis. We utilized the GeneCard database to detect the correlations between disease-regulated genes and key genes. We verified the mRNA expression of 4 key genes by reverse transcription-quantitative PCR (RT‒qPCR). Results Monocyte marker genes were selected as candidate gene sets. CD3D, IL2RG, MS4A6A, and NCF2 were found to be the key genes by LASSO regression. We constructed a prediction model with AUC values of 0.7569 and 0.719. The key genes were closely related to immune factors and immune cells. We explored the signaling pathways and molecular mechanisms involving the key genes by gene enrichment analysis. We obtained and visualized the miRNAs associated with the key genes using the miRcode database. We also predicted the transcription factors involved. We used validated key genes in MS patients, several of which were confirmed by RT‒qPCR. Conclusion The prediction model constructed with the CD3D, IL2RG, MS4A6A, and NCF2 genes has good diagnostic efficacy and provides new ideas for the diagnosis and treatment of MS.
Collapse
Affiliation(s)
- Fangzhou Hu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People’s Republic of China
| | - Yunfei Zhu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People’s Republic of China
| | - Jingluan Tian
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People’s Republic of China
| | - Hua Xu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People’s Republic of China
- Department of Neurology, Affiliated Jintan Hospital of Jiangsu University, Changzhou Jintan First People’s Hospital, Changzhou, Jiangsu, 215006, People’s Republic of China
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People’s Republic of China
| |
Collapse
|
9
|
Vališ M, Achiron A, Hartung HP, Mareš J, Tichá V, Štourač P, Halusková S, Angelucci F, Pavelek Z. The Benefits and Risks of Switching from Fingolimod to Siponimod for the Treatment of Relapsing-Remitting and Secondary Progressive Multiple Sclerosis. Drugs R D 2023; 23:331-338. [PMID: 37640862 PMCID: PMC10676342 DOI: 10.1007/s40268-023-00434-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/31/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative disease that affects the central nervous system (CNS). Currently, MS treatment is limited to several Food and Drug Administration (FDA)- and European Medicines Agency (EMA)-approved medications that slow disease progression by immunomodulatory action. Fingolimod and siponimod have similar mechanisms of action, and consequently, their therapeutic effects may be comparable. However, while fingolimod is mainly used for relapsing-remitting MS (RRMS), siponimod, according to EMA label, is recommended for active secondary progressive MS (SPMS). Clinicians and scientists are analysing whether patients can switch from fingolimod to siponimod and identifying the advantages or disadvantages of such a switch from a therapeutic point of view. In this review, we aim to discuss the therapeutic effects of these two drugs and the advantages/disadvantages of switching treatment from fingolimod to siponimod in patients with the most common forms of MS, RRMS and SPMS.
Collapse
Affiliation(s)
- Martin Vališ
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Anat Achiron
- Multiple Sclerosis Center, Sheba Medical Center, Tel-Hashomer, Israel
- Neurology Department, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Hans Peter Hartung
- Department of Neurology, Medical School, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Faculty of Medicine at Palacký University and University Hospital in Olomouc, I. P. Pavlova 6, Olomouc, Czech Republic
- Brain and Mind Center, University of Sydney, Sydney, Australia
| | - Jan Mareš
- Department of Neurology, Faculty of Medicine at Palacký University and University Hospital in Olomouc, I. P. Pavlova 6, Olomouc, Czech Republic
| | - Veronika Tichá
- First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Pavel Štourač
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Simona Halusková
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Francesco Angelucci
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05, Hradec Králové, Czech Republic
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Zbyšek Pavelek
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
10
|
Raghib MF, Bernitsas E. From Animal Models to Clinical Trials: The Potential of Antimicrobials in Multiple Sclerosis Treatment. Biomedicines 2023; 11:3069. [PMID: 38002068 PMCID: PMC10668955 DOI: 10.3390/biomedicines11113069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune, demyelinating disease of the central nervous system (CNS). Microbes, including bacteria and certain viruses, particularly Epstein-Barr virus (EBV), have been linked to the pathogenesis of MS. While there is currently no cure for MS, antibiotics and antivirals have been studied as potential treatment options due to their immunomodulatory ability that results in the regulation of the immune process. The current issue addressed in this systematic review is the effect of antimicrobials, including antibiotics, antivirals, and antiparasitic agents in animals and humans. We performed a comprehensive search of PubMed, Google Scholar, and Scopus for articles on antimicrobials in experimental autoimmune encephalomyelitis animal models of MS, as well as in people with MS (pwMS). In animal models, antibiotics tested included beta-lactams, minocycline, rapamycin, macrolides, and doxycycline. Antivirals included acyclovir, valacyclovir, and ganciclovir. Hydroxychloroquine was the only antiparasitic that was tested. In pwMS, we identified a total of 24 studies, 17 of them relevant to antibiotics, 6 to antivirals, and 1 relevant to antiparasitic hydroxychloroquine. While the effect of antimicrobials in animal models was promising, only minocycline and hydroxychloroquine improved outcome measures in pwMS. No favorable effect of the antivirals in humans has been observed yet. The number and size of clinical trials testing antimicrobials have been limited. Large, multicenter, well-designed studies are needed to further evaluate the effect of antimicrobials in MS.
Collapse
Affiliation(s)
- Muhammad Faraz Raghib
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Evanthia Bernitsas
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Sastry Neuroimaging Laboratory, Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
11
|
Condino F, Crocco MC, Pirritano D, Petrone A, Del Giudice F, Guzzi R. A Linear Predictor Based on FTIR Spectral Biomarkers Improves Disease Diagnosis Classification: An Application to Multiple Sclerosis. J Pers Med 2023; 13:1596. [PMID: 38003911 PMCID: PMC10672539 DOI: 10.3390/jpm13111596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous system that can lead to long-term disability. The diagnosis of MS is not simple and requires many instrumental and clinical tests. Sampling easily collected biofluids using spectroscopic approaches is becoming of increasing interest in the medical field to integrate and improve diagnostic procedures. Here we present a statistical approach where we combine a number of spectral biomarkers derived from the ATR-FTIR spectra of blood plasma samples of healthy control subjects and MS patients, to obtain a linear predictor useful for discriminating between the two groups of individuals. This predictor provides a simple tool in which the contribution of different molecular components is summarized and, as a result, the sensitivity (80%) and specificity (93%) of the identification are significantly improved compared to those obtained with typical classification algorithms. The strategy proposed can be very helpful when applied to the diagnosis of diseases whose presence is reflected in a minimal way in the analyzed biofluids (blood and its derivatives), as it is for MS as well as for other neurological disorders.
Collapse
Affiliation(s)
- Francesca Condino
- Department of Economics, Statistics and Finance ”Giovanni Anania”, University of Calabria, 87036 Rende, Italy;
| | - Maria Caterina Crocco
- STAR Research Infrastructure, University of Calabria, 87036 Rende, Italy;
- Department of Physics, Molecular Biophysics Laboratory, University of Calabria, 87036 Rende, Italy
| | - Domenico Pirritano
- SOC Neurologia, Azienda Ospedaliero-Universitaria Renato Dulbecco, 88100 Catanzaro, Italy;
- UOC Neurologia, Azienda Ospedaliera dell’Annunziata, 87100 Cosenza, Italy; (A.P.); (F.D.G.)
| | - Alfredo Petrone
- UOC Neurologia, Azienda Ospedaliera dell’Annunziata, 87100 Cosenza, Italy; (A.P.); (F.D.G.)
| | - Francesco Del Giudice
- UOC Neurologia, Azienda Ospedaliera dell’Annunziata, 87100 Cosenza, Italy; (A.P.); (F.D.G.)
- SOC Neurologia, Ospedale Jazzolino, Azienda Ospedaliera Provinciale, 89900 Vibo Valentia, Italy
| | - Rita Guzzi
- STAR Research Infrastructure, University of Calabria, 87036 Rende, Italy;
- CNR-NANOTEC, Department of Physics, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
12
|
Maxwell DL, Orian JM. Cerebellar pathology in multiple sclerosis and experimental autoimmune encephalomyelitis: current status and future directions. J Cent Nerv Syst Dis 2023; 15:11795735231211508. [PMID: 37942276 PMCID: PMC10629308 DOI: 10.1177/11795735231211508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/15/2023] [Indexed: 11/10/2023] Open
Abstract
Recent decades have witnessed significant progress in understanding mechanisms driving neurodegeneration and disease progression in multiple sclerosis (MS), but with a focus on the cerebrum. In contrast, there have been limited studies of cerebellar disease, despite the common occurrence of cerebellar symptoms in this disorder. These rare studies, however, highlight the early cerebellar involvement in disease development and an association between the early occurrence of cerebellar lesions and risk of worse prognosis. In parallel developments, it has become evident that far from being a region specialized in movement control, the cerebellum plays a crucial role in cognitive function, via circuitry connecting the cerebellum to association areas of the cerebrum. This complexity, coupled with challenges in imaging of the cerebellum have been major obstacles in the appreciation of the spatio-temporal evolution of cerebellar damage in MS and correlation with disability and progression. MS studies based on animal models have relied on an induced neuroinflammatory disease known as experimental autoimmune encephalomyelitis (EAE), in rodents and non-human primates (NHP). EAE has played a critical role in elucidating mechanisms underpinning tissue damage and been validated for the generation of proof-of-concept for cerebellar pathological processes relevant to MS. Additionally, rodent and NHP studies have formed the cornerstone of current knowledge of functional anatomy and cognitive processes. Here, we propose that improved insight into consequences of cerebellar damage in MS at the functional, cellular and molecular levels would be gained by more extensive characterization of EAE cerebellar pathology combined with the power of experimental paradigms in the field of cognition. Such combinatorial approaches would lead to improved potential for the development of MS sensitive markers and evaluation of candidate therapeutics.
Collapse
Affiliation(s)
- Dain L. Maxwell
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Jacqueline M. Orian
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
13
|
Oizumi H, Miyamoto Y, Seiwa C, Yamamoto M, Yoshioka N, Iizuka S, Torii T, Ohbuchi K, Mizoguchi K, Yamauchi J, Asou H. Lethal adulthood myelin breakdown by oligodendrocyte-specific Ddx54 knockout. iScience 2023; 26:107448. [PMID: 37720086 PMCID: PMC10502337 DOI: 10.1016/j.isci.2023.107448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/08/2023] [Accepted: 07/18/2023] [Indexed: 09/19/2023] Open
Abstract
Multiple sclerosis (MS) is a leading disease that causes disability in young adults. We have previously shown that a DEAD-box RNA helicase Ddx54 binds to mRNA and protein isoforms of myelin basic protein (MBP) and that Ddx54 siRNA blocking abrogates oligodendrocyte migration and myelination. Herein, we show that MBP-driven Ddx54 knockout mice (Ddx54 fl/fl;MBP-Cre), after the completion of normal postnatal myelination, gradually develop abnormalities in behavioral profiles and learning ability, inner myelin sheath breakdown, loss of myelinated axons, apoptosis of oligodendrocytes, astrocyte and microglia activation, and they die within 7 months but show minimal peripheral immune cell infiltration. Myelin in Ddx54fl/fl;MBP-Cre is highly vulnerable to the neurotoxicant cuprizone and Ddx54 knockdown greatly impairs myelination in vitro. Ddx54 expression in oligodendrocyte-lineage cells decreased in corpus callosum of MS patients. Our results demonstrate that Ddx54 is indispensable for myelin homeostasis, and they provide a demyelinating disease model based on intrinsic disintegration of adult myelin.
Collapse
Affiliation(s)
- Hiroaki Oizumi
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | - Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Chika Seiwa
- Glovia Myelin Research Institute, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| | - Masahiro Yamamoto
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | - Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Seiichi Iizuka
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | - Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Katsuya Ohbuchi
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | | | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hiroaki Asou
- Glovia Myelin Research Institute, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| |
Collapse
|
14
|
Chitnis T, Qureshi F, Gehman VM, Becich M, Bove R, Cree BAC, Gomez R, Hauser SL, Henry RG, Katrib A, Lokhande H, Paul A, Caillier SJ, Santaniello A, Sattarnezhad N, Saxena S, Weiner H, Yano H, Baranzini SE. Inflammatory and neurodegenerative serum protein biomarkers increase sensitivity to detect disease activity in multiple sclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.28.23291157. [PMID: 37461671 PMCID: PMC10350151 DOI: 10.1101/2023.06.28.23291157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Background/Objectives Serum proteomic analysis of deeply-phenotyped samples, biological pathway modeling and network analysis were performed to elucidate the inflammatory and neurodegenerative processes of multiple sclerosis (MS) and identify sensitive biomarkers of MS disease activity (DA). Methods Over 1100 serum proteins were evaluated in >600 samples from three MS cohorts to identify biomarkers of clinical and radiographic (gadolinium-enhancing lesions) new MS DA. Protein levels were analyzed and associated with presence of gadolinium-enhancing lesions, clinical relapse status (CRS), and annualized relapse rate (ARR) to create a custom assay panel. Results Twenty proteins were associated with increased clinical and radiographic MS DA. Serum neurofilament light chain (NfL) showed the strongest univariate correlation with radiographic and clinical DA measures. Multivariate modeling significantly outperformed univariate NfL to predict gadolinium lesion activity, CRS and ARR. Discussion These findings provide insight regarding correlations between inflammatory and neurodegenerative biomarkers and clinical and radiographic MS DA. Funding Octave Bioscience, Inc (Menlo Park, CA).
Collapse
|
15
|
Weigel M, Hutchinson B, Magee WL, Leong K, Sweitzer T, Weiss JL, Su W, Fleming R. Orchestrating a New Path for Multiple Sclerosis: Achieving Physical, Cognitive, and Emotional Rehabilitation Goals Through Physical and Music Therapy. Int J MS Care 2023; 25:168-175. [PMID: 37469330 PMCID: PMC10353696 DOI: 10.7224/1537-2073.2021-144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
BACKGROUND Interdisciplinary therapies for the management of people with multiple sclerosis (MS) are underappreciated. There is an urgent need to introduce music therapy (MT), either alone or in combination with physical therapy (PT), into clinical practice to achieve synergy with disease-modifying therapies. A holistic approach to rehabilitation for people with MS may mitigate symptoms and reduce polypharmacy, potentially lowering health care costs. RESULTS As MS progresses, patients experience a range of worsening symptoms, and many develop psychosocial comorbidities. As disease-modifying therapies delay disability progression, nonpharmacologic treatments become increasingly important. The main aim of PT is to improve or maintain patients' functional mobility, strength, and flexibility. Because it targets multiple functions, MT can help improve functional and psychosocial domains and may be a valuable intervention to help patients achieve the physical, cognitive, and emotional goals of PT. Exploratory studies showed that MT, alone or in combination with PT, can lead to functional improvements in mobility, balance, gait, and fatigue. Similar to PT, MT also has benefits in improving fine motor skills, cognition, learning, and memory and in providing emotional support. CONCLUSIONS Both MT and PT have the potential to improve overall well-being and health-related quality of life in physically active patients with MS, and MT can provide added emotional support for those who are less able to engage in physical activity. However, MT is not typically a part of standard of care, and PT visits are limited. Nevertheless, interdisciplinary therapies should be incorporated into clinical practice.
Collapse
Affiliation(s)
- Megan Weigel
- From First Coast Integrative Medicine, Jacksonville Beach, FL, USA (MW)
| | | | - Wendy L. Magee
- Boyer College of Music and Dance, Temple University, Philadelphia, PA, USA (WLM)
| | | | | | - Jamie L. Weiss
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA (JLW, WS)
| | - Wendy Su
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA (JLW, WS)
| | - Renée Fleming
- John F. Kennedy Center for the Performing Arts, Washington, DC, USA (RF)
| |
Collapse
|
16
|
Jansen MI, Castorina A. Identification of Key Genes and Regulatory Pathways in Multiple Sclerosis Brain Samples: A Meta-Analysis of Micro-Array Datasets. Int J Mol Sci 2023; 24:ijms24119361. [PMID: 37298310 DOI: 10.3390/ijms24119361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/11/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system (CNS) whose aetiology is only partly understood. Investigating the intricate transcriptional changes occurring in MS brains is critical to unravel novel pathogenic mechanisms and therapeutic targets. Unfortunately, this process is often hindered by the difficulty in retrieving an adequate number of samples. However, by merging data from publicly available datasets, it is possible to identify alterations in gene expression profiles and regulatory pathways that were previously overlooked. Here, we merged microarray gene expression profiles obtained from CNS white matter samples taken from MS donors to identify novel differentially expressed genes (DEGs) linked with MS. Data from three independent datasets (GSE38010, GSE32915, and GSE108000) were combined and used to detect novel DEGs using the Stouffer's Z-score method. Corresponding regulatory pathways were analysed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway databases. Finally, top up- and down-regulated transcripts were validated by real-time quantitative PCR (qPCR) using an independent set of white matter tissue samples obtained from MS donors with different disease subtypes. There were a total of 1446 DEGs, of which 742 were up-regulated and 704 genes were down-regulated. DEGs were associated with several myelin-related pathways and protein metabolism pathways. Validation studies of selected top up- or down-regulated genes highlighted MS subtype-specific differences in the expression of some of the identified genes, underlining a more complex scenario of white matter pathology amongst people afflicted by this devastating disease.
Collapse
Affiliation(s)
- Margo I Jansen
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| |
Collapse
|
17
|
Kupjetz M, Joisten N, Rademacher A, Gonzenbach R, Bansi J, Zimmer P. Cycling in primary progressive multiple sclerosis (CYPRO): study protocol for a randomized controlled superiority trial evaluating the effects of high-intensity interval training in persons with primary progressive multiple sclerosis. BMC Neurol 2023; 23:162. [PMID: 37087424 PMCID: PMC10122389 DOI: 10.1186/s12883-023-03187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/27/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Primary progressive multiple sclerosis (PPMS) is the least prevalent multiple sclerosis (MS) phenotype. For persons with PPMS (pwPPMS), pharmacological treatment options are limited. As a complementary non-pharmacological treatment, endurance training improves the health-related quality of life (HRQoL), numerous MS symptoms, and MS-related performance impediments. High-intensity interval training (HIIT) has been shown to induce superior effects compared to moderate-intensity continuous training (MCT). As current evidence is based on MS samples with mixed phenotypes, generalizability to pwPPMS remains unclear. METHODS CYPRO is a parallel-group, single-center, and single-blind randomized controlled superiority trial evaluating the effects of HIIT compared to MCT in pwPPMS. Sixty-one pwPPMS are randomized (1:1) to perform volume-matched HIIT or MCT sessions on bicycle ergometers two to three times per week in addition to standard rehabilitative care during their three-week inpatient stay at Valens rehabilitation clinic, Switzerland. Standard rehabilitative care comprises endurance and strength training, physiotherapy, and occupational therapy. HIIT sessions include six 90-second intervals at 95% peak heart rate (HRpeak), interspersed by 90-second active breaks with unloaded pedaling, aimed to reach 60%HRpeak. MCT represents the standard treatment at Valens rehabilitation clinic and is performed as continuous cycling at 60%HRpeak for the duration of 26 minutes. The primary outcome is cardiorespiratory fitness, assessed as peak oxygen consumption (V̇O2peak) during cardiopulmonary exercise testing (CPET). Secondary outcomes include peak power output during CPET, walking capacity, cognitive performance, HRQoL, fatigue, anxiety and depressive symptoms, and blood-derived biomarkers (e.g., serum neurofilament light chain, glial fibrillary acidic protein, kynurenine pathway metabolites) related to MS pathophysiology. All outcomes are assessed at baseline and discharge after three weeks. Venous blood sampling is additionally performed immediately and two hours after the first HIIT or MCT session. DISCUSSION CYPRO will expand current knowledge on symptom management and rehabilitation in MS to the subpopulation of pwPPMS, and will contribute to the exploration of potential disease-modifying effects of endurance training in MS. The superiority design of CYPRO will allow deriving explicit recommendations on endurance training design in pwPPMS that can be readily translated into clinical practice. TRIAL REGISTRATION CYPRO has been prospectively registered at ClinicalTrials.gov on 8 February 2022 (NCT05229861).
Collapse
Affiliation(s)
- Marie Kupjetz
- Department of Performance and Health (Sports Medicine), Institute of Sport and Sport Science, TU Dortmund University, Otto-Hahn-Straße 3, 44227, Dortmund, Germany
| | - Niklas Joisten
- Department of Performance and Health (Sports Medicine), Institute of Sport and Sport Science, TU Dortmund University, Otto-Hahn-Straße 3, 44227, Dortmund, Germany
| | - Annette Rademacher
- Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gGmbH, Milchberg 21, 82335, Berg, Germany
| | - Roman Gonzenbach
- Department of Neurology, Clinics of Valens, Rehabilitation Centre Valens, Taminaplatz 1, 7317, Valens, Switzerland
| | - Jens Bansi
- Department of Neurology, Clinics of Valens, Rehabilitation Centre Valens, Taminaplatz 1, 7317, Valens, Switzerland
- Department of Health, OST - Eastern Switzerland University of Applied Sciences, Rosenbergstrasse 59, 9001, Sankt Gallen, Switzerland
| | - Philipp Zimmer
- Department of Performance and Health (Sports Medicine), Institute of Sport and Sport Science, TU Dortmund University, Otto-Hahn-Straße 3, 44227, Dortmund, Germany.
| |
Collapse
|
18
|
Jackson MA, Xie J, Nguyen LTT, Wang X, Yap K, Harvey PJ, Gilding EK, Craik DJ. Plant-based production of an orally active cyclotide for the treatment of multiple sclerosis. Transgenic Res 2023; 32:121-133. [PMID: 36930229 PMCID: PMC10102037 DOI: 10.1007/s11248-023-00341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
Multiple sclerosis (MS) is a debilitating disease that requires prolonged treatment with often severe side effects. One experimental MS therapeutic currently under development is a single amino acid mutant of a plant peptide termed kalata B1, of the cyclotide family. Like all cyclotides, the therapeutic candidate [T20K]kB1 is highly stable as it contains a cyclic backbone that is cross-linked by three disulfide bonds in a knot-like structure. This stability is much sought after for peptide drugs, which despite exquisite selectivity for their targets, are prone to rapid degradation in human serum. In preliminary investigations, it was found that [T20K]kB1 retains oral activity in experimental autoimmune encephalomyelitis, a model of MS in mice, thus opening up opportunities for oral dosing of the peptide. Although [T20K]kB1 can be synthetically produced, a recombinant production system provides advantages, specifically for reduced scale-up costs and reductions in chemical waste. In this study, we demonstrate the capacity of the Australian native Nicotiana benthamiana plant to produce a structurally identical [T20K]kB1 to that of the synthetic peptide. By optimizing the co-expressed cyclizing enzyme, precursor peptide arrangements, and transgene regulatory regions, we demonstrate a [T20K]kB1 yield in crude peptide extracts of ~ 0.3 mg/g dry mass) in whole plants and close to 1.0 mg/g dry mass in isolated infiltrated leaves. With large-scale plant production facilities coming on-line across the world, the sustainable and cost-effective production of cyclotide-based therapeutics is now within reach.
Collapse
Affiliation(s)
- Mark A Jackson
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jing Xie
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Linh T T Nguyen
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xiaohan Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kuok Yap
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peta J Harvey
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Edward K Gilding
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
19
|
Qureshi F, Hu W, Loh L, Patel H, DeGuzman M, Becich M, Rubio da Costa F, Gehman V, Zhang F, Foley J, Chitnis T. Analytical validation of a multi-protein, serum-based assay for disease activity assessments in multiple sclerosis. Proteomics Clin Appl 2023; 17:e2200018. [PMID: 36843211 DOI: 10.1002/prca.202200018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 01/24/2023] [Accepted: 02/22/2023] [Indexed: 02/28/2023]
Abstract
PURPOSE To characterize and analytically validate the MSDA Test, a multi-protein, serum-based biomarker assay developed using Olink® PEA methodology. EXPERIMENTAL DESIGN Two lots of the MSDA Test panel were manufactured and subjected to a comprehensive analytical characterization and validation protocol to detect biomarkers present in the serum of patients with multiple sclerosis (MS). Biomarker concentrations were incorporated into a final algorithm used for calculating four Disease Pathway scores (Immunomodulation, Neuroinflammation, Myelin Biology, and Neuroaxonal Integrity) and an overall Disease Activity score. RESULTS Analytical characterization demonstrated that the multi-protein panel satisfied the criteria necessary for a fit-for-purpose validation considering the assay's intended clinical use. This panel met acceptability criteria for 18 biomarkers included in the final algorithm out of 21 biomarkers evaluated. VCAN was omitted based on factors outside of analytical validation; COL4A1 and GH were excluded based on imprecision and diurnal variability, respectively. Performance of the four Disease Pathway and overall Disease Activity scores met the established acceptability criteria. CONCLUSIONS AND CLINICAL RELEVANCE Analytical validation of this multi-protein, serum-based assay is the first step in establishing its potential utility as a quantitative, minimally invasive, and scalable biomarker panel to enhance the standard of care for patients with MS.
Collapse
Affiliation(s)
| | - Wayne Hu
- Octave Bioscience, Inc., Menlo Park, California, USA
| | - Louisa Loh
- Octave Bioscience, Inc., Menlo Park, California, USA
| | - Hemali Patel
- Octave Bioscience, Inc., Menlo Park, California, USA
| | | | | | | | - Victor Gehman
- Octave Bioscience, Inc., Menlo Park, California, USA
| | - Fujun Zhang
- Octave Bioscience, Inc., Menlo Park, California, USA
| | - John Foley
- Rocky Mountain Multiple Sclerosis Clinic, Salt Lake City, Utah, USA
| | - Tanuja Chitnis
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Toprak M, Altintas O, Bickin H, Efendi H, Yilmaz Tugan B, Yuksel N. In vivo confocal microscopy of corneal nerve fiber damage in early course of multiple sclerosis. Int Ophthalmol 2023; 43:503-509. [PMID: 35945411 DOI: 10.1007/s10792-022-02448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/31/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE To evaluate the corneal nerve fiber morphology in patients with multiple sclerosis (MS) by in vivo corneal confocal microscopy (CCM). METHODS Retinal nerve fiber layer thickness (RNFLT), central macular thickness (CMT), corneal nerve fiber length (CNFL), corneal nerve fiber density (CNFD), corneal nerve branch density (CNBD) and corneal nerve fiber tortuosity (CNFT) were measured. Correlation of corneal nerve findings with duration and clinical severity of MS was calculated. RESULTS CNFL (9.50 ± 0.60 vs. 11.20 ± 0.57 mm/mm2, P = 0.046) and CNBD (57.46 ± 5.04 vs. 77.65 ± 3.41 no/mm2, P = 0.001) were significantly lower with no significant difference in CNFD (21.24 ± 1.20 vs. 23.62 ± 0.95 no/mm2, P = 0.125), CNFT (2.00 ± 0.15 vs. 1.73 ± 0.12, P = 0.180), CMT (269.57 ± 12.53 vs. 271.10 ± 18.84 μm, P = 0.716) or RNFLT (102.82 ± 6.98 vs. 105.33 ± 12.70 μm, P = 0.351) between patients with RRMS compared to controls. There was no significant correlation between CCM parameters with EDSS and duration of disease in MS patients. CONCLUSION The current study demonstrated that a decrease in CNFL, CNFD and CNBD in CCM analysis in the early course of MS.
Collapse
Affiliation(s)
- Muge Toprak
- Ophthalmology Clinic, Gebze Fatih State Hospital, 41400, Kocaeli, Turkey.
| | - Ozgul Altintas
- Department of Ophthalmology, Acibadem Mehmet Ali Aydınlar University, 34398, Istanbul, Turkey
| | - Hande Bickin
- Neurology Clinic, Pasaalani Private Sevgi Hospital, 10100, Balıkesir, Turkey
| | - Husnu Efendi
- Department of Neurology, Kocaeli University, 41100, Kocaeli, Turkey
| | | | - Nursen Yuksel
- Department of Ophthalmology, Kocaeli University, 41100, Kocaeli, Turkey
| |
Collapse
|
21
|
Hejazi S, Karwowski W, Farahani FV, Marek T, Hancock PA. Graph-Based Analysis of Brain Connectivity in Multiple Sclerosis Using Functional MRI: A Systematic Review. Brain Sci 2023; 13:brainsci13020246. [PMID: 36831789 PMCID: PMC9953947 DOI: 10.3390/brainsci13020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Multiple sclerosis (MS) is an immune system disease in which myelin in the nervous system is affected. This abnormal immune system mechanism causes physical disabilities and cognitive impairment. Functional magnetic resonance imaging (fMRI) is a common neuroimaging technique used in studying MS. Computational methods have recently been applied for disease detection, notably graph theory, which helps researchers understand the entire brain network and functional connectivity. (2) Methods: Relevant databases were searched to identify articles published since 2000 that applied graph theory to study functional brain connectivity in patients with MS based on fMRI. (3) Results: A total of 24 articles were included in the review. In recent years, the application of graph theory in the MS field received increased attention from computational scientists. The graph-theoretical approach was frequently combined with fMRI in studies of functional brain connectivity in MS. Lower EDSSs of MS stage were the criteria for most of the studies (4) Conclusions: This review provides insights into the role of graph theory as a computational method for studying functional brain connectivity in MS. Graph theory is useful in the detection and prediction of MS and can play a significant role in identifying cognitive impairment associated with MS.
Collapse
Affiliation(s)
- Sara Hejazi
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
- Correspondence:
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
| | - Farzad V. Farahani
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tadeusz Marek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, 30-348 Kraków, Poland
| | - P. A. Hancock
- Department of Psychology, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
22
|
Puranik N, Yadav D, Song M. Insight into Early Diagnosis of Multiple Sclerosis by Targeting Prognostic Biomarkers. Curr Pharm Des 2023; 29:2534-2544. [PMID: 37921136 DOI: 10.2174/0113816128247471231018053737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/04/2023] [Accepted: 09/06/2023] [Indexed: 11/04/2023]
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) immune-mediated disease that mainly strikes young adults and leaves them disabled. MS is an autoimmune illness that causes the immune system to attack the brain and spinal cord. The myelin sheaths, which insulate the nerve fibers, are harmed by our own immune cells, and this interferes with brain signal transmission. Numbness, tingling, mood swings, memory problems, exhaustion, agony, vision problems, and/or paralysis are just a few of the symptoms. Despite technological advancements and significant research efforts in recent years, diagnosing MS can still be difficult. Each patient's MS is distinct due to a heterogeneous and complex pathophysiology with diverse types of disease courses. There is a pressing need to identify markers that will allow for more rapid and accurate diagnosis and prognosis assessments to choose the best course of treatment for each MS patient. The cerebrospinal fluid (CSF) is an excellent source of particular indicators associated with MS pathology. CSF contains molecules that represent pathological processes such as inflammation, cellular damage, and loss of blood-brain barrier integrity. Oligoclonal bands, neurofilaments, MS-specific miRNA, lncRNA, IgG-index, and anti-aquaporin 4 antibodies are all clinically utilised indicators for CSF in MS diagnosis. In recent years, a slew of new possible biomarkers have been presented. In this review, we look at what we know about CSF molecular markers and how they can aid in the diagnosis and differentiation of different MS forms and treatment options, and monitoring and predicting disease progression, therapy response, and consequences during such opportunistic infections.
Collapse
Affiliation(s)
- Nidhi Puranik
- Biological Sciences Department, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Korea
| | - Minseok Song
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
23
|
Pavelek Z, Soucek O, Krejsek J, Sejkorova I, Vysata O, Klimová B, Angelucci F, Stourac P, Valis M, Peterka M, Sobisek L, Novotny M. Assessment of Functional Capacity of Immune System in Patients with Multiple Sclerosis using QuantiFERON Monitor. J Immunol Res 2023; 2023:4653627. [PMID: 37064009 PMCID: PMC10104739 DOI: 10.1155/2023/4653627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 04/18/2023] Open
Abstract
Background The QuantiFERON®-Monitor (QFM) is an assay that measures interferon-γ production and was developed to provide an objective marker of complex immune response. In this study, we evaluated the use of the QFM test in patients with two forms of multiple sclerosis (MS), relapsing-remitting form treated with fingolimod (fMS) and secondarily progressive form not treated pharmacologically (pMS), and in healthy controls (HC). We hypothesized that IFN-γ levels would be lower in those subjects who are relatively more immunosuppressed and higher in those with normal or activated immune function. Methods This single-center observational study was conducted from November 2020 to October 2021 and compared results in three groups of patients: 86 healthy controls, 96 patients with pMS, and 78 fMS. Combination of lyophilized stimulants was added to 1 ml heparinized whole blood within 8 hr of collection. Plasmatic IFN-γ was measured using the ELISA kit for the QFM and data were obtained in IU/ml. Results The results showed that controls had nearly 2-fold higher levels of IFN-γ (QFM score) in median (q25, q75) 228.00 (112.20, 358.67) than the MS patient groups: pMS 144.80 (31.23, 302.00); fMS 130.50 (39.95, 217.07) which is statistically significant difference P-value: HC vs. pMS = 0.0071; HC vs. fMS = 0.0468. This result was also confirmed by a validation analysis to exclude impact of variable factors, such as disease duration and Expanded Disability Status Scale scores. Conclusions Results showed that controls had higher levels of IFN-γ production than the MS patient groups and suggest that MS patients included in this study have a lower ability of immune system activation than HC. Results confirm that fingolimod is able to suppress production of IFN-γ. The fact that the QFM score of MS patients is significantly lower than that of HC may indicate a dysfunctional state of the immune system in baseline conditions.
Collapse
Affiliation(s)
- Zbysek Pavelek
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Ondrej Soucek
- Department of Clinical Immunology and Allergology, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Ilona Sejkorova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Oldrich Vysata
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Blanka Klimová
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Francesco Angelucci
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Pavel Stourac
- Department of Neurology, University Hospital and Masaryk University, Brno, Czech Republic
| | - Martin Valis
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Marek Peterka
- Department of Neurology, Faculty of Medicine and University Hospital Plzen, Charles University in Prague, Plzeň, Czech Republic
| | - Lukáš Sobisek
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Michal Novotny
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| |
Collapse
|
24
|
Ciron J, Gueguen A, Al Khedr A, Bourre B, Clavelou P, Defer G, Durand-Dubief F, Labauge P, Ouallet JC, Pittion Vouyovitch S, Tourbah A, Vermersch P. Secondary progressive multiple sclerosis: A national consensus paper on diagnostic criteria. Rev Neurol (Paris) 2022; 178:1098-1104. [PMID: 36180289 DOI: 10.1016/j.neurol.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND In clinical practice, the diagnosis of secondary progressive multiple sclerosis (SPMS) is often delayed, retrospective and non-reproducible, as there are no consensus criteria that define the advent of SPMS. Early identification of SPMS is essential to improve patient care. METHODS Eight regional board meetings in France involving 56 multiple sclerosis (MS) experts (neurologists) were convened to discuss diagnostic criteria for SPMS. Subsequently, a national board meeting of 13 neurologists (with an expert representing each geographical region) was held to review points of convergence or divergence between regions and to develop a national consensus document. RESULTS Based on the discussions from the regional boards, the MS experts at the national board retained the worsening of the EDSS score, with compatible clinical features, as the only consensus criterion for the diagnosis of SPMS in clinical practice. The patient should have experienced during at least the previous 6 months and in the absence of any relapse, a worsening in the EDSS score of +1.0 point (if the previous EDSS was≤5.0) or of +0.5 point (if the previous EDSS was≥5.5), with a pyramidal or cerebellar functional system score≥2 and without setting a minimum EDSS score; or, in case of a stable EDSS score≥4.0, a worsening of a functional score. This worsening should be confirmed within 3 to 6 months. According to the MS experts, the patient's age, duration of illness and a minimal threshold EDSS score are only risk factors for transition to SPMS. Patient reports during consultation and cognitive impairment are important warning signs, which should trigger an objective assessment with specific tests or closer monitoring. Clinical relapse and/or MRI activities are non-discriminatory for making the diagnosis of SPMS. CONCLUSIONS The experts defined precise diagnostic criteria adapted to clinical practice for earlier identification of SPMS, paving the way for better management of this stage of the disease.
Collapse
Affiliation(s)
- J Ciron
- Département de neurologie, CRC-SEP, CHU de Toulouse, place du Dr-Baylac, 31059 Toulouse cedex 9, France.
| | - A Gueguen
- Fondation ophtalmologique Adolphe de Rothschild, 29, rue Manin, Paris, France
| | - A Al Khedr
- CHU d'Amiens, 2, place Victor-Pauchet, Amiens, France
| | - B Bourre
- CHU de Rouen, 76000 Rouen, France
| | - P Clavelou
- CHU de Clermont-Ferrand, 58, rue Montalembert, Clermont-Ferrand, France
| | - G Defer
- CRC-SEP, service de neurologie, CHU de Caen, avenue de la Côte-de-Nacre, 14033 Caen, France
| | - F Durand-Dubief
- Service de sclérose en plaques, pathologies de la myéline et neuro-inflammation, hôpital neurologique, GHE, 59, boulevard Pinel, 69677 Bron Lyon cedex, France
| | - P Labauge
- CRC-SEP, département de neurologie, CHU de Montpellier, 80, avenue G.-Fliche, 34295 Montpellier cedex 5, France
| | - J-C Ouallet
- Service de neurologie et maladies inflammatoires du système nerveux central, CHU de Bordeaux, place Amélie-Raba-Léon, 33000 Bordeaux, France
| | | | - A Tourbah
- UFR Simone Veil, UVSQ, Inserm U 1195, service de neurologie, hôpital Raymond Poincaré, université Paris Saclay, AP-HP, Garches, France
| | - P Vermersch
- Inserm U1172 - Lille neuroscience et cognition, FHU Imminent, université de Lille, CHU Lille, 59000 Lille, France
| |
Collapse
|
25
|
Noguera-Navarro C, Navas-Carrillo D, Orenes-Piñero E. Gut microbiota alterations and nutritional intervention in multiple sclerosis disease. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Clara Noguera-Navarro
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Murcia, Spain
| | - Diana Navas-Carrillo
- Department of Surgery, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Murcia, Spain
- Department of Surgery, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| |
Collapse
|
26
|
Zaratin P, Banwell B, Coetzee T, Comi G, Feinstein A, Hyde R, Salvetti M, Smith K. Researching COVID-19 in progressive MS requires a globally coordinated, multi-disciplinary and multi-stakeholder approach-perspectives from the International Progressive MS Alliance. Mult Scler J Exp Transl Clin 2022; 8:20552173221099181. [PMID: 35530174 PMCID: PMC9073122 DOI: 10.1177/20552173221099181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/21/2022] [Indexed: 12/01/2022] Open
Abstract
Background The COVID-19 pandemic has reinforced the importance of research for the health of our society and highlighted the need for stakeholders of the health research and care continuum to form a collaborative and interdependent ecosystem. Objective With the world still reeling from waves of the COVID-19 pandemic and adapting to the vaccine rollout at widely different rates, the International Progressive MS Alliance (hereafter Alliance) organized a meeting (April 2021) to consider how the Covid-19 pandemic impacts the health and well-being of people with progressive Multiple Sclerosis (MS). Methods We invited the Alliance stakeholders and experts to present what they have learned about SARS-CoV-2 infection and progressive MS and to define future scientific priorities. Results The meeting highlighted three priorities for additional focus: (1) the impact of Disease Modifying Therapies (DMTs) on the risk of COVID-19 and on the efficacy of COVID-19 vaccines in people with progressive MS; (2) the long-term impact of COVID-19 and COVID-19 vaccines on the biology of progressive MS; and (3) the impact on well-being of people with progressive MS. Conclusion This paper's calls to action could represent a path toward a shared research agenda. Multi-stakeholder and long-term investigations will be required to drive and evolve such an agenda.
Collapse
Affiliation(s)
| | - Brenda Banwell
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | - Anthony Feinstein
- Sunnybrook Research Institute and University of Toronto, Toronto, Canada
| | - Robert Hyde
- Biogen International GMBH, International Progressive MS Alliance Industry Forum representative, Zürich, Switzerland
| | - Marco Salvetti
- Department of Neurosciences, Mental Health and Sensory Organs, Centre for Experimental Neurological Therapies (CENTERS), Sapienza University of Rome, Rome, Italy
| | - Kathryn Smith
- International Progressive MS Alliance, Lyme, CT, USA
| |
Collapse
|
27
|
Hamdy E, Talaat F, Said SM, Ramadan I, Marouf H, Hamdy MM, Sadallah H, Ashmawi GAH, Elsalamawy D. Diagnosing ‘transition’ to secondary progressive multiple sclerosis (SPMS): A step-by-step approach for clinicians. Mult Scler Relat Disord 2022; 60:103718. [DOI: 10.1016/j.msard.2022.103718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/13/2022] [Accepted: 02/27/2022] [Indexed: 11/29/2022]
|
28
|
Exploring the Structured Inventory of Malingered Symptomatology in Patients with Multiple Sclerosis. PSYCHOLOGICAL INJURY & LAW 2021. [DOI: 10.1007/s12207-021-09424-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Lace JW, Merz ZC, Galioto R. Examining the Clinical Utility of Selected Memory-Based Embedded Performance Validity Tests in Neuropsychological Assessment of Patients with Multiple Sclerosis. Neurol Int 2021; 13:477-486. [PMID: 34698256 PMCID: PMC8544445 DOI: 10.3390/neurolint13040047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Within the neuropsychological assessment, clinicians are responsible for ensuring the validity of obtained cognitive data. As such, increased attention is being paid to performance validity in patients with multiple sclerosis (pwMS). Experts have proposed batteries of neuropsychological tests for use in this population, though none contain recommendations for standalone performance validity tests (PVTs). The California Verbal Learning Test, Second Edition (CVLT-II) and Brief Visuospatial Memory Test, Revised (BVMT-R)—both of which are included in the aforementioned recommended neuropsychological batteries—include previously validated embedded PVTs (which offer some advantages, including expedience and reduced costs), with no prior work exploring their utility in pwMS. The purpose of the present study was to determine the potential clinical utility of embedded PVTs to detect the signal of non-credibility as operationally defined by below criterion standalone PVT performance. One hundred thirty-three (133) patients (M age = 48.28; 76.7% women; 85.0% White) with MS were referred for neuropsychological assessment at a large, Midwestern academic medical center. Patients were placed into “credible” (n = 100) or “noncredible” (n = 33) groups based on a standalone PVT criterion. Classification statistics for four CVLT-II and BVMT-R PVTs of interest in isolation were poor (AUCs = 0.58–0.62). Several arithmetic and logistic regression-derived multivariate formulas were calculated, all of which similarly demonstrated poor discriminability (AUCs = 0.61–0.64). Although embedded PVTs may arguably maximize efficiency and minimize test burden in pwMS, common ones in the CVLT-II and BVMT-R may not be psychometrically appropriate, sufficiently sensitive, nor substitutable for standalone PVTs in this population. Clinical neuropsychologists who evaluate such patients are encouraged to include standalone PVTs in their assessment batteries to ensure that clinical care conclusions drawn from neuropsychological data are valid.
Collapse
Affiliation(s)
- John W. Lace
- Neurological Institute, Section of Neuropsychology, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
- Correspondence:
| | - Zachary C. Merz
- LeBauer Department of Neurology, The Moses H. Cone Memorial Hospital, Greensboro, NC 27401, USA;
| | - Rachel Galioto
- Neurological Institute, Section of Neuropsychology, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
- Mellen Center for Multiple Sclerosis, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
30
|
Krajnc N, Bsteh G, Berger T. Clinical and Paraclinical Biomarkers and the Hitches to Assess Conversion to Secondary Progressive Multiple Sclerosis: A Systematic Review. Front Neurol 2021; 12:666868. [PMID: 34512500 PMCID: PMC8427301 DOI: 10.3389/fneur.2021.666868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
Conversion to secondary progressive (SP) course is the decisive factor for long-term prognosis in relapsing multiple sclerosis (MS), generally considered the clinical equivalent of progressive MS-associated neuroaxonal degeneration. Evidence is accumulating that both inflammation and neurodegeneration are present along a continuum of pathologic processes in all phases of MS. While inflammation is the prominent feature in early stages, its quality changes and relative importance to disease course decreases while neurodegenerative processes prevail with ongoing disease. Consequently, anti-inflammatory disease-modifying therapies successfully used in relapsing MS are ineffective in SPMS, whereas specific treatment for the latter is increasingly a focus of MS research. Therefore, the prevention, but also the (anticipatory) diagnosis of SPMS, is of crucial importance. The problem is that currently SPMS diagnosis is exclusively based on retrospectively assessing the increase of overt physical disability usually over the past 6–12 months. This inevitably results in a delay of diagnosis of up to 3 years resulting in periods of uncertainty and, thus, making early therapy adaptation to prevent SPMS conversion impossible. Hence, there is an urgent need for reliable and objective biomarkers to prospectively predict and define SPMS conversion. Here, we review current evidence on clinical parameters, magnetic resonance imaging and optical coherence tomography measures, and serum and cerebrospinal fluid biomarkers in the context of MS-associated neurodegeneration and SPMS conversion. Ultimately, we discuss the necessity of multimodal approaches in order to approach objective definition and prediction of conversion to SPMS.
Collapse
Affiliation(s)
- Nik Krajnc
- Department of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
Sanborn V, Lace J, Gunstad J, Galioto R. Considerations regarding noncredible performance in the neuropsychological assessment of patients with multiple sclerosis: A case series. APPLIED NEUROPSYCHOLOGY-ADULT 2021; 30:458-467. [PMID: 34514920 DOI: 10.1080/23279095.2021.1971229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Determining the validity of data during clinical neuropsychological assessment is crucial for proper interpretation, and extensive literature has emphasized myriad methods of doing so in diverse samples. However, little research has considered noncredible presentation in persons with multiple sclerosis (pwMS). PwMS often experience one or more factors known to impact validity of data, including major neurocognitive impairment, psychological distress/psychogenic interference, and secondary gain. This case series aimed to illustrate the potential relationships between these factors and performance validity testing in pwMS. Six cases from an IRB-approved database containing pwMS referred for neuropsychological assessment at a large, academic medical center involving at least one of the above-stated factors were identified. Backgrounds, neuropsychological test data, and clinical considerations for each were reviewed. Interestingly, no pwMS diagnosed with major neurocognitive impairment was found to have noncredible performance, nor was any patient with noncredible performance in the absence of notable psychological distress. Given the variability of noncredible performance and multiplicity of factors affecting performance validity in pwMS, clinicians are strongly encouraged to consider psychometrically appropriate methods for evaluating validity of cognitive data in pwMS. Additional research aiming to elucidate base rates of, mechanisms begetting, and methods for assessing noncredible performance in pwMS is imperative.
Collapse
Affiliation(s)
| | - John Lace
- Cleveland Clinic, Neurological Institute, Section of Neuropsychology, Cleveland, OH, USA
| | - John Gunstad
- Psychological Sciences, Kent State University, Kent, OH, USA.,Brain Health Research Institute, Kent State University, Kent, OH, USA
| | - Rachel Galioto
- Cleveland Clinic, Neurological Institute, Section of Neuropsychology, Cleveland, OH, USA.,Cleveland Clinic, Mellen Center for Multiple Sclerosis, Cleveland, OH, USA
| |
Collapse
|
32
|
Lace JW, Merz ZC, Galioto R. Nonmemory Composite Embedded Performance Validity Formulas in Patients with Multiple Sclerosis. Arch Clin Neuropsychol 2021; 37:309-321. [PMID: 34467368 DOI: 10.1093/arclin/acab066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Research regarding performance validity tests (PVTs) in patients with multiple sclerosis (MS) is scant, with recommended batteries for neuropsychological evaluations in this population lacking suggestions to include PVTs. Moreover, limited work has examined embedded PVTs in this population. As previous investigations indicated that nonmemory-based embedded PVTs provide clinical utility in other populations, this study sought to determine if a logistic regression-derived PVT formula can be identified from selected nonmemory variables in a sample of patients with MS. METHOD A total of 184 patients (M age = 48.45; 76.6% female) with MS were referred for neuropsychological assessment at a large, Midwestern academic medical center. Patients were placed into "credible" (n = 146) or "noncredible" (n = 38) groups according to performance on standalone PVT. Missing data were imputed with HOTDECK. RESULTS Classification statistics for a variety of embedded PVTs were examined, with none appearing psychometrically appropriate in isolation (areas under the curve [AUCs] = .48-.64). Four exponentiated equations were created via logistic regression. Six, five, and three predictor equations yielded acceptable discriminability (AUC = .71-.74) with modest sensitivity (.34-.39) while maintaining good specificity (≥.90). The two predictor equation appeared unacceptable (AUC = .67). CONCLUSIONS Results suggest that multivariate combinations of embedded PVTs may provide some clinical utility while minimizing test burden in determining performance validity in patients with MS. Nonetheless, the authors recommend routine inclusion of several PVTs and utilization of comprehensive clinical judgment to maximize signal detection of noncredible performance and avoid incorrect conclusions. Clinical implications, limitations, and avenues for future research are discussed.
Collapse
Affiliation(s)
- John W Lace
- Section of Neuropsychology, P57, Cleveland Clinic, Cleveland, OH, USA
| | - Zachary C Merz
- LeBauer Department of Neurology, The Moses H. Cone Memorial Hospital, Greensboro, NC, USA
| | - Rachel Galioto
- Section of Neuropsychology, P57, Cleveland Clinic, Cleveland, OH, USA.,Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
33
|
Haham N, Vaknin-Dembinsky A. COVID-19 in Cladribine-treated patient with multiple sclerosis. J Neuroimmunol 2021; 359:577690. [PMID: 34390951 PMCID: PMC8349393 DOI: 10.1016/j.jneuroim.2021.577690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/14/2021] [Accepted: 08/04/2021] [Indexed: 01/13/2023]
Abstract
Case report describing a patient infected with COVID-19 after initiation of Cladribine, with a favorable disease course and positive seroconversion.
Collapse
Affiliation(s)
- Nitsan Haham
- Department of Neurology and Laboratory of Neuroimmunology, and the Agnes-Ginges Center for Neurogenetics, Hadassah Medical Center, Ein-Karem, Jerusalem 91120, Israel
| | - Adi Vaknin-Dembinsky
- Department of Neurology and Laboratory of Neuroimmunology, and the Agnes-Ginges Center for Neurogenetics, Hadassah Medical Center, Ein-Karem, Jerusalem 91120, Israel.
| |
Collapse
|
34
|
Shoeibi A, Khodatars M, Jafari M, Moridian P, Rezaei M, Alizadehsani R, Khozeimeh F, Gorriz JM, Heras J, Panahiazar M, Nahavandi S, Acharya UR. Applications of deep learning techniques for automated multiple sclerosis detection using magnetic resonance imaging: A review. Comput Biol Med 2021; 136:104697. [PMID: 34358994 DOI: 10.1016/j.compbiomed.2021.104697] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 11/18/2022]
Abstract
Multiple Sclerosis (MS) is a type of brain disease which causes visual, sensory, and motor problems for people with a detrimental effect on the functioning of the nervous system. In order to diagnose MS, multiple screening methods have been proposed so far; among them, magnetic resonance imaging (MRI) has received considerable attention among physicians. MRI modalities provide physicians with fundamental information about the structure and function of the brain, which is crucial for the rapid diagnosis of MS lesions. Diagnosing MS using MRI is time-consuming, tedious, and prone to manual errors. Research on the implementation of computer aided diagnosis system (CADS) based on artificial intelligence (AI) to diagnose MS involves conventional machine learning and deep learning (DL) methods. In conventional machine learning, feature extraction, feature selection, and classification steps are carried out by using trial and error; on the contrary, these steps in DL are based on deep layers whose values are automatically learn. In this paper, a complete review of automated MS diagnosis methods performed using DL techniques with MRI neuroimaging modalities is provided. Initially, the steps involved in various CADS proposed using MRI modalities and DL techniques for MS diagnosis are investigated. The important preprocessing techniques employed in various works are analyzed. Most of the published papers on MS diagnosis using MRI modalities and DL are presented. The most significant challenges facing and future direction of automated diagnosis of MS using MRI modalities and DL techniques are also provided.
Collapse
Affiliation(s)
- Afshin Shoeibi
- Faculty of Electrical Engineering, Biomedical Data Acquisition Lab (BDAL), K. N. Toosi University of Technology, Tehran, Iran.
| | - Marjane Khodatars
- Faculty of Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mahboobeh Jafari
- Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran
| | - Parisa Moridian
- Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mitra Rezaei
- Electrical and Computer Engineering Dept., Tarbiat Modares University, Tehran, Iran
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, Australia
| | - Fahime Khozeimeh
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, Australia
| | - Juan Manuel Gorriz
- Department of Signal Theory, Networking and Communications, Universidad de Granada, Spain; Department of Psychiatry. University of Cambridge, UK
| | - Jónathan Heras
- Department of Mathematics and Computer Science, University of La Rioja, La Rioja, Spain
| | | | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, Australia
| | - U Rajendra Acharya
- Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore; Dept. of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489, Singapore; Department of Bioinformatics and Medical Engineering, Asia University, Taiwan
| |
Collapse
|
35
|
Cohan S, Tencer T, Arndorfer S, Zhu X, Zivkovic M, Kumar J. Matching-adjusted indirect treatment comparison of ozanimod versus teriflunomide for relapsing multiple sclerosis. Mult Scler Relat Disord 2021; 52:102972. [PMID: 33979770 DOI: 10.1016/j.msard.2021.102972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/15/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND A growing number of immunomodulating disease-modifying therapies are available for treatment of relapsing multiple sclerosis (RMS). In the absence of randomized head-to-head trials, matching-adjusted indirect comparisons (MAICs) can be used to adjust for cross-trial differences and evaluate the comparative efficacy and safety of these agents. We used MAIC methodology to indirectly compare key outcomes with ozanimod (OZM) and teriflunomide (TERI) in the treatment of RMS. METHODS A systematic literature review was conducted to identify clinical trials evaluating the efficacy and safety of OZM vs TERI. Given the absence of head-to-head trials of OZM vs TERI, we used a matching-adjusted indirect comparison to adjust for potential treatment effect modifiers and prognostic factors while assessing confirmed disability progression (CDP), relapse, and safety outcomes. Individual patient data for OZM (SUNBEAM and RADIANCE Part B trials) and aggregate level data for TERI (ASCLEPIOS I/II, TOWER, OPTIMUM, and TEMSO trials) were used to evaluate the following outcomes: annualized relapse rate (ARR), proportion of patients relapsed, CDP at 3 and 6 months, overall adverse events (AEs), serious AEs (SAEs), and discontinuations due to AEs. RESULTS After matching, baseline patient characteristics were balanced between OZM and TERI. Compared with TERI, OZM demonstrated significant improvements in ARR (rate ratio: 0.73; 95% CI: 0.62-0.84), proportion of patients relapsed (odds ratio [OR]: 0.56; 95% CI: 0.44-0.70), overall AEs (OR: 0.35; 95% CI: 0.29-0.43), SAEs (OR: 0.53; 95% CI: 0.37-0.77), and discontinuations due to AEs (OR: 0.14; 95% CI: 0.09-0.21). OZM demonstrated statistically significant improvements in CDP at 3 months (hazard ratio [HR]: 0.78; 95% CI: 0.66-0.92) but nonsignificant differences at 6 months (HR: 0.78; 95% CI: 0.60-1.01) compared with TERI. CONCLUSION In this indirect treatment comparison of patients with RMS, OZM appeared to have an improved benefit-risk profile over TERI.
Collapse
Affiliation(s)
- Stanley Cohan
- Providence Multiple Sclerosis Center, Providence Brain and Spine Institute, 2805 NE Glisan St., Portland, OR, 97213 USA.
| | - Tom Tencer
- Bristol Myers Squibb, 3551 Lawrenceville Rd., Princeton, NJ, 08540 USA
| | | | - Xuelian Zhu
- Genesis Research, 5 Marine View Plaza, Hoboken, NJ, 07030 USA
| | - Marko Zivkovic
- Genesis Research, 5 Marine View Plaza, Hoboken, NJ, 07030 USA
| | - Jinender Kumar
- Bristol Myers Squibb, 3551 Lawrenceville Rd., Princeton, NJ, 08540 USA
| |
Collapse
|
36
|
Fernández-Velasco JI, Kuhle J, Monreal E, Meca-Lallana V, Meca-Lallana J, Izquierdo G, Gascón-Giménez F, Sainz de la Maza S, Walo-Delgado PE, Maceski A, Rodríguez-Martín E, Roldán E, Villarrubia N, Saiz A, Blanco Y, Sánchez P, Carreón-Guarnizo E, Aladro Y, Brieva L, Íñiguez C, González-Suárez I, Rodríguez de Antonio LA, Masjuan J, Costa-Frossard L, Villar LM. Effect of Ocrelizumab in Blood Leukocytes of Patients With Primary Progressive MS. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:e940. [PMID: 33408167 PMCID: PMC7862094 DOI: 10.1212/nxi.0000000000000940] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/03/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To analyze the changes induced by ocrelizumab in blood immune cells of patients with primary progressive MS (PPMS). METHODS In this multicenter prospective study including 53 patients with PPMS who initiated ocrelizumab treatment, we determined effector, memory, and regulatory cells by flow cytometry at baseline and after 6 months of therapy. Wilcoxon matched paired tests were used to assess differences between baseline and 6 months' results. p Values were corrected using the Bonferroni test. RESULTS Ocrelizumab reduced the numbers of naive and memory B cells (p < 0.0001) and those of B cells producing interleukin (IL)-6, IL-10, granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor-alpha (TNFα) (p < 0.0001 in all cases). By contrast, the proportions of plasmablasts and B cells producing GM-CSF and TNFα increased significantly, suggesting the need for treatment continuation. We also observed a decrease in CD20+ T-cell numbers (p < 0.0001) and percentages (p < 0.0001), and a clear remodeling of the T-cell compartment characterized by relative increases of the naive/effector ratios in CD4+ (p = 0.002) and CD8+ (p = 0.002) T cells and relative decreases of CD4+ (p = 0.03) and CD8+ (p = 0.004) T cells producing interferon-gamma. Total monocyte numbers increased (p = 0.002), but no changes were observed in those producing inflammatory cytokines. The immunologic variations were associated with a reduction of serum neurofilament light chain (sNfL) levels (p = 0.008). The reduction was observed in patients with Gd-enhanced lesions at baseline and in Gd- patients with baseline sNfL >10 pg/mL. CONCLUSIONS In PPMS, effector B-cell depletion changed T-cell response toward a low inflammatory profile, resulting in decreased sNfL levels.
Collapse
Affiliation(s)
- José I. Fernández-Velasco
- From the Immunology Department (J.I.F.-V., P.E.W.-D., E.R.-M., E.R., N.V., L.M.V.), Ramon y Cajal University Hospital, Madrid, Spain; Neurologic Clinic and Policlinic (J.K., A.M.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Neurology Department (E.M., S.S.d.l.M., J.M., L.C.-F.), Ramon y Cajal University Hospital, Madrid; Neurology Department (V.M.-L., P.S.), La Princesa University Hospital, Madrid; Multiple Sclerosis and Clinical Neuroimmunology Unit (J.M.-L., E.C.-G.), Virgen de la Arrixaca University Hospital, Murcia; Multiple Sclerosis Unit (G.I.), Vithas Nisa Sevilla Hospital; Neurology Department (F.G.-G.), Valencia Clinic University Hospital; Center of Neuroimmunology (A.S., Y.B.), Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona; Neurology Department (Y.A.), Getafe University Hospital, Madrid; Neurology Department (L.B.), Arnau de Vilanova Hospital, Lleida; Neurology Department (C.Í.), Lozano Blesa Clinic University Hospital, Zaragoza; Neurology Department (I.G.-S.), Alvaro Cunqueiro Hospital, Vigo; Neurology Department (L.A.R.d.A.), Fuenlabrada University Hospital, Madrid, Spain
| | - Jens Kuhle
- From the Immunology Department (J.I.F.-V., P.E.W.-D., E.R.-M., E.R., N.V., L.M.V.), Ramon y Cajal University Hospital, Madrid, Spain; Neurologic Clinic and Policlinic (J.K., A.M.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Neurology Department (E.M., S.S.d.l.M., J.M., L.C.-F.), Ramon y Cajal University Hospital, Madrid; Neurology Department (V.M.-L., P.S.), La Princesa University Hospital, Madrid; Multiple Sclerosis and Clinical Neuroimmunology Unit (J.M.-L., E.C.-G.), Virgen de la Arrixaca University Hospital, Murcia; Multiple Sclerosis Unit (G.I.), Vithas Nisa Sevilla Hospital; Neurology Department (F.G.-G.), Valencia Clinic University Hospital; Center of Neuroimmunology (A.S., Y.B.), Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona; Neurology Department (Y.A.), Getafe University Hospital, Madrid; Neurology Department (L.B.), Arnau de Vilanova Hospital, Lleida; Neurology Department (C.Í.), Lozano Blesa Clinic University Hospital, Zaragoza; Neurology Department (I.G.-S.), Alvaro Cunqueiro Hospital, Vigo; Neurology Department (L.A.R.d.A.), Fuenlabrada University Hospital, Madrid, Spain
| | - Enric Monreal
- From the Immunology Department (J.I.F.-V., P.E.W.-D., E.R.-M., E.R., N.V., L.M.V.), Ramon y Cajal University Hospital, Madrid, Spain; Neurologic Clinic and Policlinic (J.K., A.M.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Neurology Department (E.M., S.S.d.l.M., J.M., L.C.-F.), Ramon y Cajal University Hospital, Madrid; Neurology Department (V.M.-L., P.S.), La Princesa University Hospital, Madrid; Multiple Sclerosis and Clinical Neuroimmunology Unit (J.M.-L., E.C.-G.), Virgen de la Arrixaca University Hospital, Murcia; Multiple Sclerosis Unit (G.I.), Vithas Nisa Sevilla Hospital; Neurology Department (F.G.-G.), Valencia Clinic University Hospital; Center of Neuroimmunology (A.S., Y.B.), Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona; Neurology Department (Y.A.), Getafe University Hospital, Madrid; Neurology Department (L.B.), Arnau de Vilanova Hospital, Lleida; Neurology Department (C.Í.), Lozano Blesa Clinic University Hospital, Zaragoza; Neurology Department (I.G.-S.), Alvaro Cunqueiro Hospital, Vigo; Neurology Department (L.A.R.d.A.), Fuenlabrada University Hospital, Madrid, Spain
| | - Virginia Meca-Lallana
- From the Immunology Department (J.I.F.-V., P.E.W.-D., E.R.-M., E.R., N.V., L.M.V.), Ramon y Cajal University Hospital, Madrid, Spain; Neurologic Clinic and Policlinic (J.K., A.M.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Neurology Department (E.M., S.S.d.l.M., J.M., L.C.-F.), Ramon y Cajal University Hospital, Madrid; Neurology Department (V.M.-L., P.S.), La Princesa University Hospital, Madrid; Multiple Sclerosis and Clinical Neuroimmunology Unit (J.M.-L., E.C.-G.), Virgen de la Arrixaca University Hospital, Murcia; Multiple Sclerosis Unit (G.I.), Vithas Nisa Sevilla Hospital; Neurology Department (F.G.-G.), Valencia Clinic University Hospital; Center of Neuroimmunology (A.S., Y.B.), Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona; Neurology Department (Y.A.), Getafe University Hospital, Madrid; Neurology Department (L.B.), Arnau de Vilanova Hospital, Lleida; Neurology Department (C.Í.), Lozano Blesa Clinic University Hospital, Zaragoza; Neurology Department (I.G.-S.), Alvaro Cunqueiro Hospital, Vigo; Neurology Department (L.A.R.d.A.), Fuenlabrada University Hospital, Madrid, Spain
| | - José Meca-Lallana
- From the Immunology Department (J.I.F.-V., P.E.W.-D., E.R.-M., E.R., N.V., L.M.V.), Ramon y Cajal University Hospital, Madrid, Spain; Neurologic Clinic and Policlinic (J.K., A.M.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Neurology Department (E.M., S.S.d.l.M., J.M., L.C.-F.), Ramon y Cajal University Hospital, Madrid; Neurology Department (V.M.-L., P.S.), La Princesa University Hospital, Madrid; Multiple Sclerosis and Clinical Neuroimmunology Unit (J.M.-L., E.C.-G.), Virgen de la Arrixaca University Hospital, Murcia; Multiple Sclerosis Unit (G.I.), Vithas Nisa Sevilla Hospital; Neurology Department (F.G.-G.), Valencia Clinic University Hospital; Center of Neuroimmunology (A.S., Y.B.), Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona; Neurology Department (Y.A.), Getafe University Hospital, Madrid; Neurology Department (L.B.), Arnau de Vilanova Hospital, Lleida; Neurology Department (C.Í.), Lozano Blesa Clinic University Hospital, Zaragoza; Neurology Department (I.G.-S.), Alvaro Cunqueiro Hospital, Vigo; Neurology Department (L.A.R.d.A.), Fuenlabrada University Hospital, Madrid, Spain
| | - Guillermo Izquierdo
- From the Immunology Department (J.I.F.-V., P.E.W.-D., E.R.-M., E.R., N.V., L.M.V.), Ramon y Cajal University Hospital, Madrid, Spain; Neurologic Clinic and Policlinic (J.K., A.M.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Neurology Department (E.M., S.S.d.l.M., J.M., L.C.-F.), Ramon y Cajal University Hospital, Madrid; Neurology Department (V.M.-L., P.S.), La Princesa University Hospital, Madrid; Multiple Sclerosis and Clinical Neuroimmunology Unit (J.M.-L., E.C.-G.), Virgen de la Arrixaca University Hospital, Murcia; Multiple Sclerosis Unit (G.I.), Vithas Nisa Sevilla Hospital; Neurology Department (F.G.-G.), Valencia Clinic University Hospital; Center of Neuroimmunology (A.S., Y.B.), Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona; Neurology Department (Y.A.), Getafe University Hospital, Madrid; Neurology Department (L.B.), Arnau de Vilanova Hospital, Lleida; Neurology Department (C.Í.), Lozano Blesa Clinic University Hospital, Zaragoza; Neurology Department (I.G.-S.), Alvaro Cunqueiro Hospital, Vigo; Neurology Department (L.A.R.d.A.), Fuenlabrada University Hospital, Madrid, Spain
| | - Francisco Gascón-Giménez
- From the Immunology Department (J.I.F.-V., P.E.W.-D., E.R.-M., E.R., N.V., L.M.V.), Ramon y Cajal University Hospital, Madrid, Spain; Neurologic Clinic and Policlinic (J.K., A.M.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Neurology Department (E.M., S.S.d.l.M., J.M., L.C.-F.), Ramon y Cajal University Hospital, Madrid; Neurology Department (V.M.-L., P.S.), La Princesa University Hospital, Madrid; Multiple Sclerosis and Clinical Neuroimmunology Unit (J.M.-L., E.C.-G.), Virgen de la Arrixaca University Hospital, Murcia; Multiple Sclerosis Unit (G.I.), Vithas Nisa Sevilla Hospital; Neurology Department (F.G.-G.), Valencia Clinic University Hospital; Center of Neuroimmunology (A.S., Y.B.), Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona; Neurology Department (Y.A.), Getafe University Hospital, Madrid; Neurology Department (L.B.), Arnau de Vilanova Hospital, Lleida; Neurology Department (C.Í.), Lozano Blesa Clinic University Hospital, Zaragoza; Neurology Department (I.G.-S.), Alvaro Cunqueiro Hospital, Vigo; Neurology Department (L.A.R.d.A.), Fuenlabrada University Hospital, Madrid, Spain
| | - Susana Sainz de la Maza
- From the Immunology Department (J.I.F.-V., P.E.W.-D., E.R.-M., E.R., N.V., L.M.V.), Ramon y Cajal University Hospital, Madrid, Spain; Neurologic Clinic and Policlinic (J.K., A.M.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Neurology Department (E.M., S.S.d.l.M., J.M., L.C.-F.), Ramon y Cajal University Hospital, Madrid; Neurology Department (V.M.-L., P.S.), La Princesa University Hospital, Madrid; Multiple Sclerosis and Clinical Neuroimmunology Unit (J.M.-L., E.C.-G.), Virgen de la Arrixaca University Hospital, Murcia; Multiple Sclerosis Unit (G.I.), Vithas Nisa Sevilla Hospital; Neurology Department (F.G.-G.), Valencia Clinic University Hospital; Center of Neuroimmunology (A.S., Y.B.), Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona; Neurology Department (Y.A.), Getafe University Hospital, Madrid; Neurology Department (L.B.), Arnau de Vilanova Hospital, Lleida; Neurology Department (C.Í.), Lozano Blesa Clinic University Hospital, Zaragoza; Neurology Department (I.G.-S.), Alvaro Cunqueiro Hospital, Vigo; Neurology Department (L.A.R.d.A.), Fuenlabrada University Hospital, Madrid, Spain
| | - Paulette E. Walo-Delgado
- From the Immunology Department (J.I.F.-V., P.E.W.-D., E.R.-M., E.R., N.V., L.M.V.), Ramon y Cajal University Hospital, Madrid, Spain; Neurologic Clinic and Policlinic (J.K., A.M.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Neurology Department (E.M., S.S.d.l.M., J.M., L.C.-F.), Ramon y Cajal University Hospital, Madrid; Neurology Department (V.M.-L., P.S.), La Princesa University Hospital, Madrid; Multiple Sclerosis and Clinical Neuroimmunology Unit (J.M.-L., E.C.-G.), Virgen de la Arrixaca University Hospital, Murcia; Multiple Sclerosis Unit (G.I.), Vithas Nisa Sevilla Hospital; Neurology Department (F.G.-G.), Valencia Clinic University Hospital; Center of Neuroimmunology (A.S., Y.B.), Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona; Neurology Department (Y.A.), Getafe University Hospital, Madrid; Neurology Department (L.B.), Arnau de Vilanova Hospital, Lleida; Neurology Department (C.Í.), Lozano Blesa Clinic University Hospital, Zaragoza; Neurology Department (I.G.-S.), Alvaro Cunqueiro Hospital, Vigo; Neurology Department (L.A.R.d.A.), Fuenlabrada University Hospital, Madrid, Spain
| | - Aleksandra Maceski
- From the Immunology Department (J.I.F.-V., P.E.W.-D., E.R.-M., E.R., N.V., L.M.V.), Ramon y Cajal University Hospital, Madrid, Spain; Neurologic Clinic and Policlinic (J.K., A.M.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Neurology Department (E.M., S.S.d.l.M., J.M., L.C.-F.), Ramon y Cajal University Hospital, Madrid; Neurology Department (V.M.-L., P.S.), La Princesa University Hospital, Madrid; Multiple Sclerosis and Clinical Neuroimmunology Unit (J.M.-L., E.C.-G.), Virgen de la Arrixaca University Hospital, Murcia; Multiple Sclerosis Unit (G.I.), Vithas Nisa Sevilla Hospital; Neurology Department (F.G.-G.), Valencia Clinic University Hospital; Center of Neuroimmunology (A.S., Y.B.), Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona; Neurology Department (Y.A.), Getafe University Hospital, Madrid; Neurology Department (L.B.), Arnau de Vilanova Hospital, Lleida; Neurology Department (C.Í.), Lozano Blesa Clinic University Hospital, Zaragoza; Neurology Department (I.G.-S.), Alvaro Cunqueiro Hospital, Vigo; Neurology Department (L.A.R.d.A.), Fuenlabrada University Hospital, Madrid, Spain
| | - Eulalia Rodríguez-Martín
- From the Immunology Department (J.I.F.-V., P.E.W.-D., E.R.-M., E.R., N.V., L.M.V.), Ramon y Cajal University Hospital, Madrid, Spain; Neurologic Clinic and Policlinic (J.K., A.M.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Neurology Department (E.M., S.S.d.l.M., J.M., L.C.-F.), Ramon y Cajal University Hospital, Madrid; Neurology Department (V.M.-L., P.S.), La Princesa University Hospital, Madrid; Multiple Sclerosis and Clinical Neuroimmunology Unit (J.M.-L., E.C.-G.), Virgen de la Arrixaca University Hospital, Murcia; Multiple Sclerosis Unit (G.I.), Vithas Nisa Sevilla Hospital; Neurology Department (F.G.-G.), Valencia Clinic University Hospital; Center of Neuroimmunology (A.S., Y.B.), Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona; Neurology Department (Y.A.), Getafe University Hospital, Madrid; Neurology Department (L.B.), Arnau de Vilanova Hospital, Lleida; Neurology Department (C.Í.), Lozano Blesa Clinic University Hospital, Zaragoza; Neurology Department (I.G.-S.), Alvaro Cunqueiro Hospital, Vigo; Neurology Department (L.A.R.d.A.), Fuenlabrada University Hospital, Madrid, Spain
| | - Ernesto Roldán
- From the Immunology Department (J.I.F.-V., P.E.W.-D., E.R.-M., E.R., N.V., L.M.V.), Ramon y Cajal University Hospital, Madrid, Spain; Neurologic Clinic and Policlinic (J.K., A.M.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Neurology Department (E.M., S.S.d.l.M., J.M., L.C.-F.), Ramon y Cajal University Hospital, Madrid; Neurology Department (V.M.-L., P.S.), La Princesa University Hospital, Madrid; Multiple Sclerosis and Clinical Neuroimmunology Unit (J.M.-L., E.C.-G.), Virgen de la Arrixaca University Hospital, Murcia; Multiple Sclerosis Unit (G.I.), Vithas Nisa Sevilla Hospital; Neurology Department (F.G.-G.), Valencia Clinic University Hospital; Center of Neuroimmunology (A.S., Y.B.), Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona; Neurology Department (Y.A.), Getafe University Hospital, Madrid; Neurology Department (L.B.), Arnau de Vilanova Hospital, Lleida; Neurology Department (C.Í.), Lozano Blesa Clinic University Hospital, Zaragoza; Neurology Department (I.G.-S.), Alvaro Cunqueiro Hospital, Vigo; Neurology Department (L.A.R.d.A.), Fuenlabrada University Hospital, Madrid, Spain
| | - Noelia Villarrubia
- From the Immunology Department (J.I.F.-V., P.E.W.-D., E.R.-M., E.R., N.V., L.M.V.), Ramon y Cajal University Hospital, Madrid, Spain; Neurologic Clinic and Policlinic (J.K., A.M.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Neurology Department (E.M., S.S.d.l.M., J.M., L.C.-F.), Ramon y Cajal University Hospital, Madrid; Neurology Department (V.M.-L., P.S.), La Princesa University Hospital, Madrid; Multiple Sclerosis and Clinical Neuroimmunology Unit (J.M.-L., E.C.-G.), Virgen de la Arrixaca University Hospital, Murcia; Multiple Sclerosis Unit (G.I.), Vithas Nisa Sevilla Hospital; Neurology Department (F.G.-G.), Valencia Clinic University Hospital; Center of Neuroimmunology (A.S., Y.B.), Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona; Neurology Department (Y.A.), Getafe University Hospital, Madrid; Neurology Department (L.B.), Arnau de Vilanova Hospital, Lleida; Neurology Department (C.Í.), Lozano Blesa Clinic University Hospital, Zaragoza; Neurology Department (I.G.-S.), Alvaro Cunqueiro Hospital, Vigo; Neurology Department (L.A.R.d.A.), Fuenlabrada University Hospital, Madrid, Spain
| | - Albert Saiz
- From the Immunology Department (J.I.F.-V., P.E.W.-D., E.R.-M., E.R., N.V., L.M.V.), Ramon y Cajal University Hospital, Madrid, Spain; Neurologic Clinic and Policlinic (J.K., A.M.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Neurology Department (E.M., S.S.d.l.M., J.M., L.C.-F.), Ramon y Cajal University Hospital, Madrid; Neurology Department (V.M.-L., P.S.), La Princesa University Hospital, Madrid; Multiple Sclerosis and Clinical Neuroimmunology Unit (J.M.-L., E.C.-G.), Virgen de la Arrixaca University Hospital, Murcia; Multiple Sclerosis Unit (G.I.), Vithas Nisa Sevilla Hospital; Neurology Department (F.G.-G.), Valencia Clinic University Hospital; Center of Neuroimmunology (A.S., Y.B.), Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona; Neurology Department (Y.A.), Getafe University Hospital, Madrid; Neurology Department (L.B.), Arnau de Vilanova Hospital, Lleida; Neurology Department (C.Í.), Lozano Blesa Clinic University Hospital, Zaragoza; Neurology Department (I.G.-S.), Alvaro Cunqueiro Hospital, Vigo; Neurology Department (L.A.R.d.A.), Fuenlabrada University Hospital, Madrid, Spain
| | - Yolanda Blanco
- From the Immunology Department (J.I.F.-V., P.E.W.-D., E.R.-M., E.R., N.V., L.M.V.), Ramon y Cajal University Hospital, Madrid, Spain; Neurologic Clinic and Policlinic (J.K., A.M.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Neurology Department (E.M., S.S.d.l.M., J.M., L.C.-F.), Ramon y Cajal University Hospital, Madrid; Neurology Department (V.M.-L., P.S.), La Princesa University Hospital, Madrid; Multiple Sclerosis and Clinical Neuroimmunology Unit (J.M.-L., E.C.-G.), Virgen de la Arrixaca University Hospital, Murcia; Multiple Sclerosis Unit (G.I.), Vithas Nisa Sevilla Hospital; Neurology Department (F.G.-G.), Valencia Clinic University Hospital; Center of Neuroimmunology (A.S., Y.B.), Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona; Neurology Department (Y.A.), Getafe University Hospital, Madrid; Neurology Department (L.B.), Arnau de Vilanova Hospital, Lleida; Neurology Department (C.Í.), Lozano Blesa Clinic University Hospital, Zaragoza; Neurology Department (I.G.-S.), Alvaro Cunqueiro Hospital, Vigo; Neurology Department (L.A.R.d.A.), Fuenlabrada University Hospital, Madrid, Spain
| | - Pedro Sánchez
- From the Immunology Department (J.I.F.-V., P.E.W.-D., E.R.-M., E.R., N.V., L.M.V.), Ramon y Cajal University Hospital, Madrid, Spain; Neurologic Clinic and Policlinic (J.K., A.M.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Neurology Department (E.M., S.S.d.l.M., J.M., L.C.-F.), Ramon y Cajal University Hospital, Madrid; Neurology Department (V.M.-L., P.S.), La Princesa University Hospital, Madrid; Multiple Sclerosis and Clinical Neuroimmunology Unit (J.M.-L., E.C.-G.), Virgen de la Arrixaca University Hospital, Murcia; Multiple Sclerosis Unit (G.I.), Vithas Nisa Sevilla Hospital; Neurology Department (F.G.-G.), Valencia Clinic University Hospital; Center of Neuroimmunology (A.S., Y.B.), Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona; Neurology Department (Y.A.), Getafe University Hospital, Madrid; Neurology Department (L.B.), Arnau de Vilanova Hospital, Lleida; Neurology Department (C.Í.), Lozano Blesa Clinic University Hospital, Zaragoza; Neurology Department (I.G.-S.), Alvaro Cunqueiro Hospital, Vigo; Neurology Department (L.A.R.d.A.), Fuenlabrada University Hospital, Madrid, Spain
| | - Ester Carreón-Guarnizo
- From the Immunology Department (J.I.F.-V., P.E.W.-D., E.R.-M., E.R., N.V., L.M.V.), Ramon y Cajal University Hospital, Madrid, Spain; Neurologic Clinic and Policlinic (J.K., A.M.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Neurology Department (E.M., S.S.d.l.M., J.M., L.C.-F.), Ramon y Cajal University Hospital, Madrid; Neurology Department (V.M.-L., P.S.), La Princesa University Hospital, Madrid; Multiple Sclerosis and Clinical Neuroimmunology Unit (J.M.-L., E.C.-G.), Virgen de la Arrixaca University Hospital, Murcia; Multiple Sclerosis Unit (G.I.), Vithas Nisa Sevilla Hospital; Neurology Department (F.G.-G.), Valencia Clinic University Hospital; Center of Neuroimmunology (A.S., Y.B.), Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona; Neurology Department (Y.A.), Getafe University Hospital, Madrid; Neurology Department (L.B.), Arnau de Vilanova Hospital, Lleida; Neurology Department (C.Í.), Lozano Blesa Clinic University Hospital, Zaragoza; Neurology Department (I.G.-S.), Alvaro Cunqueiro Hospital, Vigo; Neurology Department (L.A.R.d.A.), Fuenlabrada University Hospital, Madrid, Spain
| | - Yolanda Aladro
- From the Immunology Department (J.I.F.-V., P.E.W.-D., E.R.-M., E.R., N.V., L.M.V.), Ramon y Cajal University Hospital, Madrid, Spain; Neurologic Clinic and Policlinic (J.K., A.M.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Neurology Department (E.M., S.S.d.l.M., J.M., L.C.-F.), Ramon y Cajal University Hospital, Madrid; Neurology Department (V.M.-L., P.S.), La Princesa University Hospital, Madrid; Multiple Sclerosis and Clinical Neuroimmunology Unit (J.M.-L., E.C.-G.), Virgen de la Arrixaca University Hospital, Murcia; Multiple Sclerosis Unit (G.I.), Vithas Nisa Sevilla Hospital; Neurology Department (F.G.-G.), Valencia Clinic University Hospital; Center of Neuroimmunology (A.S., Y.B.), Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona; Neurology Department (Y.A.), Getafe University Hospital, Madrid; Neurology Department (L.B.), Arnau de Vilanova Hospital, Lleida; Neurology Department (C.Í.), Lozano Blesa Clinic University Hospital, Zaragoza; Neurology Department (I.G.-S.), Alvaro Cunqueiro Hospital, Vigo; Neurology Department (L.A.R.d.A.), Fuenlabrada University Hospital, Madrid, Spain
| | - Luis Brieva
- From the Immunology Department (J.I.F.-V., P.E.W.-D., E.R.-M., E.R., N.V., L.M.V.), Ramon y Cajal University Hospital, Madrid, Spain; Neurologic Clinic and Policlinic (J.K., A.M.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Neurology Department (E.M., S.S.d.l.M., J.M., L.C.-F.), Ramon y Cajal University Hospital, Madrid; Neurology Department (V.M.-L., P.S.), La Princesa University Hospital, Madrid; Multiple Sclerosis and Clinical Neuroimmunology Unit (J.M.-L., E.C.-G.), Virgen de la Arrixaca University Hospital, Murcia; Multiple Sclerosis Unit (G.I.), Vithas Nisa Sevilla Hospital; Neurology Department (F.G.-G.), Valencia Clinic University Hospital; Center of Neuroimmunology (A.S., Y.B.), Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona; Neurology Department (Y.A.), Getafe University Hospital, Madrid; Neurology Department (L.B.), Arnau de Vilanova Hospital, Lleida; Neurology Department (C.Í.), Lozano Blesa Clinic University Hospital, Zaragoza; Neurology Department (I.G.-S.), Alvaro Cunqueiro Hospital, Vigo; Neurology Department (L.A.R.d.A.), Fuenlabrada University Hospital, Madrid, Spain
| | - Cristina Íñiguez
- From the Immunology Department (J.I.F.-V., P.E.W.-D., E.R.-M., E.R., N.V., L.M.V.), Ramon y Cajal University Hospital, Madrid, Spain; Neurologic Clinic and Policlinic (J.K., A.M.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Neurology Department (E.M., S.S.d.l.M., J.M., L.C.-F.), Ramon y Cajal University Hospital, Madrid; Neurology Department (V.M.-L., P.S.), La Princesa University Hospital, Madrid; Multiple Sclerosis and Clinical Neuroimmunology Unit (J.M.-L., E.C.-G.), Virgen de la Arrixaca University Hospital, Murcia; Multiple Sclerosis Unit (G.I.), Vithas Nisa Sevilla Hospital; Neurology Department (F.G.-G.), Valencia Clinic University Hospital; Center of Neuroimmunology (A.S., Y.B.), Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona; Neurology Department (Y.A.), Getafe University Hospital, Madrid; Neurology Department (L.B.), Arnau de Vilanova Hospital, Lleida; Neurology Department (C.Í.), Lozano Blesa Clinic University Hospital, Zaragoza; Neurology Department (I.G.-S.), Alvaro Cunqueiro Hospital, Vigo; Neurology Department (L.A.R.d.A.), Fuenlabrada University Hospital, Madrid, Spain
| | - Inés González-Suárez
- From the Immunology Department (J.I.F.-V., P.E.W.-D., E.R.-M., E.R., N.V., L.M.V.), Ramon y Cajal University Hospital, Madrid, Spain; Neurologic Clinic and Policlinic (J.K., A.M.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Neurology Department (E.M., S.S.d.l.M., J.M., L.C.-F.), Ramon y Cajal University Hospital, Madrid; Neurology Department (V.M.-L., P.S.), La Princesa University Hospital, Madrid; Multiple Sclerosis and Clinical Neuroimmunology Unit (J.M.-L., E.C.-G.), Virgen de la Arrixaca University Hospital, Murcia; Multiple Sclerosis Unit (G.I.), Vithas Nisa Sevilla Hospital; Neurology Department (F.G.-G.), Valencia Clinic University Hospital; Center of Neuroimmunology (A.S., Y.B.), Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona; Neurology Department (Y.A.), Getafe University Hospital, Madrid; Neurology Department (L.B.), Arnau de Vilanova Hospital, Lleida; Neurology Department (C.Í.), Lozano Blesa Clinic University Hospital, Zaragoza; Neurology Department (I.G.-S.), Alvaro Cunqueiro Hospital, Vigo; Neurology Department (L.A.R.d.A.), Fuenlabrada University Hospital, Madrid, Spain
| | - Luis A. Rodríguez de Antonio
- From the Immunology Department (J.I.F.-V., P.E.W.-D., E.R.-M., E.R., N.V., L.M.V.), Ramon y Cajal University Hospital, Madrid, Spain; Neurologic Clinic and Policlinic (J.K., A.M.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Neurology Department (E.M., S.S.d.l.M., J.M., L.C.-F.), Ramon y Cajal University Hospital, Madrid; Neurology Department (V.M.-L., P.S.), La Princesa University Hospital, Madrid; Multiple Sclerosis and Clinical Neuroimmunology Unit (J.M.-L., E.C.-G.), Virgen de la Arrixaca University Hospital, Murcia; Multiple Sclerosis Unit (G.I.), Vithas Nisa Sevilla Hospital; Neurology Department (F.G.-G.), Valencia Clinic University Hospital; Center of Neuroimmunology (A.S., Y.B.), Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona; Neurology Department (Y.A.), Getafe University Hospital, Madrid; Neurology Department (L.B.), Arnau de Vilanova Hospital, Lleida; Neurology Department (C.Í.), Lozano Blesa Clinic University Hospital, Zaragoza; Neurology Department (I.G.-S.), Alvaro Cunqueiro Hospital, Vigo; Neurology Department (L.A.R.d.A.), Fuenlabrada University Hospital, Madrid, Spain
| | - Jaime Masjuan
- From the Immunology Department (J.I.F.-V., P.E.W.-D., E.R.-M., E.R., N.V., L.M.V.), Ramon y Cajal University Hospital, Madrid, Spain; Neurologic Clinic and Policlinic (J.K., A.M.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Neurology Department (E.M., S.S.d.l.M., J.M., L.C.-F.), Ramon y Cajal University Hospital, Madrid; Neurology Department (V.M.-L., P.S.), La Princesa University Hospital, Madrid; Multiple Sclerosis and Clinical Neuroimmunology Unit (J.M.-L., E.C.-G.), Virgen de la Arrixaca University Hospital, Murcia; Multiple Sclerosis Unit (G.I.), Vithas Nisa Sevilla Hospital; Neurology Department (F.G.-G.), Valencia Clinic University Hospital; Center of Neuroimmunology (A.S., Y.B.), Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona; Neurology Department (Y.A.), Getafe University Hospital, Madrid; Neurology Department (L.B.), Arnau de Vilanova Hospital, Lleida; Neurology Department (C.Í.), Lozano Blesa Clinic University Hospital, Zaragoza; Neurology Department (I.G.-S.), Alvaro Cunqueiro Hospital, Vigo; Neurology Department (L.A.R.d.A.), Fuenlabrada University Hospital, Madrid, Spain
| | - Lucienne Costa-Frossard
- From the Immunology Department (J.I.F.-V., P.E.W.-D., E.R.-M., E.R., N.V., L.M.V.), Ramon y Cajal University Hospital, Madrid, Spain; Neurologic Clinic and Policlinic (J.K., A.M.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Neurology Department (E.M., S.S.d.l.M., J.M., L.C.-F.), Ramon y Cajal University Hospital, Madrid; Neurology Department (V.M.-L., P.S.), La Princesa University Hospital, Madrid; Multiple Sclerosis and Clinical Neuroimmunology Unit (J.M.-L., E.C.-G.), Virgen de la Arrixaca University Hospital, Murcia; Multiple Sclerosis Unit (G.I.), Vithas Nisa Sevilla Hospital; Neurology Department (F.G.-G.), Valencia Clinic University Hospital; Center of Neuroimmunology (A.S., Y.B.), Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona; Neurology Department (Y.A.), Getafe University Hospital, Madrid; Neurology Department (L.B.), Arnau de Vilanova Hospital, Lleida; Neurology Department (C.Í.), Lozano Blesa Clinic University Hospital, Zaragoza; Neurology Department (I.G.-S.), Alvaro Cunqueiro Hospital, Vigo; Neurology Department (L.A.R.d.A.), Fuenlabrada University Hospital, Madrid, Spain
| | - Luisa M. Villar
- From the Immunology Department (J.I.F.-V., P.E.W.-D., E.R.-M., E.R., N.V., L.M.V.), Ramon y Cajal University Hospital, Madrid, Spain; Neurologic Clinic and Policlinic (J.K., A.M.), Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Switzerland; Neurology Department (E.M., S.S.d.l.M., J.M., L.C.-F.), Ramon y Cajal University Hospital, Madrid; Neurology Department (V.M.-L., P.S.), La Princesa University Hospital, Madrid; Multiple Sclerosis and Clinical Neuroimmunology Unit (J.M.-L., E.C.-G.), Virgen de la Arrixaca University Hospital, Murcia; Multiple Sclerosis Unit (G.I.), Vithas Nisa Sevilla Hospital; Neurology Department (F.G.-G.), Valencia Clinic University Hospital; Center of Neuroimmunology (A.S., Y.B.), Neurology Department, Clínic of Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and Institut de Neurociències, Universitat de Barcelona; Neurology Department (Y.A.), Getafe University Hospital, Madrid; Neurology Department (L.B.), Arnau de Vilanova Hospital, Lleida; Neurology Department (C.Í.), Lozano Blesa Clinic University Hospital, Zaragoza; Neurology Department (I.G.-S.), Alvaro Cunqueiro Hospital, Vigo; Neurology Department (L.A.R.d.A.), Fuenlabrada University Hospital, Madrid, Spain
| |
Collapse
|
37
|
Ramaglia V, Rojas O, Naouar I, Gommerman JL. The Ins and Outs of Central Nervous System Inflammation-Lessons Learned from Multiple Sclerosis. Annu Rev Immunol 2021; 39:199-226. [PMID: 33524273 DOI: 10.1146/annurev-immunol-093019-124155] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multiple sclerosis (MS) is a chronic disease that is characterized by the inappropriate invasion of lymphocytes and monocytes into the central nervous system (CNS), where they orchestrate the demyelination of axons, leading to physical and cognitive disability. There are many reasons immunologists should be interested in MS. Aside from the fact that there is still significant unmet need for patients living with the progressive form of the disease, MS is a case study for how immune cells cross CNS barriers and subsequently interact with specialized tissue parenchymal cells. In this review, we describe the types of immune cells that infiltrate the CNS and then describe interactions between immune cells and glial cells in different types of lesions. Lastly, we provide evidence for CNS-compartmentalized immune cells and speculate on how this impacts disease progression for MS patients.
Collapse
Affiliation(s)
- Valeria Ramaglia
- Department of Immunology, University of Toronto, Ontario M5S 1A8, Canada;
| | - Olga Rojas
- Department of Immunology, University of Toronto, Ontario M5S 1A8, Canada;
| | - Ikbel Naouar
- Department of Immunology, University of Toronto, Ontario M5S 1A8, Canada;
| | | |
Collapse
|
38
|
Morgan BP, Gommerman JL, Ramaglia V. An "Outside-In" and "Inside-Out" Consideration of Complement in the Multiple Sclerosis Brain: Lessons From Development and Neurodegenerative Diseases. Front Cell Neurosci 2021; 14:600656. [PMID: 33488361 PMCID: PMC7817777 DOI: 10.3389/fncel.2020.600656] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
The last 15 years have seen an explosion of new findings on the role of complement, a major arm of the immune system, in the central nervous system (CNS) compartment including contributions to cell migration, elimination of synapse during development, aberrant synapse pruning in neurologic disorders, damage to nerve cells in autoimmune diseases, and traumatic injury. Activation of the complement system in multiple sclerosis (MS) is typically thought to occur as part of a primary (auto)immune response from the periphery (the outside) against CNS antigens (the inside). However, evidence of local complement production from CNS-resident cells, intracellular complement functions, and the more recently discovered role of early complement components in shaping synaptic circuits in the absence of inflammation opens up the possibility that complement-related sequelae may start and finish within the brain itself. In this review, the complement system will be introduced, followed by evidence that implicates complement in shaping the developing, adult, and normal aging CNS as well as its contribution to pathology in neurodegenerative conditions. Discussion of data supporting "outside-in" vs. "inside-out" roles of complement in MS will be presented, concluded by thoughts on potential approaches to therapies targeting specific elements of the complement system.
Collapse
Affiliation(s)
- B. Paul Morgan
- UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, United Kingdom
| | | | - Valeria Ramaglia
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Abraham A, Nicholson L, Dick A, Rice C, Atan D. Intermediate uveitis associated with MS: Diagnosis, clinical features, pathogenic mechanisms, and recommendations for management. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:e909. [PMID: 33127747 PMCID: PMC7641065 DOI: 10.1212/nxi.0000000000000909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/10/2020] [Indexed: 01/02/2023]
Abstract
Uveitis is a major cause of visual impairment and blindness among working-age adults, accounting for 10% of legal blindness in the United States. Among people with MS, the prevalence of uveitis is 10 times higher than among the general population, and because MS and uveitis share similar genetic risk factors and immunologic effector pathways, it is not clear whether uveitis is one of the manifestations of MS or a coincident disorder. This uncertainty raises several diagnostic and management issues for clinicians who look after these patients, particularly with regard to recognizing visual symptoms resulting from demyelination, intraocular inflammation, or the visual complications of disease modifying drugs for MS, e.g., fingolimod. Likewise, management decisions regarding patients with uveitis are influenced by the risk of precipitating or exacerbating episodes of demyelination, e.g., following anti-tumor necrosis factor biologic therapy, and other neurologic complications of immunosuppressive treatments for uveitis. In this review, we explore the similarities in the pathophysiology, clinical features, and treatment of patients with uveitis and MS. Based on the latest evidence, we make a set of recommendations to help guide neurologists and ophthalmologists to best manage patients affected by both conditions.
Collapse
Affiliation(s)
- Alan Abraham
- From the Translational Health Sciences (L.N., A.D., C.R., D.A.), Bristol Medical School, University of Bristol; Bristol Eye Hospital (A.A.,A.D., D.A.), University Hospitals Bristol and Weston NHS Foundation Trust, United Kingdom; UCL- Institute of Ophthalmology and NIHR Biomedical Research Centre (A.D.), Moorfields Eye Hospital and UCL-Institute of Ophthalmology; and Clinical Neurosciences (C.R.), Southmead Hospital, North Bristol NHS Trust, United Kingdom.
| | - Lindsay Nicholson
- From the Translational Health Sciences (L.N., A.D., C.R., D.A.), Bristol Medical School, University of Bristol; Bristol Eye Hospital (A.A.,A.D., D.A.), University Hospitals Bristol and Weston NHS Foundation Trust, United Kingdom; UCL- Institute of Ophthalmology and NIHR Biomedical Research Centre (A.D.), Moorfields Eye Hospital and UCL-Institute of Ophthalmology; and Clinical Neurosciences (C.R.), Southmead Hospital, North Bristol NHS Trust, United Kingdom
| | - Andrew Dick
- From the Translational Health Sciences (L.N., A.D., C.R., D.A.), Bristol Medical School, University of Bristol; Bristol Eye Hospital (A.A.,A.D., D.A.), University Hospitals Bristol and Weston NHS Foundation Trust, United Kingdom; UCL- Institute of Ophthalmology and NIHR Biomedical Research Centre (A.D.), Moorfields Eye Hospital and UCL-Institute of Ophthalmology; and Clinical Neurosciences (C.R.), Southmead Hospital, North Bristol NHS Trust, United Kingdom
| | - Claire Rice
- From the Translational Health Sciences (L.N., A.D., C.R., D.A.), Bristol Medical School, University of Bristol; Bristol Eye Hospital (A.A.,A.D., D.A.), University Hospitals Bristol and Weston NHS Foundation Trust, United Kingdom; UCL- Institute of Ophthalmology and NIHR Biomedical Research Centre (A.D.), Moorfields Eye Hospital and UCL-Institute of Ophthalmology; and Clinical Neurosciences (C.R.), Southmead Hospital, North Bristol NHS Trust, United Kingdom
| | - Denize Atan
- From the Translational Health Sciences (L.N., A.D., C.R., D.A.), Bristol Medical School, University of Bristol; Bristol Eye Hospital (A.A.,A.D., D.A.), University Hospitals Bristol and Weston NHS Foundation Trust, United Kingdom; UCL- Institute of Ophthalmology and NIHR Biomedical Research Centre (A.D.), Moorfields Eye Hospital and UCL-Institute of Ophthalmology; and Clinical Neurosciences (C.R.), Southmead Hospital, North Bristol NHS Trust, United Kingdom
| |
Collapse
|
40
|
Torkildsen Ø, Linker RA, Sesmero JM, Fantaccini S, Sanchez-de la Rosa R, Seze JD, Duddy M, Chan A. Living with secondary progressive multiple sclerosis in Europe: perspectives of multiple stakeholders. Neurodegener Dis Manag 2020; 11:9-19. [PMID: 33234006 DOI: 10.2217/nmt-2020-0054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The transition from relapsing-remitting multiple sclerosis to secondary progressive multiple sclerosis (SPMS) remains a clinical challenge owing to the heterogeneous course of the disease, indistinct disease progression and lack of availability of validated biomarkers and diagnostic tools. This article summarizes the outcomes from an international expert group meeting conducted to validate the preliminary research findings gathered through interviews with primary healthcare stakeholders and pharmaceutical representatives, and to understand the current and future patient journey of SPMS across seven European countries. We highlight the uncertainty in SPMS diagnosis and management and, consequently, the need for uniform assessment guidelines, enhanced awareness and a collaborative effort between the stakeholders associated with SPMS patient care and the pharmaceutical industry.
Collapse
Affiliation(s)
- Øivind Torkildsen
- Department of Neurology, Haukeland University Hospital, 5020, Bergen, Norway
| | - Ralf A Linker
- Department of Neurology, University Hospital, 93053, Regensburg, Germany
| | | | | | | | - Jerome de Seze
- University Hospital of Strasbourg, 67200, Strasbourg, France
| | - Martin Duddy
- Department of Neurology, The Newcastle upon Tyne Hospitals Trust, Newcastle upon Tyne, NE7 7DN, UK
| | - Andrew Chan
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| |
Collapse
|
41
|
Tredinnick AR, Probst YC. Evaluating the Effects of Dietary Interventions on Disease Progression and Symptoms of Adults with Multiple Sclerosis: An Umbrella Review. Adv Nutr 2020; 11:1603-1615. [PMID: 32504530 PMCID: PMC7666914 DOI: 10.1093/advances/nmaa063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/08/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system. The role of diet in the progression of MS and severity of symptoms remains unclear. Various systematic literature reviews (SRs) have reported the effects of single nutrients on MS progression or the role of dietary factors on specific symptoms of MS. Narrative reviews have examined the effects of various dietary patterns in MS populations. An umbrella review was undertaken to collate the findings from review articles and evaluate the strength of the scientific evidence of dietary interventions for people living with MS. Scientific databases including MEDLINE, PubMed, CINAHL, and The Cochrane Library were systematically searched up to April 2019. Review articles and meta-analyses were included if they examined the effect of any dietary intervention in adult populations with MS. Outcomes included MS progression indicated by relapses, disability, MRI activity and disease classification, and MS symptoms. Characteristics and findings from both review articles and their included primary studies were extracted and summarized. A total of 19 SRs and 43 narrative reviews were included. Vitamin D and PUFAs were the most commonly studied interventions. Across SR studies, vitamin D supplementation had no significant effect on relapses, MRI, or disability progression; however, an inverse association was found between vitamin D status and disability scores through observational studies. Effects of PUFA supplementation on major outcomes of MS progression were inconsistent across review articles. Other interventions less commonly studied included vitamin, mineral, and herbal supplementation and varying dietary patterns. Strong consistent evidence is lacking for dietary interventions in persons with MS. The body of evidence is primarily focused around the isolation of individual nutrients, many of which demonstrate no effect on major outcomes of MS progression. Stronger food-focused studies are required to strengthen the evidence.
Collapse
Affiliation(s)
- Abbey R Tredinnick
- School of Medicine, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Yasmine C Probst
- School of Medicine, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
42
|
Rothstein TL. Gray Matter Matters: A Longitudinal Magnetic Resonance Voxel-Based Morphometry Study of Primary Progressive Multiple Sclerosis. Front Neurol 2020; 11:581537. [PMID: 33281717 PMCID: PMC7689315 DOI: 10.3389/fneur.2020.581537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/14/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Multiple Sclerosis (MS) lesions in white matter (WM) are easily detected with conventional MRI which induce inflammation thereby generating contrast. WM lesions do not consistently explain the extent of clinical disability, cognitive impairment, or the source of an exacerbation. Gray matter (GM) structures including the cerebral cortex and various deep nuclei are known to be affected early in Primary Progressive Multiple Sclerosis (PPMS) and drive disease progression, disability, fatigue, and cognitive dysfunction. However, little is known about how rapidly GM lesions develop and accumulate over time. Objective: The purpose of this study is to analyze the degree and rate of progression in 25 patients with PPMS using voxel-based automated volumetric quantitation. Methods: This is a retrospective single-center study which includes a cohort of 25 patients with PPMS scanned utilizing NeuroQuant® 3 dimensional voxel-based morphometry (3D VBM) automated analysis and database and restudied after a period of ~1 year (11–14 months). Comparisons with normative data were acquired for whole brain, forebrain parenchyma, cortical GM, hippocampus, thalamus, superior and inferior lateral ventricles. GM volume changes were correlated with their clinical motor and cognitive scores using Extended Disability Status Scales (EDSS) and Montreal Cognitive Assessments (MoCA). Results: Steep reductions occurred in cerebral cortical GM and deep GM nuclei volumes which correlated with each patient's clinical and cognitive impairment. The median observed percentile volume losses were statistically significant compared with the 50th percentile for each GM component. Longitudinal assessments of an unselected sample of one dozen patients involved in the PPMS study showed prominent losses occurring mainly in cortical GM and hippocampus which were reflected in their EDSS and MoCA. The longitudinal results were compared with a similar sample of patients having Relapsing MS (RMS) whose GM values were largely in normal range, annualized volume GM changes were much less, while WM hyperintensities were in abnormal range in half the unselected cases. Conclusions: Knowledge of the degree and rapidity with which cortical atrophy and deep GM volume loss develops clarifies the source of progressive cognitive and clinical decline in PPMS.
Collapse
Affiliation(s)
- Ted L Rothstein
- Department of Neurology, Multiple Sclerosis Clinical Care and Research Center, George Washington University School of Medicine, Washington, DC, United States
| |
Collapse
|
43
|
Zeng Y, Li Z, Zhu H, Gu Z, Zhang H, Luo K. Recent Advances in Nanomedicines for Multiple Sclerosis Therapy. ACS APPLIED BIO MATERIALS 2020; 3:6571-6597. [PMID: 35019387 DOI: 10.1021/acsabm.0c00953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yujun Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, California 91711, United States
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
44
|
Vattoth S, Kadam GH, Gaddikeri S. Revised McDonald Criteria, MAGNIMS Consensus and Other Relevant Guidelines for Diagnosis and Follow Up of MS: What Radiologists Need to Know? Curr Probl Diagn Radiol 2020; 50:389-400. [PMID: 32665060 DOI: 10.1067/j.cpradiol.2020.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/06/2020] [Accepted: 06/22/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Surjith Vattoth
- Department of Clinical Radiology, Weill Cornell Medicine, New York, NY.; Hamad Medical Corporation, Doha, Qatar
| | - Geetanjalee H Kadam
- Department of Diagnostic Radiology & Nuclear Medicine, Rush University Medical Center, Chicago, IL
| | - Santhosh Gaddikeri
- Department of Diagnostic Radiology & Nuclear Medicine, Rush University Medical Center, Chicago, IL..
| |
Collapse
|
45
|
Yavarpour-Bali H, Ghasemi-Kasman M. The role of inflammasomes in multiple sclerosis. Mult Scler 2020; 27:1323-1331. [PMID: 32539629 DOI: 10.1177/1352458520932776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Multiple sclerosis (MS) is considered as an inflammatory autoimmune disease of the central nervous system (CNS), with a complex and heterogenic etiology. However, the involvement of inflammation in its pathophysiology is well documented and current therapies for MS are mainly immunosuppressive drugs. Although the available drugs reduce new lesions and relapses, their long-term outcome is not completely satisfactory. Inflammasomes are multimeric protein complexes that play a critical role in the inflammatory process. Several lines of evidence suggest an association between inflammasome activation and MS. In this paper, we have reviewed current studies that demonstrate the involvement of inflammasomes in MS development, in both animal model and MS patients. Furthermore, prior studies about the effect of inflammasome inhibitor drugs on development and progression of MS are discussed.
Collapse
Affiliation(s)
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran/Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
46
|
Pavelek Z, Angelucci F, Souček O, Krejsek J, Sobíšek L, Klímová B, Šarláková J, Halúsková S, Kuča K, Vališ M. Innate Immune System and Multiple Sclerosis. Granulocyte Numbers Are Reduced in Patients Affected by Relapsing-Remitting Multiple Sclerosis during the Remission Phase. J Clin Med 2020; 9:E1468. [PMID: 32422897 PMCID: PMC7290702 DOI: 10.3390/jcm9051468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a neurodegenerative disease that affects the central nervous system. The cause of MS is still unknown, and the role of innate immunity is still poorly understood. OBJECTIVE The goal of this study was to understand whether, compared to healthy controls, the elements of innate immunity are altered in the blood of MS patients in the remitting phase. METHODS A total of 77 naïve MS patients and 50 healthy controls were included in this cohort study. Peripheral blood samples were collected and analyzed. All the calculations were performed with the statistical system R (r-project.org). RESULTS The results showed that MS patients had significantly lower relative representations of granulocytes than healthy controls, while the relative representations of monocytes remained unchanged. CD64- and PD-L1-positive granulocytes exhibited a nonsignificant decreasing trend, while granulocytes with other membrane markers remained noticeably unchanged. CONCLUSION The results of this study suggest that studies of the causes of MS and its treatment should also be focused on the elements of the innate immune response.
Collapse
Affiliation(s)
- Zbyšek Pavelek
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (F.A.); (L.S.); (B.K.); (J.Š.); (S.H.); (M.V.)
| | - Francesco Angelucci
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (F.A.); (L.S.); (B.K.); (J.Š.); (S.H.); (M.V.)
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, V Úvalu 84, 150 06 Prague, Czech Republic
| | - Ondřej Souček
- Department of Clinical Immunology and Allergology, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (O.S.); (J.K.)
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (O.S.); (J.K.)
| | - Lukáš Sobíšek
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (F.A.); (L.S.); (B.K.); (J.Š.); (S.H.); (M.V.)
| | - Blanka Klímová
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (F.A.); (L.S.); (B.K.); (J.Š.); (S.H.); (M.V.)
| | - Jana Šarláková
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (F.A.); (L.S.); (B.K.); (J.Š.); (S.H.); (M.V.)
| | - Simona Halúsková
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (F.A.); (L.S.); (B.K.); (J.Š.); (S.H.); (M.V.)
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Kralove, Czech Republic;
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolská 581, 500 05 Hradec Kralove, Czech Republic
| | - Martin Vališ
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (F.A.); (L.S.); (B.K.); (J.Š.); (S.H.); (M.V.)
| |
Collapse
|
47
|
Biliktu M, Senol SP, Temiz-Resitoglu M, Guden DS, Horat MF, Sahan-Firat S, Sevim S, Tunctan B. Pharmacological inhibition of soluble epoxide hydrolase attenuates chronic experimental autoimmune encephalomyelitis by modulating inflammatory and anti-inflammatory pathways in an inflammasome-dependent and -independent manner. Inflammopharmacology 2020; 28:1509-1524. [PMID: 32128702 DOI: 10.1007/s10787-020-00691-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
We aimed to determine the effect of soluble epoxide hydrolase (sEH) inhibition on chronic experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS), associated with changes in inflammasome-dependent and -independent inflammatory and anti-inflammatory pathways in the CNS of mice. C57BL/6 mice were used to induce chronic EAE by using an injection of MOG35-55 peptide/PT. Animals were observed daily and scored for EAE signs for 25 days after immunization. Following the induction of EAE, the scores were increased after 9 days and reached peak value as determined by ≥ 2 or ≤ 3 with 8% mortality rate on day 17. On day 17, mice were administered daily PBS, DMSO, or TPPU (a potent sEH inhibitor) (1, 3, or 10 mg/kg) until the end of the study. TPPU only at 3 mg/kg dose decreased the AUC values calculated from EAE scores obtained during the disease compared to EAE and vehicle control groups. On day 25, TPPU also caused an increase in the PPARα/β/γ and NLRC3 proteins and a decrease in the proteins of TLR4, MyD88, NF-κB p65, p-NF-κB p65, iNOS/nNOS, COX-2, NLRC4, ASC, caspase-1 p20, IL-1β, caspase-11 p20, NOX subunits (gp91phox and p47phox), and nitrotyrosine in addition to 14,15-DHET and IL-1β levels compared to EAE and vehicle control groups. Our findings suggest that pharmacological inhibition of sEH attenuates chronic EAE likely because of enhanced levels of anti-inflammatory EETs in addition to PPARα/β/γ and NLRC3 expression associated with suppressed inflammatory TLR4/MyD88/NF-κB signalling pathway, NLRC4/ASC/pro-caspase-1 inflammasome, caspase-11 inflammasome, and NOX activity that are responsible for inflammatory mediator formation in the CNS of mice.
Collapse
Affiliation(s)
- Merve Biliktu
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33160, Yenisehir, Mersin, Turkey
| | - Sefika Pinar Senol
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33160, Yenisehir, Mersin, Turkey
| | - Meryem Temiz-Resitoglu
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33160, Yenisehir, Mersin, Turkey
| | - Demet Sinem Guden
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33160, Yenisehir, Mersin, Turkey
| | - Mehmet Furkan Horat
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33160, Yenisehir, Mersin, Turkey
| | - Seyhan Sahan-Firat
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33160, Yenisehir, Mersin, Turkey
| | - Serhan Sevim
- Department of Neurology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Yenisehir Campus, Mersin University, 33160, Yenisehir, Mersin, Turkey.
| |
Collapse
|