1
|
Fang X, Zhang Y, Huang X, Miao R, Zhang Y, Tian J. Gut microbiome research: Revealing the pathological mechanisms and treatment strategies of type 2 diabetes. Diabetes Obes Metab 2025. [PMID: 40230225 DOI: 10.1111/dom.16387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 04/16/2025]
Abstract
The high prevalence and disability rate of type 2 diabetes (T2D) caused a huge social burden to the world. Currently, new mechanisms and therapeutic approaches that may affect this disease are being sought. With in-depth research on the pathogenesis of T2D and growing advances in microbiome sequencing technology, the association between T2D and gut microbiota has been confirmed. The gut microbiota participates in the regulation of inflammation, intestinal permeability, short-chain fatty acid metabolism, branched-chain amino acid metabolism and bile acid metabolism, thereby affecting host glucose and lipid metabolism. Interventions focusing on the gut microbiota are gaining traction as a promising approach to T2D management. For example, dietary intervention, prebiotics and probiotics, faecal microbiota transplant and phage therapy. Meticulous experimental design and choice of analytical methods are crucial for obtaining accurate and meaningful results from microbiome studies. How to design gut microbiome research in T2D and choose different machine learning methods for data analysis are extremely critical to achieve personalized precision medicine.
Collapse
Affiliation(s)
- Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyue Huang
- First Clinical Medical College, Changzhi Medical College, Shanxi, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Zhang Z, Jiang C, Xing YQ, Yang T, Zou L, Jia Z, Zhao L, Han X, Qu X, Zhang Z, Zong J, Wang S. Unveiling the interplay among skin microbiota, cytokines, and T2DM: an insightful Mendelian randomization study. Nutr Metab (Lond) 2025; 22:29. [PMID: 40211330 PMCID: PMC11987181 DOI: 10.1186/s12986-025-00922-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/26/2025] [Indexed: 04/13/2025] Open
Abstract
BACKGROUND Previous observational studies have indicated a correlation between the skin microbiome and Type 2 diabetes (T2DM). It is hypothesized that this causal relationship may be influenced by inflammatory responses. However, these factors as determinants of T2DM remain largely unexplored. METHOD This study incorporated data from the GWAS database on the skin microbiome, 91 types of inflammatory cytokines, and T2DM. We employed two-sample MR and multivariable MR methods to assess the correlation between the skin microbiome and T2DM, and to investigate whether this correlation is affected by inflammatory cytokines. RESULTS The results of the two-sample MR analysis indicate that within the skin microbiome, genetically predicted genus: Acinetobacter, class: Alphaproteobacteria, genus: Bacteroides, ASV005[Propionibacterium granulosum], and ASV072[Rothia mucilaginosa] are associated with an increased risk of T2DM, while phylum: Proteobacteria, genus: Enhydrobacter, family: Clostridiales, ASV006[Staphylococcus hominis] serve as protective factors against T2DM. Among the inflammatory cytokines, levels of Macrophage colony-stimulating factor 1, Tumor necrosis factor receptor superfamily member 9, Urokinase-type plasminogen activator, and C-C motif chemokine 28 are associated with an increased risk of T2DM. Multivariable MR analysis further revealed that Macrophage colony-stimulating factor 1 levels act as a mediating factor between ASV072[Rothia mucilaginosa] and T2DM. CONCLUSION In this study, we found a connection between the skin microbiome and T2DM, with inflammatory cytokines playing a key role in this relationship. This research helps us better understand this complex link and shows that addressing inflammation is important for preventing and treating diabetes. This could greatly benefit public health by reducing the impact of diabetes and its complications. Our results suggest that future studies should explore the specific biological interactions between the skin microbiome and diabetes to develop more effective risk management and treatment strategies from a microbial perspective.
Collapse
Grants
- 82074426, 82104864, 82204822 National Natural Science Foundation of China
- 82074426, 82104864, 82204822 National Natural Science Foundation of China
- 82074426, 82104864, 82204822 National Natural Science Foundation of China
- 82074426, 82104864, 82204822 National Natural Science Foundation of China
- 82074426, 82104864, 82204822 National Natural Science Foundation of China
- 82074426, 82104864, 82204822 National Natural Science Foundation of China
- 82074426, 82104864, 82204822 National Natural Science Foundation of China
- 82074426, 82104864, 82204822 National Natural Science Foundation of China
- 82074426, 82104864, 82204822 National Natural Science Foundation of China
- 82074426, 82104864, 82204822 National Natural Science Foundation of China
- 82074426, 82104864, 82204822 National Natural Science Foundation of China
- 82074426, 82104864, 82204822 National Natural Science Foundation of China
- 2023JH2/101300096 Applied Basic Research Project of Liaoning Province
- 2023JH2/101300096 Applied Basic Research Project of Liaoning Province
- 2023JH2/101300096 Applied Basic Research Project of Liaoning Province
- 2023JH2/101300096 Applied Basic Research Project of Liaoning Province
- 2023JH2/101300096 Applied Basic Research Project of Liaoning Province
- 2023JH2/101300096 Applied Basic Research Project of Liaoning Province
- 2023JH2/101300096 Applied Basic Research Project of Liaoning Province
- 2023JH2/101300096 Applied Basic Research Project of Liaoning Province
- 2023JH2/101300096 Applied Basic Research Project of Liaoning Province
- 2023JH2/101300096 Applied Basic Research Project of Liaoning Province
- 2023JH2/101300096 Applied Basic Research Project of Liaoning Province
- 2023JH2/101300096 Applied Basic Research Project of Liaoning Province
- 2021-BS-215, 2022-MS-25, 2023-MS-13 Natural Science Foundation of Liaoning Province
- 2021-BS-215, 2022-MS-25, 2023-MS-13 Natural Science Foundation of Liaoning Province
- 2021-BS-215, 2022-MS-25, 2023-MS-13 Natural Science Foundation of Liaoning Province
- 2021-BS-215, 2022-MS-25, 2023-MS-13 Natural Science Foundation of Liaoning Province
- 2021-BS-215, 2022-MS-25, 2023-MS-13 Natural Science Foundation of Liaoning Province
- 2021-BS-215, 2022-MS-25, 2023-MS-13 Natural Science Foundation of Liaoning Province
- 2021-BS-215, 2022-MS-25, 2023-MS-13 Natural Science Foundation of Liaoning Province
- 2021-BS-215, 2022-MS-25, 2023-MS-13 Natural Science Foundation of Liaoning Province
- 2021-BS-215, 2022-MS-25, 2023-MS-13 Natural Science Foundation of Liaoning Province
- 2021-BS-215, 2022-MS-25, 2023-MS-13 Natural Science Foundation of Liaoning Province
- 2021-BS-215, 2022-MS-25, 2023-MS-13 Natural Science Foundation of Liaoning Province
- 2021-BS-215, 2022-MS-25, 2023-MS-13 Natural Science Foundation of Liaoning Province
- XLYC1802014 Liaoning Revitalization Talents Program
- XLYC1802014 Liaoning Revitalization Talents Program
- XLYC1802014 Liaoning Revitalization Talents Program
- XLYC1802014 Liaoning Revitalization Talents Program
- XLYC1802014 Liaoning Revitalization Talents Program
- XLYC1802014 Liaoning Revitalization Talents Program
- XLYC1802014 Liaoning Revitalization Talents Program
- XLYC1802014 Liaoning Revitalization Talents Program
- XLYC1802014 Liaoning Revitalization Talents Program
- XLYC1802014 Liaoning Revitalization Talents Program
- XLYC1802014 Liaoning Revitalization Talents Program
- XLYC1802014 Liaoning Revitalization Talents Program
- 2017226015 Liaoning Key Research and Development Planning Project
- 2017226015 Liaoning Key Research and Development Planning Project
- 2017226015 Liaoning Key Research and Development Planning Project
- 2017226015 Liaoning Key Research and Development Planning Project
- 2017226015 Liaoning Key Research and Development Planning Project
- 2017226015 Liaoning Key Research and Development Planning Project
- 2017226015 Liaoning Key Research and Development Planning Project
- 2017226015 Liaoning Key Research and Development Planning Project
- 2017226015 Liaoning Key Research and Development Planning Project
- 2017226015 Liaoning Key Research and Development Planning Project
- 2017226015 Liaoning Key Research and Development Planning Project
- 2017226015 Liaoning Key Research and Development Planning Project
- LJKMZ20221286 Basic Research Projects of Liaoning Provincial Department of Education
- LJKMZ20221286 Basic Research Projects of Liaoning Provincial Department of Education
- LJKMZ20221286 Basic Research Projects of Liaoning Provincial Department of Education
- LJKMZ20221286 Basic Research Projects of Liaoning Provincial Department of Education
- LJKMZ20221286 Basic Research Projects of Liaoning Provincial Department of Education
- LJKMZ20221286 Basic Research Projects of Liaoning Provincial Department of Education
- LJKMZ20221286 Basic Research Projects of Liaoning Provincial Department of Education
- LJKMZ20221286 Basic Research Projects of Liaoning Provincial Department of Education
- LJKMZ20221286 Basic Research Projects of Liaoning Provincial Department of Education
- LJKMZ20221286 Basic Research Projects of Liaoning Provincial Department of Education
- LJKMZ20221286 Basic Research Projects of Liaoning Provincial Department of Education
- LJKMZ20221286 Basic Research Projects of Liaoning Provincial Department of Education
- XZ202301ZR0030G, XZ2023ZR-ZY82(Z) Natural Science Foundation of Tibet Autonomous Region
- XZ202301ZR0030G, XZ2023ZR-ZY82(Z) Natural Science Foundation of Tibet Autonomous Region
- XZ202301ZR0030G, XZ2023ZR-ZY82(Z) Natural Science Foundation of Tibet Autonomous Region
- XZ202301ZR0030G, XZ2023ZR-ZY82(Z) Natural Science Foundation of Tibet Autonomous Region
- XZ202301ZR0030G, XZ2023ZR-ZY82(Z) Natural Science Foundation of Tibet Autonomous Region
- XZ202301ZR0030G, XZ2023ZR-ZY82(Z) Natural Science Foundation of Tibet Autonomous Region
- XZ202301ZR0030G, XZ2023ZR-ZY82(Z) Natural Science Foundation of Tibet Autonomous Region
- XZ202301ZR0030G, XZ2023ZR-ZY82(Z) Natural Science Foundation of Tibet Autonomous Region
- XZ202301ZR0030G, XZ2023ZR-ZY82(Z) Natural Science Foundation of Tibet Autonomous Region
- XZ202301ZR0030G, XZ2023ZR-ZY82(Z) Natural Science Foundation of Tibet Autonomous Region
- XZ202301ZR0030G, XZ2023ZR-ZY82(Z) Natural Science Foundation of Tibet Autonomous Region
- XZ202301ZR0030G, XZ2023ZR-ZY82(Z) Natural Science Foundation of Tibet Autonomous Region
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
- College of Integrative Medicine, Dalian Medical University, Dalian, China.
| | - Chunyu Jiang
- Department of Trauma Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi-Qi Xing
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tianke Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Linxuan Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhuqiang Jia
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lin Zhao
- Department of Quality Management, Dalian Municipal Central Hospital, Dalian, China
| | - Xin Han
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xueling Qu
- Pelvic Floor Repair Center, Dalian Women and Children Medical Center (Group), Dalian, China
| | - Zhen Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junwei Zong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Shouyu Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
3
|
Alves ED, Carpena MX, Barros AJD, Comelli EM, López-Domínguez L, Bandsma RHJ, Santos IDSD, Matijasevich A, Vaz JDS, Buffarini R, Bierhals IO, Borges MC, Tovo-Rodrigues L. Exploring the relationship between ultra-processed food consumption and gut microbiota at school age in a Brazilian birth cohort. CAD SAUDE PUBLICA 2025; 41:e00094424. [PMID: 40172341 PMCID: PMC11960759 DOI: 10.1590/0102-311xen094424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 04/04/2025] Open
Abstract
Dietary patterns significantly impact health outcomes and gut microbiota composition. However, longitudinal studies associating ultra-processed food consumption with gut microbiota composition, especially among adolescents in low- and middle-income countries, are lacking. This study aimed to explore this association using data collected from 364 participants at ages 6, 11, and 12 years from the 2004 Pelotas (Brazil) Birth Cohort. Microbiota data was obtained at age 12 after 16S rRNA gene sequencing of self-collected fecal samples. Linear or logistic regression models evaluated the relationship between age groups and gut microbiota outcomes (alpha diversity, beta diversity and relative abundances at the phylum and genus levels), considering dietary covariates and demographic, socioeconomic, health-related, and behavioral factors. No significant associations between ultra-processed food consumption and alpha diversity were observed after multiple testing corrections, and there was no strong evidence linking ultra-processed food consumption and beta diversity, with unweighted metrics explaining little variance at ages 11 and 12. Nominal associations were found between ultra-processed food and relative abundances of Actinobacteria (p = 0.032) and Proteobacteria (p = 0.045) (phyla), Bacteroides (p = 0.037 at age 6; p = 0.015 at age 11) and Peptostreptococcus (p = 0.025 at age 6; p = 0.010 at age 11) (genera). However, these associations lost statistical significance after adjustments for multiple comparisons. These findings highlight the need for more longitudinal studies to better understand the complex interaction between ultra-processed food intake and gut microbiota composition in adolescent populations in low- and middle-income countries.
Collapse
Affiliation(s)
| | - Marina Xavier Carpena
- Universidade Federal de Pelotas, Pelotas, Brasil
- Universidade Federal de Rio Grande, Rio Grande, Brasil
| | | | - Elena M Comelli
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Lorena López-Domínguez
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Translational Medicine Program, Hospital for Sick Children, Toronto, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Peng C, Lei P, Qi H, Zhu Q, Huang C, Fu J, Zhao C. Effect of fecal microbiota transplantation on diabetic wound healing through the IL-17A-mTOR-HIF1α signaling axis. Appl Environ Microbiol 2025; 91:e0201924. [PMID: 40019272 PMCID: PMC11921319 DOI: 10.1128/aem.02019-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/24/2025] [Indexed: 03/01/2025] Open
Abstract
Diabetes is the third most common chronic disorder worldwide. Diabetic wounds are a severe complication that is costly and often results in non-traumatic lower limb amputation. Recent investigations have demonstrated that the gut microbiota as a "virtual organ" can regulate metabolic diseases like diabetes. Fecal microbiota transplantation (FMT) is an innovative therapeutic approach for promoting wound healing, but its function remains incompletely defined. A diabetes model was established by supplying mice with a high-fat diet and performing an intraperitoneal injection of streptozotocin. Diabetic wounds were then created, followed by bacterial transplantation. The relevant indexes of wound healing were evaluated to verify the promoting effect of FMT on the diabetic wounds. Human skin keratinocytes were also cultured, and cell scratch experiments were conducted to further investigate the underlying mechanism. The FMT regulated the levels of specific bacteria in the diabetic mice and helped restore the balance of intestinal microbes. This transplantation also enhanced wound healing in the diabetic mice by augmenting the closure rate, accelerating re-epithelialization, and boosting collagen deposition in skin wounds. Furthermore, FMT promoted the production of IL-17A, which significantly enhanced the growth and movement of human keratinocytes. Inhibiting molecules related to the IL-17A-mTOR-HIF1α signaling axis were shown to hinder wound re-epithelialization.This study clarifies the function of the IL-17A-mTOR-HIF1α signaling axis in the utilization of FMT in diabetic wound healing, providing a new therapeutic method and target for promoting the healing of diabetic wounds. IMPORTANCE The Intestinal microbiota, as the organ with the largest number of microorganisms in the body, plays a crucial role in the physiological functions of the human body. Normal microbiota can be involved in various functions such as energy absorption, metabolism, and immunity of the body, and microbiota imbalance is related to many diseases such as obesity and diabetes. Diabetes, as one of the world's three major chronic diseases, is a significant health issue that troubles more than a billion people globally. Diabetic wounds are a problem that all diabetic patients must confront when undergoing surgery, and it is an important cause of non-traumatic amputations. Exploring the role of intestinal microorganisms in the wound-healing process of diabetic mice can offer the possibility of using microorganisms as a therapeutic means to intervene in clinically related diseases.
Collapse
Affiliation(s)
- Chenmei Peng
- Qinghai University Affiliated Hospital, Qinghai University, Xining, China
| | - Pan Lei
- Department of General Practice Medicine, Qinghai University Affiliated Hospital, Xining, China
| | - Hongying Qi
- Department of Endocrinology, Qinghai University Affiliated Hospital, Xining, China
| | - Qianjun Zhu
- Department of Endocrinology, Qinghai Province People’s Hospital, Xining, China
| | - Chushun Huang
- Qinghai University Affiliated Hospital, Qinghai University, Xining, China
| | - Ju Fu
- Qinghai University Affiliated Hospital, Qinghai University, Xining, China
| | - Chengyu Zhao
- Department of Geriatrics, Qinghai University Affiliated Hospital, Xining, China
| |
Collapse
|
5
|
Iheagwam FN, Joseph AJ, Adedoyin ED, Iheagwam OT, Ejoh SA. Mitochondrial Dysfunction in Diabetes: Shedding Light on a Widespread Oversight. PATHOPHYSIOLOGY 2025; 32:9. [PMID: 39982365 DOI: 10.3390/pathophysiology32010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 02/22/2025] Open
Abstract
Diabetes mellitus represents a complicated metabolic condition marked by ongoing hyperglycemia arising from impaired insulin secretion, inadequate insulin action, or a combination of both. Mitochondrial dysfunction has emerged as a significant contributor to the aetiology of diabetes, affecting various metabolic processes critical for glucose homeostasis. This review aims to elucidate the complex link between mitochondrial dysfunction and diabetes, covering the spectrum of diabetes types, the role of mitochondria in insulin resistance, highlighting pathophysiological mechanisms, mitochondrial DNA damage, and altered mitochondrial biogenesis and dynamics. Additionally, it discusses the clinical implications and complications of mitochondrial dysfunction in diabetes and its complications, diagnostic approaches for assessing mitochondrial function in diabetics, therapeutic strategies, future directions, and research opportunities.
Collapse
Affiliation(s)
- Franklyn Nonso Iheagwam
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amarachi Joy Joseph
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota 112104, Nigeria
| | - Eniola Deborah Adedoyin
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota 112104, Nigeria
| | | | - Samuel Akpoyowvare Ejoh
- Department of Biological Sciences, College of Science and Technology, Covenant University, Ota 112104, Nigeria
| |
Collapse
|
6
|
Lara-Guzmán ÓJ, Arango-González ÁM, Álvarez-Quintero R, Escobar JS, Muñoz-Durango K, Sierra JA. Circulating hs-CRP, IL-18, Chemerin, Leptin, and Adiponectin Levels Reflect Cardiometabolic Dysfunction in Adults with Excess Weight. Int J Mol Sci 2025; 26:1176. [PMID: 39940942 PMCID: PMC11818792 DOI: 10.3390/ijms26031176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Up to 30% of individuals with obesity may exhibit normal insulin sensitivity, a favorable lipid profile, and no signs of hypertension. This prompts the exploration of factors distinguishing cardiometabolically healthy individuals from those developing complications. This cross-sectional study included 116 individuals categorized into four groups by combining abdominal obesity and cardiometabolic health statuses. We compared circulating adipokines and gut microbiota composition between these groups. Individuals with abdominal obesity had higher levels of hs-CRP, TNF-α, MCP-1, IL-18, chemerin, and leptin, and a less favorable gut microbiota composition, including higher levels of potentially harmful bacteria (CAG-Pathogen) and lower levels of beneficial bacteria (CAG-Ruminococcaceae and CAG-Akkermansia), compared to those with adequate waist circumference. Those with obesity but cardiometabolically healthy displayed similar adipokine levels and microbiota composition to those with adequate waist. In contrast, individuals with abdominal obesity cardiometabolically abnormal exhibited significantly higher levels of hs-CRP, IL-18, chemerin, and leptin, and lower levels of adiponectin and CAG-Ruminococcaceae compared to those with abdominal obesity cardiometabolically healthy and adequate waist. Additionally, they differed in hs-CRP and adiponectin/leptin ratio from individuals with obesity cardiometabolically healthy. These findings suggest that altered adipokine profiles and gut microbiota may contribute to the development or persistence of cardiometabolic complications in obesity.
Collapse
Affiliation(s)
- Óscar Javier Lara-Guzmán
- Vidarium–Nutrition, Health, and Wellness Research Center, Grupo Empresarial Nutresa, Carrera 52 #2-38, Medellin 050023, Colombia; (Ó.J.L.-G.); (Á.M.A.-G.); (J.S.E.); (K.M.-D.)
| | - Ángela María Arango-González
- Vidarium–Nutrition, Health, and Wellness Research Center, Grupo Empresarial Nutresa, Carrera 52 #2-38, Medellin 050023, Colombia; (Ó.J.L.-G.); (Á.M.A.-G.); (J.S.E.); (K.M.-D.)
| | - Rafael Álvarez-Quintero
- Grupo de Investigación en Ciencias Farmacéuticas-ICIF-CES, Facultad de Ciencias y Biotecnología, Universidad CES, Calle 10A #22-04, Medellin 050021, Colombia;
| | - Juan S. Escobar
- Vidarium–Nutrition, Health, and Wellness Research Center, Grupo Empresarial Nutresa, Carrera 52 #2-38, Medellin 050023, Colombia; (Ó.J.L.-G.); (Á.M.A.-G.); (J.S.E.); (K.M.-D.)
| | - Katalina Muñoz-Durango
- Vidarium–Nutrition, Health, and Wellness Research Center, Grupo Empresarial Nutresa, Carrera 52 #2-38, Medellin 050023, Colombia; (Ó.J.L.-G.); (Á.M.A.-G.); (J.S.E.); (K.M.-D.)
| | - Jelver Alexander Sierra
- Vidarium–Nutrition, Health, and Wellness Research Center, Grupo Empresarial Nutresa, Carrera 52 #2-38, Medellin 050023, Colombia; (Ó.J.L.-G.); (Á.M.A.-G.); (J.S.E.); (K.M.-D.)
| |
Collapse
|
7
|
Fliegerová KO, Mahayri TM, Sechovcová H, Mekadim C, Mrázek J, Jarošíková R, Dubský M, Fejfarová V. Diabetes and gut microbiome. Front Microbiol 2025; 15:1451054. [PMID: 39839113 PMCID: PMC11747157 DOI: 10.3389/fmicb.2024.1451054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Diabetes mellitus represents a significant global health problem. The number of people suffering from this metabolic disease is constantly rising and although the incidence is heterogeneous depending on region, country, economic situation, lifestyle, diet and level of medical care, it is increasing worldwide, especially among youths and children, mainly due to lifestyle and environmental changes. The pathogenesis of the two most common subtypes of diabetes mellitus, type 1 (T1DM) and type 2 (T2DM), is substantially different, so each form is characterized by a different causation, etiology, pathophysiology, presentation, and treatment. Research in recent decades increasingly indicates the potential role of the gut microbiome in the initiation, development, and progression of this disease. Intestinal microbes and their fermentation products have an important impact on host metabolism, immune system, nutrient digestion and absorption, gut barrier integrity and protection against pathogens. This review summarizes the current evidence on the changes in gut microbial populations in both types of diabetes mellitus. Attention is focused on changes in the abundance of specific bacterial groups at different taxonomic levels in humans, and microbiome shift is also assessed in relation to geographic location, age, diet and antidiabetic drug. The causal relationship between gut bacteria and diabetes is still unclear, and future studies applying new methodological approaches to a broader range of microorganisms inhabiting the digestive tract are urgently needed. This would not only provide a better understanding of the role of the gut microbiome in this metabolic disease, but also the use of beneficial bacterial species in the form of probiotics for the treatment of diabetes.
Collapse
Affiliation(s)
- Kateřina Olša Fliegerová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Tiziana Maria Mahayri
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Hana Sechovcová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Chahrazed Mekadim
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Radka Jarošíková
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Michal Dubský
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
| | - Vladimíra Fejfarová
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
8
|
Szymczak-Pajor I, Drzewoski J, Kozłowska M, Krekora J, Śliwińska A. The Gut Microbiota-Related Antihyperglycemic Effect of Metformin. Pharmaceuticals (Basel) 2025; 18:55. [PMID: 39861118 PMCID: PMC11768994 DOI: 10.3390/ph18010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
It is critical to sustain the diversity of the microbiota to maintain host homeostasis and health. Growing evidence indicates that changes in gut microbial biodiversity may be associated with the development of several pathologies, including type 2 diabetes mellitus (T2DM). Metformin is still the first-line drug for treatment of T2DM unless there are contra-indications. The drug primarily inhibits hepatic gluconeogenesis and increases the sensitivity of target cells (hepatocytes, adipocytes and myocytes) to insulin; however, increasing evidence suggests that it may also influence the gut. As T2DM patients exhibit gut dysbiosis, the intestinal microbiome has gained interest as a key target for metabolic diseases. Interestingly, changes in the gut microbiome were also observed in T2DM patients treated with metformin compared to those who were not. Therefore, the aim of this review is to present the current state of knowledge regarding the association of the gut microbiome with the antihyperglycemic effect of metformin. Numerous studies indicate that the reduction in glucose concentration observed in T2DM patients treated with metformin is due in part to changes in the biodiversity of the gut microbiota. These changes contribute to improved intestinal barrier integrity, increased production of short-chain fatty acids (SCFAs), regulation of bile acid metabolism, and enhanced glucose absorption. Therefore, in addition to the well-recognized reduction of gluconeogenesis, metformin also appears to exert its glucose-lowering effect by influencing gut microbiome biodiversity. However, we are only beginning to understand how metformin acts on specific microorganisms in the intestine, and further research is needed to understand its role in regulating glucose metabolism, including the impact of this remarkable drug on specific microorganisms in the gut.
Collapse
Affiliation(s)
- Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland; (J.D.); (J.K.)
| | - Małgorzata Kozłowska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| | - Jan Krekora
- Central Teaching Hospital of the Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland; (J.D.); (J.K.)
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| |
Collapse
|
9
|
Liu L, Nguyen SM, Wang L, Shi J, Long J, Cai Q, Shrubsole MJ, Shu XO, Zheng W, Yu D. Associations of alcohol intake with gut microbiome: a prospective study in a predominantly low-income Black/African American population. Am J Clin Nutr 2025; 121:134-140. [PMID: 39537028 PMCID: PMC11747185 DOI: 10.1016/j.ajcnut.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/22/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Alcohol intake can alter gut microbiome, which may subsequently affect human health. However, limited population-based, prospective studies have investigated associations of habitual and recent alcohol intake with the gut microbiome, particularly among Black/African American individuals. OBJECTIVE We examined the association of alcohol intake with gut microbiome in a predominantly low-income Black/African American population. METHODS We investigated the dose- and type-specific associations of habitual and recent alcohol intake with the gut microbiome among 538 Black/African American adults (150 males and 388 females). Habitual and recent alcohol intakes were assessed at cohort baseline (2002-2009) and stool collection (2018-2021), respectively. Gut microbiome was profiled using shotgun metagenomic sequencing. Generalized linear models were employed to evaluate the associations between alcohol intakes and gut microbiome composition, with adjustments for sociodemographic characteristics, other lifestyle factors, and comorbidities. False discovery rate (FDR) <0.1 was considered statistically significant. RESULTS The mean age at enrollment was 53.2 ± 7.7 y, with a mean interval of 13.8 y (range: 9.0-18.1 y) between baseline and stool sample collection. Recent alcohol intake was not significantly associated with microbial taxa abundance. However, habitual alcohol intake, both total amount and types of alcoholic beverages, showed significant associations with several microbial taxa abundance, primarily in males, including species within classes Clostridia, Bacilli, and Mahellia within Firmicutes. Specifically, total alcohol, beer, and red wine intakes were all inversely associated with genus MGYG-HGUT-02719 within class Clostridia (β = -2.26 to -0.09 per 1 drink/d increase). Red wine consumption was also inversely associated with the abundance of genera CAG-110, Oscillibacter, and Gemmiger within class Clostridia (β = -3.88 to -2.69), whereas positively associated with genus Absiella (β = 1.81) within class Bacilli. Most of these associations remained significant after additionally adjusting for BMI and baseline comorbidities. CONCLUSIONS We identified gut microbial taxa associated with habitual alcohol intake among Black/African American males, although the magnitudes of these associations were generally small. Further research is needed to determine if these bacteria modify alcohol-disease relationships.
Collapse
Affiliation(s)
- Lili Liu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, School of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sang M Nguyen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, School of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Lei Wang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, School of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jiajun Shi
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, School of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, School of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, School of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Martha J Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, School of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, School of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, School of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Danxia Yu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, School of Medicine, Vanderbilt University, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
10
|
Ivanescu A, Popescu S, Braha A, Timar B, Sorescu T, Lazar S, Timar R, Gaita L. Diabetes and Cataracts Development-Characteristics, Subtypes and Predictive Modeling Using Machine Learning in Romanian Patients: A Cross-Sectional Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 61:29. [PMID: 39859011 PMCID: PMC11766995 DOI: 10.3390/medicina61010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025]
Abstract
Background and Objectives: Diabetes has become a global epidemic, contributing to significant health challenges due to its complications. Among these, diabetes can affect sight through various mechanisms, emphasizing the importance of early identification and management of vision-threatening conditions in diabetic patients. Changes in the crystalline lens caused by diabetes may lead to temporary and permanent visual impairment. Since individuals with diabetes are at an increased risk of developing cataracts, which significantly affects their quality of life, this study aims to identify the most common cataract subtypes in diabetic patients, highlighting the need for proactive screening and early intervention. Materials and Methods: This study included 201 participants with cataracts (47.6% women and 52.4% men), of whom 105 also had diabetes. With the use of machine learning, the patients were assessed and categorized as having one of the three main types of cataracts: cortical (CC), nuclear (NS), and posterior subcapsular (PSC). A Random Forest Classification algorithm was employed to predict the incidence of different associations of cataracts (1, 2, or 3 types). Results: Cataracts have been encountered more frequently and at a younger age in patients with diabetes. CC was significantly more frequent among patients with diabetes (p < 0.0001), while the NS and PSC were only marginally, without statistical significance. Machine learning could also contribute to an early diagnosis of cataracts, with the presence of diabetes, duration of diabetes, or diabetic polyneuropathy (PND) having the highest importance for a successful classification. Conclusions: These findings suggest that diabetes may impact the type of cataract that develops, with CC being notably more prevalent in diabetic patients. This has important implications for screening and management strategies for cataract formation in diabetic populations.
Collapse
Affiliation(s)
- Adriana Ivanescu
- Doctoral School of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.I.); (S.L.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.B.); (B.T.); (T.S.); (R.T.); (L.G.)
- Opticlass Ophtalmology Clinic, 300012 Timisoara, Romania
| | - Simona Popescu
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.B.); (B.T.); (T.S.); (R.T.); (L.G.)
- Department of Diabetes, “Pius Brînzeu” Emergency County Hospital, 300723 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adina Braha
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.B.); (B.T.); (T.S.); (R.T.); (L.G.)
- Department of Diabetes, “Pius Brînzeu” Emergency County Hospital, 300723 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Bogdan Timar
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.B.); (B.T.); (T.S.); (R.T.); (L.G.)
- Department of Diabetes, “Pius Brînzeu” Emergency County Hospital, 300723 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Teodora Sorescu
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.B.); (B.T.); (T.S.); (R.T.); (L.G.)
- Department of Diabetes, “Pius Brînzeu” Emergency County Hospital, 300723 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Sandra Lazar
- Doctoral School of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.I.); (S.L.)
- Centre for Molecular Research in Nephrology and Vascular Disease, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- First Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Hematology, Emergency Municipal Hospital, 300254 Timisoara, Romania
| | - Romulus Timar
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.B.); (B.T.); (T.S.); (R.T.); (L.G.)
- Department of Diabetes, “Pius Brînzeu” Emergency County Hospital, 300723 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Laura Gaita
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.B.); (B.T.); (T.S.); (R.T.); (L.G.)
- Department of Diabetes, “Pius Brînzeu” Emergency County Hospital, 300723 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
11
|
Yarahmadi A, Afkhami H, Javadi A, Kashfi M. Understanding the complex function of gut microbiota: its impact on the pathogenesis of obesity and beyond: a comprehensive review. Diabetol Metab Syndr 2024; 16:308. [PMID: 39710683 PMCID: PMC11664868 DOI: 10.1186/s13098-024-01561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024] Open
Abstract
Obesity is a multifactorial condition influenced by genetic, environmental, and microbiome-related factors. The gut microbiome plays a vital role in maintaining intestinal health, increasing mucus creation, helping the intestinal epithelium mend, and regulating short-chain fatty acid (SCFA) production. These tasks are vital for managing metabolism and maintaining energy balance. Dysbiosis-an imbalance in the microbiome-leads to increased appetite and the rise of metabolic disorders, both fuel obesity and its issues. Furthermore, childhood obesity connects with unique shifts in gut microbiota makeup. For instance, there is a surge in pro-inflammatory bacteria compared to children who are not obese. Considering the intricate nature and variety of the gut microbiota, additional investigations are necessary to clarify its exact involvement in the beginnings and advancement of obesity and related metabolic dilemmas. Currently, therapeutic methods like probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), dietary interventions like Mediterranean and ketogenic diets, and physical activity show potential in adjusting the gut microbiome to fight obesity and aid weight loss. Furthermore, the review underscores the integration of microbial metabolites with pharmacological agents such as orlistat and semaglutide in restoring microbial homeostasis. However, more clinical tests are essential to refine the doses, frequency, and lasting effectiveness of these treatments. This narrative overview compiles the existing knowledge on the multifaceted role of gut microbiota in obesity and much more, showcasing possible treatment strategies for addressing these health challenges.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Ali Javadi
- Department of Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran.
| | - Mojtaba Kashfi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Fellowship in Clinical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Park JH, Nguyen TN, Shim HM, Yu GI, Ha EY, Cho H. Identification of Adipsin as a Biomarker of Beta Cell Function in Patients with Type 2 Diabetes. J Clin Med 2024; 13:7351. [PMID: 39685809 DOI: 10.3390/jcm13237351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Adipsin, an adipokine, is known to play an important role in maintaining the function of pancreatic beta cells in mice. This study aimed to investigate whether adipsin could be a circulating biomarker for evaluating the function of beta cells in patients with type 2 diabetes (T2D). Methods: Plasma adipsin concentrations were measured using immunoassay in three distinct subject groups: normoglycemia, T2D without insulin treatment (T2D-w/o-insulin), and T2D treated with insulin (T2D-with-insulin). Adipsin expressions were evaluated in three distinct mouse groups: normal diet (ND), high-fat diet (HFD), and HFD with streptozotocin (STZ) and nicotinamide (NA). Results: The T2D-with-insulin group exhibited a significant decrease in plasma adipsin concentration (3.91 ± 1.51 μg/mL) compared to the T2D-w/o-insulin group (5.11 ± 1.53 μg/mL; p < 0.001), whereas the T2D-w/o-insulin group showed a significantly increased plasma adipsin concentration compared to the normoglycemia group (4.53 ± 1.15 μg/mL). Plasma adipsin concentration was positively correlated with fasting C-peptide level (p < 0.001), 2-h C-peptide level (p < 0.001), and 2-h C-peptidogenic index (p < 0.001) in the diabetic groups. HFD mice showed a significant increase in pancreatic islet size, plasma insulin and adipsin levels, as well as adipsin expression in white adipose tissue (WAT) compared to ND mice. In contrast, the insulin-deficient T2D model (HFD-STZ-NA) demonstrated a marked reduction in pancreatic islet size, plasma insulin and adipsin concentrations, and adipsin expression in WAT compared to the HFD mice. Conclusions: plasma adipsin may be useful for evaluating pancreatic beta cell function in patients with T2D.
Collapse
Affiliation(s)
- Jae-Hyung Park
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Thi Nhi Nguyen
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Hye Min Shim
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Gyeong Im Yu
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Eun Yeong Ha
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Hochan Cho
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| |
Collapse
|
13
|
Pakaew K, Chonpathompikunlert P, Wongmanee N, Rojanaverawong W, Sitdhipol J, Thaveethaptaikul P, Charoenphon N, Hanchang W. Lactobacillus reuteri TISTR 2736 alleviates type 2 diabetes in rats via the hepatic IRS1/PI3K/AKT signaling pathway by mitigating oxidative stress and inflammatory mediators. Eur J Nutr 2024; 64:27. [PMID: 39589518 DOI: 10.1007/s00394-024-03529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/18/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE This study investigated the beneficial effects of Lactobacillus reuteri TISTR 2736 on glucose homeostasis, carbohydrate metabolism, and the underlying mechanisms of its actions in type 2 diabetic (T2D) rats. METHODS A rat model of T2D was established by a combination of a high-fat diet and streptozotocin. The diabetic rats were treated daily with L. reuteri TISTR 2736 (2 × 108 CFU/day) for 30 days. Biochemical, histopathological, and molecular analyses were carried out to determine insulin signaling, carbohydrate metabolism, oxidative stress, and inflammation. RESULTS The results demonstrated that treatment with L. reuteri TISTR 2736 significantly ameliorated fasting blood glucose and glucose intolerance, and improved insulin sensitivity indices in the diabetic rats. The hepatic histopathology was improved with L. reuteri TISTR 2736 treatment, which was correlated with a reduction of hepatic lipid profiles. L. reuteri TISTR 2736 significantly reduced glycogen content, fructose 1,6-bisphosphatase activity, and phosphoenolpyruvate carboxykinase 1 protein expression, and enhanced hexokinase activity in the diabetic liver. The downregulation of IRS1 and phosphorylated IRS1Ser307 and upregulation of PI3K and phosphorylated AKTSer473 proteins in the liver were found in the L. reuteri TISTR 2736-treated diabetic group. Furthermore, it was able to suppress oxidative stress and inflammation in the diabetic rats, as demonstrated by decreased malondialdehyde and protein levels of NF-κB, IL-6 and TNF-α, but increased antioxidant enzyme activities of superoxide dismutase, catalase, and glutathione peroxidase. CONCLUSION By inhibiting oxidative and inflammatory stress, L. reuteri TISTR 2736 alleviated hyperglycemia and improved carbohydrate metabolism through activating IRS1/PI3K/AKT pathway in the T2D rats.
Collapse
Affiliation(s)
- Kamonthip Pakaew
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Pennapa Chonpathompikunlert
- Biodiversity Research Centre (BRC), Thailand Institute of Scientific and Technological Research (TISTR), Pathumthani, 12120, Thailand
| | - Navinee Wongmanee
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Worarat Rojanaverawong
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Jaruwan Sitdhipol
- Biodiversity Research Centre (BRC), Thailand Institute of Scientific and Technological Research (TISTR), Pathumthani, 12120, Thailand
| | - Punnathorn Thaveethaptaikul
- Biodiversity Research Centre (BRC), Thailand Institute of Scientific and Technological Research (TISTR), Pathumthani, 12120, Thailand
| | - Natthawut Charoenphon
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Wanthanee Hanchang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
- Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
14
|
Liu H, Wei Y, Wang Y, Zhao Q, Liu L, Ding H, Hong Y. Apigenin analogs as α-glucosidase inhibitors: Molecular docking, biochemical, enzyme kinetic, and an in vivo mouse model study. Bioorg Chem 2024; 153:107956. [PMID: 39561436 DOI: 10.1016/j.bioorg.2024.107956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Due to the high incidence of diabetes and its associated complications, diabetes is widely recognized as a serious global health problem. In diabetes treatment strategies, targeting α-glucosidase, a key carbohydratehydrolyzing enzyme, has emerged as a highly regarded approach. To develop novel α-glucosidase inhibitors, we successfully synthesized a series of apigenin analogs, collectively referred to as H1-H27 compounds and examined their inhibitory effects on α-glucosidase activity. H7 showed a remarkable inhibitory effect, surpassing that of the standard drug acarbose. Further analysis revealed that H7, H10, and H24 act as non-competitive inhibitors of α- glucosidase. In vivo experiments using a type 2 diabetes mouse model demonstrated the diverse therapeutic potential of H7; it effectively lowered blood sugar levels, improved glucose tolerance, and corrected lipid metabolism. In addition, H7 showed hepatoprotective effects, highlighting its ability to improve liver function. H7 also positively influenced the gut microbiota composition in diabetic mice, increasing diversity and richness. These results highlight the promising therapeutic effects of apigenin analogs, such as H7, for treating type 2 diabetes and show how they could provide numerous benefits, including effective inhibition of α-glucosidase, improved glucose control, correction of lipid metabolism, hepatoprotection, and modulation of the intestinal microbiota.
Collapse
Affiliation(s)
- Honghui Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Yanxu Wei
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Wuhan 430071, China
| | - Yan Wang
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Institute of Hematology, Nanjing 210009, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Wuhan 430071, China.
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Wuhan 430071, China.
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Yuntian Hong
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Wuhan 430071, China.
| |
Collapse
|
15
|
Klapp R, Laxamana JA, Shvetsov YB, Park SY, Kanehara R, Setiawan VW, Danquah I, Le Marchand L, Maskarinec G. The EAT-Lancet Diet Index Is Associated with Lower Obesity and Incidence of Type 2 Diabetes in the Multiethnic Cohort. J Nutr 2024; 154:3407-3415. [PMID: 39019161 PMCID: PMC11600087 DOI: 10.1016/j.tjnut.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND The EAT-Lancet Commission has developed dietary recommendations, named the EAT-Lancet diet, to promote healthy nutrition and sustainable food production worldwide. OBJECTIVES We developed an adapted score for the EAT-Lancet diet for participants of the Multiethnic Cohort (MEC) Study and its relation with incidence of obesity and type 2 diabetes (T2D). METHODS The MEC includes 5 ethnic groups followed since 1993-1996. Anthropometric characteristics and dietary intake were assessed by questionnaire at cohort entry (Qx1) and 10 y later (Qx3). To create the EAT-Lancet index (range: 0-48 points), a 3-point scoring system for 16 food groups standardized to 2500 kcal/d was applied. T2D cases were identified through repeated self-reports and administrative data. In a prospective design, obesity at Qx3 and T2D incidence were evaluated using Cox regression to estimate hazard ratios (HR) with 95% confidence intervals (95% CI) while adjusting for relevant covariates. RESULTS Among 193,379 MEC participants, the overall mean of the EAT-Lancet index score was 25 ± 4 points and 46,140 new T2D cases were identified. Higher adjusted means were observed in females than males, in participants of Japanese American and Native Hawaiian ancestry, and in those with healthy weight than overweight or obese. Obesity was lower in cohort members with higher EAT-Lancet scores (HR: 0.76; 95% CI: 0.73, 0.79 for tertile 3 compared with 1). Although T2D incidence was 10% lower among participants in the highest (27-42 points) compared with the lowest (9-23 points) EAT-Lancet index tertile (HR: 0.90; 95% CI: 0.88, 0.92), the association was attenuated after BMI adjustment (HR: 0.97; 95% CI: 0.94, 0.99). This inverse association with T2D was restricted to African American and European American participants. CONCLUSIONS These findings support the hypothesis that adherence to the EAT-Lancet diet is related to a lower risk of obesity, which may be partially responsible for the small reduction in T2D incidence.
Collapse
Affiliation(s)
- Rebecca Klapp
- Population Sciences in the Pacific, University of Hawaii Cancer Center, Honolulu, HI, United States
| | - Julie Ann Laxamana
- Population Sciences in the Pacific, University of Hawaii Cancer Center, Honolulu, HI, United States
| | - Yurii B Shvetsov
- Population Sciences in the Pacific, University of Hawaii Cancer Center, Honolulu, HI, United States
| | - Song-Yi Park
- Population Sciences in the Pacific, University of Hawaii Cancer Center, Honolulu, HI, United States
| | - Rieko Kanehara
- Division of Epidemiology, National Cancer Center Japan, Tokyo, Japan
| | - Veronica Wendy Setiawan
- Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA, United States
| | - Ina Danquah
- Center for Development Research, University of Bonn, Bonn, Germany
| | - Loïc Le Marchand
- Population Sciences in the Pacific, University of Hawaii Cancer Center, Honolulu, HI, United States
| | - Gertraud Maskarinec
- Population Sciences in the Pacific, University of Hawaii Cancer Center, Honolulu, HI, United States.
| |
Collapse
|
16
|
Mofolorunsho KC, Mabaso NG, Nundlall N, Ojo AO, Cason ED, Abbai NS. Comparison of the urinary microbiome in men who have sex with men with and without Chlamydia trachomatis infection. Eur J Clin Microbiol Infect Dis 2024; 43:2159-2170. [PMID: 39259456 PMCID: PMC11534976 DOI: 10.1007/s10096-024-04930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE The urinary tract is colonized by microbial communities that impact urinary health. Previous studies have suggested that the bacterial composition of the male urinary microbiota is related to STIs. This study assessed the bacterial composition of the urinary microbiome in South African MSM with and without C. trachomatis. METHODS This study used urine samples from MSM attending care at the King Edward VIII hospital and the Aurum Institute in Durban, South Africa. A total of 200 samples were tested for C. trachomatis infection using the Applied Biosystems™ TaqMan® Assays. Urinary microbiomes of 23 samples were characterized using 16 S rRNA (V3 and V4) gene sequencing on the Illumina MiSeq platform. RESULTS Bacterial taxonomic analysis showed a high abundance of Streptococcus, Corynebacterium, and Staphylococcus in all the sequenced samples. Moreover, Prevotella and Lactobacillus were detected in urine samples of MSM. Alpha diversity metrics showed a slight increase in microbial diversity in C. trachomatis positive samples; however, this was not significant (ANOVA, P > 0.05). Principal coordinates analysis (PCoA) showed that the microbiome of C. trachomatis infected MSM was not clearly different from those uninfected. Distinct bacterial communities were not detected between positive and negative samples (PERMANOVA F1,22= 1.0284, R2 = 0.047%, P = 0.385). CONCLUSION Most microbiome studies on MSM to date have focused on the gut microenvironment. Few studies, however, have provided data regarding the normal composition of the male urethral microbiomes or if these microbiomes are associated with male STIs. This study adds to the growing body of knowledge highlighting the urinary microbiome in MSM.
Collapse
Affiliation(s)
- Kehinde C Mofolorunsho
- School of Clinical Medicine Laboratory, College of Health Sciences, University of KwaZulu- Natal, Durban, South Africa
| | - Nonkululeko G Mabaso
- School of Clinical Medicine Laboratory, College of Health Sciences, University of KwaZulu- Natal, Durban, South Africa
| | - Nikita Nundlall
- School of Clinical Medicine Laboratory, College of Health Sciences, University of KwaZulu- Natal, Durban, South Africa
| | - Abidemi O Ojo
- Centre for Applied Food Sustainability and Biotechnology (CAFSaB), Central University of Technology, Bloemfontein, South Africa
| | - Errol D Cason
- Department of Animal Science, University of the Free State, Bloemfontein, South Africa
| | - Nathlee S Abbai
- School of Clinical Medicine Laboratory, College of Health Sciences, University of KwaZulu- Natal, Durban, South Africa.
| |
Collapse
|
17
|
Duisenbek A, Avilés Pérez MD, Pérez M, Aguilar Benitez JM, Pereira Pérez VR, Gorts Ortega J, Ussipbek B, Yessenbekova A, López-Armas GC, Ablaikhanova N, Olivieri F, Escames G, Acuña-Castroviejo D, Rusanova I. Unveiling the Predictive Model for Macrovascular Complications in Type 2 Diabetes Mellitus: microRNAs Expression, Lipid Profile, and Oxidative Stress Markers. Int J Mol Sci 2024; 25:11763. [PMID: 39519313 PMCID: PMC11546857 DOI: 10.3390/ijms252111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
To assay new circulating markers related to macrovascular complications (MVC) in type 2 diabetes mellitus (T2DM), we carried out a descriptive cross-sectional study. We recruited 30 controls (CG), 34 patients with T2DM (DG), and 28 patients with T2DM and vascular complications (DG+C); among them, 22 presented MVC. Peripheral blood was used to determine redox status (superoxide dismutase, SOD; catalase, CAT; glutathione reductase, GRd; glutathione peroxidase, GPx; glucose-6-phosphate dehydrogenase, G6PD) and markers of oxidative damage (advanced oxidation protein products, AOPP; lipid peroxidation, LPO), nitrite levels in plasma (NOx). Inflammatory markers (IL-1β, IL-6, IL-10, IL-18, MCP-1, TNF-α) and the relative expression of c-miRNAs were analyzed. The real-time PCR results showed that the expressions of miR-155-5p, miR-21-5p, miR-146a-3p, and miR-210-3p were significantly higher in the DG group compared to the CG. The DG+C group presented statistically relevant differences with CG for four miRs: the increased expression of miR-484-5p, miR-21-5p, and miR-210-3p, and decreased expression of miR-126a-3p. Moreover, miR-126a-3p was significantly less expressed in DG+C compared to DG. The application of binary logistic regression analysis and construction of receiving operator characteristic curves (ROC) revealed two models with high predictive values for vascular complications presence: (1) HbAc1, creatinine, total cholesterol (TC), LPO, GPx, SOD, miR-126, miR-484 (Exp(B) = 0.926, chi2 = 34.093, p < 0.001; AUC = 0.913). (2) HbAc1, creatinine, TC, IL-6, LPO, miR-126, miR-484 (Exp(B) = 0.958, Chi2 = 33.863, p < 0.001; AUC = 0.938). Moreover, our data demonstrated that gender, TC, GPx, CAT, and miR-484 were associated with MVC and exhibited higher predictive values (Exp(B) = 0.528, p = 0.024, Chi2 = 28.214, AUC = 0.904) than classical variables (Exp(B) 0.462, p = 0.007, Chi2 = 18.814, AUC = 0.850). miR-126, miR-484, IL-6, SOD, CAT, and GPx participate in vascular damage development in the studied diabetic population and should be considered for future studies.
Collapse
Affiliation(s)
- Ayauly Duisenbek
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan; (A.D.); (B.U.); (A.Y.); (N.A.)
| | - María D. Avilés Pérez
- Endocrinology and Nutrition Unit, Instituto de Investigación Biosanitaria de Granada Ibs.GRANADA, University Hospital San Cecilio, 18007 Granada, Spain;
| | - Miguel Pérez
- Hospital Alto Guadalquivir, 23740 Andujar, Spain;
| | | | - Víctor Roger Pereira Pérez
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain; (V.R.P.P.); (J.G.O.)
| | - Juan Gorts Ortega
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain; (V.R.P.P.); (J.G.O.)
| | - Botagoz Ussipbek
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan; (A.D.); (B.U.); (A.Y.); (N.A.)
| | - Arailym Yessenbekova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan; (A.D.); (B.U.); (A.Y.); (N.A.)
| | - Gabriela C. López-Armas
- Departamento de Investigación y Extensión, Centro de Enseñanza Técnica Industrial, C. Nueva Escocia 1885, Guadalajara C.P. 44638, Mexico;
| | - Nurzhanyat Ablaikhanova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan; (A.D.); (B.U.); (A.Y.); (N.A.)
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Disclimo, Università Politecnica delle Marche, 60126 Ancona, Italy;
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy
| | - Germaine Escames
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain; (G.E.); (D.A.-C.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, Hospital Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain; (G.E.); (D.A.-C.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, Hospital Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Iryna Rusanova
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain; (V.R.P.P.); (J.G.O.)
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain; (G.E.); (D.A.-C.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, Hospital Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
| |
Collapse
|
18
|
Salehi S, Allahverdy J, Pourjafar H, Sarabandi K, Jafari SM. Gut Microbiota and Polycystic Ovary Syndrome (PCOS): Understanding the Pathogenesis and the Role of Probiotics as a Therapeutic Strategy. Probiotics Antimicrob Proteins 2024; 16:1553-1565. [PMID: 38421576 DOI: 10.1007/s12602-024-10223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common disorders among women in modern societies. A variety of factors can contribute to the development of PCOS. These women often exhibit high insulin resistance (IR), hyperandrogenism, irregular periods, and infertility. Dysbiosis of the gut microbiota (GMB) in women with PCOS has attracted the attention of many researchers. Porphyromonas spp., B. coprophilus, and F. prausnitzii are found in higher numbers in the gut of women with PCOS. Short-chain fatty acids (SCFAs), produced by the intestinal microbiota through fermentation, play an essential role in regulating metabolic activities and are helpful in reducing insulin resistance and improving PCOS symptoms. According to studies, the bacteria producing SCFAs in the gut of these women are less abundant than in healthy women. The effectiveness of using probiotic supplements has been proven to improve the condition of women with PCOS. Daily consumption of probiotics improves dysbiosis of the intestinal microbiome and increases the production of SCFAs.
Collapse
Affiliation(s)
- Samaneh Salehi
- Department of Food Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Javad Allahverdy
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Students' Research Committee, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Khashayar Sarabandi
- Research Institute of Food Science and Technology (RIFST), Km 12 Mashhad-Quchan Highway, PO Box 91895, Mashhad, 157-356, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
19
|
Ashraf A, Hassan MI. Microbial Endocrinology: Host metabolism and appetite hormones interaction with gut microbiome. Mol Cell Endocrinol 2024; 592:112281. [PMID: 38810719 DOI: 10.1016/j.mce.2024.112281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Affiliation(s)
- Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
20
|
Tang Y, Zhang Y, Zhang D, Liu Y, Nussinov R, Zheng J. Exploring pathological link between antimicrobial and amyloid peptides. Chem Soc Rev 2024; 53:8713-8763. [PMID: 39041297 DOI: 10.1039/d3cs00878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Amyloid peptides (AMYs) and antimicrobial peptides (AMPs) are considered as the two distinct families of peptides, characterized by their unique sequences, structures, biological functions, and specific pathological targets. However, accumulating evidence has revealed intriguing pathological connections between these peptide families in the context of microbial infection and neurodegenerative diseases. Some AMYs and AMPs share certain structural and functional characteristics, including the ability to self-assemble, the presence of β-sheet-rich structures, and membrane-disrupting mechanisms. These shared features enable AMYs to possess antimicrobial activity and AMPs to acquire amyloidogenic properties. Despite limited studies on AMYs-AMPs systems, the cross-seeding phenomenon between AMYs and AMPs has emerged as a crucial factor in the bidirectional communication between the pathogenesis of neurodegenerative diseases and host defense against microbial infections. In this review, we examine recent developments in the potential interplay between AMYs and AMPs, as well as their pathological implications for both infectious and neurodegenerative diseases. By discussing the current progress and challenges in this emerging field, this account aims to inspire further research and investments to enhance our understanding of the intricate molecular crosstalk between AMYs and AMPs. This knowledge holds great promise for the development of innovative therapies to combat both microbial infections and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
- Department of Human Molecular Genetics and Biochemistry Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| |
Collapse
|
21
|
Hara T, Watanabe T, Yamagami H, Miyataka K, Yasui S, Asai T, Kaneko Y, Mitsui Y, Masuda S, Kurahashi K, Otoda T, Yuasa T, Kuroda A, Endo I, Honda S, Kondo A, Matsuhisa M, Aihara KI. Development of Liver Fibrosis Represented by the Fibrosis-4 Index Is a Specific Risk Factor for Tubular Injury in Individuals with Type 2 Diabetes. Biomedicines 2024; 12:1789. [PMID: 39200252 PMCID: PMC11352124 DOI: 10.3390/biomedicines12081789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Although hyperglycemia and hypertension are well-known risk factors for glomerular injury in individuals with type 2 diabetes (T2D), specific risk factors for tubular injury remain unclear. We aimed to clarify the differences between risk factors for glomerular injury and risk factors for tubular injury in individuals with T2D. We categorized 1243 subjects into four groups based on urinary biomarkers, including the albumin-to-creatinine ratio (uACR) and L-type fatty acid-binding protein-to-creatinine ratio (uL-ABPCR) as a normal (N) group (uACR < 30 mg/gCr and uL-FABPCR < 5 μg/gCr; n = 637), a glomerular specific injury (G) group (uACR ≥ 30 mg/gCr and uL-FABPCR < 5 μg/gCr; n = 248), a tubular specific injury (T) group (uACR < 30 mg/gCr and uL-FABPCR ≥ 5 μg/gCr; n = 90), and a dual injury (D) group (uACR ≥ 30 mg/gCr and uL-FABPCR ≥ 5 μg/gCr; n = 268). Logistic regression analysis referencing the N group revealed that BMI, current smoking, and hypertension were risk factors for the G group, creatinine (Cr) and Fibrosis-4 (FIB-4) index were risk factors for the T group, and BMI, hypertension, HbA1c, Cr, and duration of diabetes were risk factors for the D group. While hypertension was a distinct specific risk factor for glomerular injury, the FIB-4 index was a specific contributor to the prevalence of tubular injury. On the other hand, the logistic regression analysis revealed that the hepatic steatosis index (HSI) did not show any significant association with the G group, T group, or D group. Taken together, the development of liver fibrosis rather than liver steatosis is an inherent threat relating to tubular injury in individuals with T2D.
Collapse
Affiliation(s)
- Tomoyo Hara
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (H.Y.); (S.Y.); (T.A.); (Y.M.); (S.M.); (K.K.)
| | - Takeshi Watanabe
- Department of Preventive Medicine, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hiroki Yamagami
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (H.Y.); (S.Y.); (T.A.); (Y.M.); (S.M.); (K.K.)
| | - Kohsuke Miyataka
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (H.Y.); (S.Y.); (T.A.); (Y.M.); (S.M.); (K.K.)
- Department of Diabetology and Metabolism, Tokushima Prefectural Central Hospital, 1-10-3 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Saya Yasui
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (H.Y.); (S.Y.); (T.A.); (Y.M.); (S.M.); (K.K.)
| | - Takahito Asai
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (H.Y.); (S.Y.); (T.A.); (Y.M.); (S.M.); (K.K.)
| | - Yousuke Kaneko
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (H.Y.); (S.Y.); (T.A.); (Y.M.); (S.M.); (K.K.)
- Department of Internal Medicine, Tokushima Prefectural Kaifu Hospital, 266 Sugitani, Nakamura, Mugi-cho, Kaifu-gun, Tokushima 775-0006, Japan
| | - Yukari Mitsui
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (H.Y.); (S.Y.); (T.A.); (Y.M.); (S.M.); (K.K.)
| | - Shiho Masuda
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (H.Y.); (S.Y.); (T.A.); (Y.M.); (S.M.); (K.K.)
| | - Kiyoe Kurahashi
- Department of Hematology, Endocrinology and Metabolism, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (H.Y.); (S.Y.); (T.A.); (Y.M.); (S.M.); (K.K.)
| | - Toshiki Otoda
- Department of Community Medicine and Medical Science, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (T.O.); (T.Y.); (K.-i.A.)
| | - Tomoyuki Yuasa
- Department of Community Medicine and Medical Science, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (T.O.); (T.Y.); (K.-i.A.)
| | - Akio Kuroda
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (A.K.); (M.M.)
| | - Itsuro Endo
- Department of Bioregulatory Sciences, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan;
| | - Soichi Honda
- Minami Municipal National Insurance Hospital, 105-1 Tai, Minami-cho, Kaifu-gun, Tokushima 779-2109, Japan
| | - Akira Kondo
- Kondo Naika Hospital, 1-6-25 Nishi Shinharma-cho, Tokushima 770-8008, Japan
| | - Munehide Matsuhisa
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (A.K.); (M.M.)
| | - Ken-ichi Aihara
- Department of Community Medicine and Medical Science, Graduate School of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (T.O.); (T.Y.); (K.-i.A.)
- Department of Internal Medicine, Anan Medical Center, 6-1 Kawahara Takarada-cho, Anan 774-0045, Japan
| |
Collapse
|
22
|
Siddiqui N, Sharma A, Kesharwani A, Anurag, Parihar VK. Exploring role of natural compounds in molecular alterations associated with brain ageing: A perspective towards nutrition for ageing brain. Ageing Res Rev 2024; 97:102282. [PMID: 38548242 DOI: 10.1016/j.arr.2024.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Aging refers to complete deterioration of physiological integrity and function. By midcentury, adults over 60 years of age and children under 15 years will begin to outnumber people in working age. This shift will bring multiple global challenges for economy, health, and society. Eventually, aging is a natural process playing a vital function in growth and development during pediatric stage, maturation during adult stage, and functional depletion. Tissues experience negative consequences with enhanced genomic instability, deregulated nutrient sensing, mitochondrial dysfunction, and decline in performance on cognitive tasks. As brain ages, its volume decreases, neurons & glia get inflamed, vasculature becomes less developed, blood pressure increases with a risk of stroke, ischemia, and cognitive deficits. Diminished cellular functions leads to progressive reduction in functional and emotional capacity with higher possibility of disease and finally death. This review overviews cellular as well as molecular aspects of aging, biological pathway related to accelerated brain aging, and strategies minimizing cognitive aging. Age-related changes include altered bioenergetics, decreased neuroplasticity and flexibility, aberrant neural activity, deregulated Ca2+ homeostasis in neurons, buildup of reactive oxygen species, and neuro-inflammation. Unprecedented progress has been achieved in recent studies, particularly in terms of how herbal or natural substances affect genetic pathways and biological functions that have been preserved through evolution. Herein, the present work provides an overview of ageing and age-related disorders and explore the molecular mechanisms that underlie therapeutic effects of herbal and natural chemicals on neuropathological signs of brain aging.
Collapse
Affiliation(s)
- Nazia Siddiqui
- Department of Pharmaceutical Technology, MIET, Meerut 250005, India
| | - Alok Sharma
- Department of Pharmaceutical Technology, MIET, Meerut 250005, India.
| | - Anuradha Kesharwani
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India
| | - Anurag
- Department of Pharmaceutical Technology, MIET, Meerut 250005, India
| | - Vipan Kumar Parihar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, India.
| |
Collapse
|
23
|
Huang KC, Chuang PY, Yang TY, Tsai YH, Li YY, Chang SF. Diabetic Rats Induced Using a High-Fat Diet and Low-Dose Streptozotocin Treatment Exhibit Gut Microbiota Dysbiosis and Osteoporotic Bone Pathologies. Nutrients 2024; 16:1220. [PMID: 38674910 PMCID: PMC11054352 DOI: 10.3390/nu16081220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) presents a challenge for individuals today, affecting their health and life quality. Besides its known complications, T2DM has been found to contribute to bone/mineral abnormalities, thereby increasing the vulnerability to bone fragility/fractures. However, there is still a need for appropriate diagnostic approaches and targeted medications to address T2DM-associated bone diseases. This study aims to investigate the relationship between changes in gut microbiota, T2DM, and osteoporosis. To explore this, a T2DM rat model was induced by combining a high-fat diet and low-dose streptozotocin treatment. Our findings reveal that T2DM rats have lower bone mass and reduced levels of bone turnover markers compared to control rats. We also observe significant alterations in gut microbiota in T2DM rats, characterized by a higher relative abundance of Firmicutes (F) and Proteobacteria (P), but a lower relative abundance of Bacteroidetes (B) at the phylum level. Further analysis indicates a correlation between the F/B ratio and bone turnover levels, as well as between the B/P ratio and HbA1c levels. Additionally, at the genus level, we observe an inverse correlation in the relative abundance of Lachnospiraceae. These findings show promise for the development of new strategies to diagnose and treat T2DM-associated bone diseases.
Collapse
Affiliation(s)
- Kuo-Chin Huang
- School of Medicine, Chang Gung University College of Medicine, Taoyuan City 33302, Taiwan; (K.-C.H.); (P.-Y.C.); (T.-Y.Y.); (Y.-H.T.); (Y.-Y.L.)
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi City 61363, Taiwan
| | - Po-Yao Chuang
- School of Medicine, Chang Gung University College of Medicine, Taoyuan City 33302, Taiwan; (K.-C.H.); (P.-Y.C.); (T.-Y.Y.); (Y.-H.T.); (Y.-Y.L.)
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi City 61363, Taiwan
| | - Tien-Yu Yang
- School of Medicine, Chang Gung University College of Medicine, Taoyuan City 33302, Taiwan; (K.-C.H.); (P.-Y.C.); (T.-Y.Y.); (Y.-H.T.); (Y.-Y.L.)
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi City 61363, Taiwan
| | - Yao-Hung Tsai
- School of Medicine, Chang Gung University College of Medicine, Taoyuan City 33302, Taiwan; (K.-C.H.); (P.-Y.C.); (T.-Y.Y.); (Y.-H.T.); (Y.-Y.L.)
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi City 61363, Taiwan
| | - Yen-Yao Li
- School of Medicine, Chang Gung University College of Medicine, Taoyuan City 33302, Taiwan; (K.-C.H.); (P.-Y.C.); (T.-Y.Y.); (Y.-H.T.); (Y.-Y.L.)
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi City 61363, Taiwan
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chiayi Chang Gung Memorial Hospital, Chiayi City 61363, Taiwan
| |
Collapse
|
24
|
Sechovcová H, Mahayri TM, Mrázek J, Jarošíková R, Husáková J, Wosková V, Fejfarová V. Gut microbiota in relationship to diabetes mellitus and its late complications with a focus on diabetic foot syndrome: A review. Folia Microbiol (Praha) 2024; 69:259-282. [PMID: 38095802 DOI: 10.1007/s12223-023-01119-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/05/2023] [Indexed: 04/11/2024]
Abstract
Diabetes mellitus is a chronic disease affecting glucose metabolism. The pathophysiological reactions underpinning the disease can lead to the development of late diabetes complications. The gut microbiota plays important roles in weight regulation and the maintenance of a healthy digestive system. Obesity, diabetes mellitus, diabetic retinopathy, diabetic nephropathy and diabetic neuropathy are all associated with a microbial imbalance in the gut. Modern technical equipment and advanced diagnostic procedures, including xmolecular methods, are commonly used to detect both quantitative and qualitative changes in the gut microbiota. This review summarises collective knowledge on the role of the gut microbiota in both types of diabetes mellitus and their late complications, with a particular focus on diabetic foot syndrome.
Collapse
Affiliation(s)
- Hana Sechovcová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic
- Faculty of Agrobiology, Food and Natural Resources, Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague, Czech Republic
| | - Tiziana Maria Mahayri
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic.
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Italy.
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic
| | - Radka Jarošíková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jitka Husáková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Veronika Wosková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vladimíra Fejfarová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
25
|
Hong J, Fu T, Liu W, Du Y, Bu J, Wei G, Yu M, Lin Y, Min C, Lin D. An Update on the Role and Potential Molecules in Relation to Ruminococcus gnavus in Inflammatory Bowel Disease, Obesity and Diabetes Mellitus. Diabetes Metab Syndr Obes 2024; 17:1235-1248. [PMID: 38496006 PMCID: PMC10942254 DOI: 10.2147/dmso.s456173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Ruminococcus gnavus (R. gnavus) is a gram-positive anaerobe commonly resides in the human gut microbiota. The advent of metagenomics has linked R. gnavus with various diseases, including inflammatory bowel disease (IBD), obesity, and diabetes mellitus (DM), which has become a growing area of investigation. The initial focus of research primarily centered on assessing the abundance of R. gnavus and its potential association with disease presentation, taking into account variations in sample size, sequencing and analysis methods. However, recent investigations have shifted towards elucidating the underlying mechanistic pathways through which R. gnavus may contribute to disease manifestation. In this comprehensive review, we aim to provide an updated synthesis of the current literature on R. gnavus in the context of IBD, obesity, and DM. We critically analyze relevant studies and summarize the potential molecular mediators implicated in the association between R. gnavus and these diseases. Across numerous studies, various molecules such as methylation-controlled J (MCJ), glucopolysaccharides, ursodeoxycholic acid (UDCA), interleukin(IL)-10, IL-17, and capric acid have been proposed as potential contributors to the link between R. gnavus and IBD. Similarly, in the realm of obesity, molecules such as hydrogen peroxide, butyrate, and UDCA have been suggested as potential mediators, while glycine ursodeoxycholic acid (GUDCA) has been implicated in the connection between R. gnavus and DM. Furthermore, it is imperative to emphasize the necessity for additional studies to evaluate the potential efficacy of targeting pathways associated with R. gnavus as a viable strategy for managing these diseases. These findings have significantly expanded our understanding of the functional role of R. gnavus in the context of IBD, obesity, and DM. This review aims to offer updated insights into the role and potential mechanisms of R. gnavus, as well as potential strategies for the treatment of these diseases.
Collapse
Affiliation(s)
- Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Tingting Fu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Weizhen Liu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Yu Du
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Junmin Bu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Guojian Wei
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Miao Yu
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Yanshan Lin
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Cunyun Min
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
- Guangdong Provincial Institute of Geriatric, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, People’s Republic of China
| |
Collapse
|
26
|
Portincasa P, Khalil M, Graziani A, Frühbeck G, Baffy G, Garruti G, Di Ciaula A, Bonfrate L. Gut microbes in metabolic disturbances. Promising role for therapeutic manipulations? Eur J Intern Med 2024; 119:13-30. [PMID: 37802720 DOI: 10.1016/j.ejim.2023.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/30/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
The prevalence of overweight, obesity, type 2 diabetes, metabolic syndrome and steatotic liver disease is rapidly increasing worldwide with a huge economic burden in terms of morbidity and mortality. Several genetic and environmental factors are involved in the onset and development of metabolic disorders and related complications. A critical role also exists for the gut microbiota, a complex polymicrobial ecology at the interface of the internal and external environment. The gut microbiota contributes to food digestion and transformation, caloric intake, and immune response of the host, keeping the homeostatic control in health. Mechanisms of disease include enhanced energy extraction from the non-digestible dietary carbohydrates, increased gut permeability and translocation of bacterial metabolites which activate a chronic low-grade systemic inflammation and insulin resistance, as precursors of tangible metabolic disorders involving glucose and lipid homeostasis. The ultimate causative role of gut microbiota in this respect remains to be elucidated, as well as the therapeutic value of manipulating the gut microbiota by diet, pre- and pro- synbiotics, or fecal microbial transplantation.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy.
| | - Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, Graz, Austria
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Gabriella Garruti
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, Bari 70124, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy.
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy
| |
Collapse
|
27
|
Feng X, Deng M, Zhang L, Pan Q. Impact of gut microbiota and associated mechanisms on postprandial glucose levels in patients with diabetes. J Transl Int Med 2023; 11:363-371. [PMID: 38130636 PMCID: PMC10732577 DOI: 10.2478/jtim-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Diabetes and its complications are serious medical and global burdens, often manifesting as postprandial hyperglycemia. In recent years, considerable research attention has focused on relationships between the gut microbiota and circulating postprandial glucose (PPG). Different population studies have suggested that PPG is closely related to the gut microbiota which may impact PPG via short-chain fatty acids (SCFAs), bile acids (BAs) and trimethylamine N-oxide (TMAO). Studies now show that gut microbiota models can predict PPG, with individualized nutrition intervention strategies used to regulate gut microbiota and improve glucose metabolism to facilitate the precision treatment of diabetes. However, few studies have been conducted in patients with diabetes. Therefore, little is known about the relationships between the gut microbiota and PPG in this cohort. Thus, more research is required to identify key gut microbiota and associated metabolites and pathways impacting PPG to provide potential therapeutic targets for PPG.
Collapse
Affiliation(s)
- Xinyuan Feng
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Mingqun Deng
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
| | - Lina Zhang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
| | - Qi Pan
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing100730 ,China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100730, China
| |
Collapse
|
28
|
Kotanidou EP, Tsinopoulou VR, Giza S, Ntouma S, Angeli C, Chatziandreou M, Tsopelas K, Tseti I, Galli-Tsinopoulou A. The Effect of Saffron Kozanis ( Crocus sativus L.) Supplementation on Weight Management, Glycemic Markers and Lipid Profile in Adolescents with Obesity: A Double-Blinded Randomized Placebo-Controlled Trial. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1814. [PMID: 38002905 PMCID: PMC10670718 DOI: 10.3390/children10111814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Global rates of adolescent obesity have led the World Health Organization to consider the disease a pandemic that needs focus. In search of new anti-obesity agents, Crocus sativus, popularly known as saffron, is a nutraceutical agent, praised for its beneficial effects. The study aimed to investigate the possible effect of Kozanis saffron administration on weight management of obese prediabetic adolescents. Seventy-four obese prediabetic adolescents participated in a double-blind placebo-controlled trial of three arms, randomly assigned to receive either Kozanis saffron (n = 25, 60 mg/day), metformin (n = 25, 1000 mg/day) or a placebo (n = 24), for twelve weeks. Anthropometry, glycemic markers and lipid profiles were investigated at baseline and post-intervention. Saffron supplementation significantly reduced the weight z-score, BMI, BMI z-score and waist circumference (WC) of obese adolescents; however, this reduction was less significant compared to the effect of metformin. Metformin administration offered a significantly more profound improvement in anthropometry compared to saffron administration. Saffron administration also provided significant improvements in weight, weight z-scores, BMI values, BMI z-scores and WCs compared to the placebo. Saffron supplementation failed to change any glycemic marker, but provided a significant reduction in fasting triglyceride levels and also a significant increase in fasting HDL levels. Saffron Kozanis constitutes a promising nutraceutical option for adolescents and children with obesity and prediabetes in need of weight management.
Collapse
Affiliation(s)
- Eleni P. Kotanidou
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| | - Vasiliki Rengina Tsinopoulou
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| | - Styliani Giza
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| | - Stergianna Ntouma
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| | - Chrysanthi Angeli
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| | - Michail Chatziandreou
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| | - Konstantinos Tsopelas
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| | | | - Assimina Galli-Tsinopoulou
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| |
Collapse
|
29
|
Rohwer N, El Hage R, Smyl C, Ocvirk S, Goris T, Grune T, Swidsinski A, Weylandt KH. Ketogenic Diet Has Moderate Effects on the Fecal Microbiota of Wild-Type Mice. Nutrients 2023; 15:4629. [PMID: 37960282 PMCID: PMC10648986 DOI: 10.3390/nu15214629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that has been reported to have neuroprotective effects. The health effects of KD might be linked to an altered gut microbiome, which plays a major role in host health, leading to neuroprotective effects via the gut-brain axis. However, results from different studies, most often based on the 16S rRNA gene and metagenome sequencing, have been inconsistent. In this study, we assessed the effect of a 4-week KD compared to a western diet (WD) on the colonic microbiome of female C57Bl/6J mice by analyzing fecal samples using fluorescence in situ hybridization. Our results showed distinct changes in the total number of gut bacteria following the 4-week KD, in addition to changes in the composition of the microbiome. KD-fed mice showed higher absolute numbers of Actinobacteria (especially Bifidobacteria spp.) and lower absolute levels of Proteobacteria, often linked to gut inflammation, in comparison with WD-fed mice. Furthermore, an increased abundance of the typically rare genus Atopobium was observed. These changes may indicate the possible anti-inflammatory effects of the KD. However, since the overall changes in the microbiota seem low, the KD effects might be linked to the differential abundance of only a few key genera in mice.
Collapse
Affiliation(s)
- Nadine Rohwer
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Endocrinology and Diabetes, Brandenburg Medical School, University Hospital Ruppin-Brandenburg, 16816 Neuruppin, Germany;
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Racha El Hage
- Department of Vascular Surgery, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany;
| | - Christopher Smyl
- Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Soeren Ocvirk
- Intestinal Microbiology Research Group, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
- ZIEL—Institute for Food and Health, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
| | - Tobias Goris
- Intestinal Microbiology Research Group, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Alexander Swidsinski
- Medical Department, Division of Hepatology and Gastroenterology, Campus Mitte, Charité Universitätsmedizin, 10117 Berlin, Germany
- Department of General Hygiene, Institute of Public Health, M Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Karsten-H. Weylandt
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Endocrinology and Diabetes, Brandenburg Medical School, University Hospital Ruppin-Brandenburg, 16816 Neuruppin, Germany;
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
30
|
Derrick SA, Nguyen ST, Marthens JR, Dambacher LL, Sikalidis AK, Reaves SK. A Mediterranean-Style Diet Improves the Parameters for the Management and Prevention of Type 2 Diabetes Mellitus. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1882. [PMID: 37893600 PMCID: PMC10608307 DOI: 10.3390/medicina59101882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Type 2 diabetes mellitus (T2DM) is a chronic condition recognized as the inability to maintain glucose homeostasis, typically presenting with insulin resistance and systemic inflammation. With the prevalence of T2DM and major risk factors, such as prediabetes and obesity, increasing each year, the need to address risk factor reduction strategies is crucial. Materials and Methods: Twenty-two men and women, overweight-to-obese adults (BMI mean: 26.1-31.6) (age range mean: 44.6-51.8) with T2DM, indicators of prediabetes, or who were metabolically healthy, participated in Cal Poly's Nutrition and Exercise in Type 2 Diabetes (CPNET) study. There were no significant differences in terms of age, BMI, or sex distribution among the groups at the baseline. This study's protocol included following a Mediterranean-style diet, the daily consumption of a high-quality whey protein supplement, and physical activity recommendations for 16 weeks. Body composition data, via dual-energy X-ray absorptiometry (DXA), and fasting blood samples were collected at the baseline and following the intervention. Due to restrictions associated with the outbreak of the COVID-19 pandemic, only 13 of the 22 participants who started this study were able to return for the second data collection to complete this study following the 16-week intervention. Results: The prediabetic and T2DM groups exhibited reductions in their fasting plasma glucose (12.0 mg/dL reduction in the prediabetic group; 19.6 mg/dL reduction in the T2DM group) to that of normal and prediabetic levels, respectively, while the T2DM group also demonstrated improvement in their hemoglobin A1c (reduced from 6.8% to 6.0%) to prediabetic levels. Additionally, the metabolically healthy, overweight group exhibited significant improvements in adiposity, while the obese prediabetic and T2DM groups showed non-significant improvements in all the measured metrics of body composition. No significant changes were observed in the inflammatory biomarkers (p-values ranged from 0.395 to 0.877). Conclusions: Collectively, our results suggest that adherence to a well-balanced, nutritious diet and activity may improve the parameters of glycemic control and provide benefits to body composition that help to manage and prevent the development of T2DM. Our study was able to yield significant findings signifying that the effects of a Mediterranean-style diet are observed even for a more conservative sample size.
Collapse
Affiliation(s)
- Stefani A. Derrick
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (S.A.D.)
| | - Sarah T. Nguyen
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (S.A.D.)
| | - Jordan R. Marthens
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (S.A.D.)
| | - Leah L. Dambacher
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (S.A.D.)
| | - Angelos K. Sikalidis
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (S.A.D.)
- Center for Health Research, California Polytechnic State University, San Luis Obispo, CA 93407, USA
- Personalized Nutrition Research Group, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Scott K. Reaves
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (S.A.D.)
- Personalized Nutrition Research Group, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
31
|
Bourgonje AR, Connelly MA, van Goor H, van Dijk PR, Dullaart RPF. Plasma Citrate Levels Are Associated with an Increased Risk of Cardiovascular Mortality in Patients with Type 2 Diabetes (Zodiac-64). J Clin Med 2023; 12:6670. [PMID: 37892807 PMCID: PMC10607484 DOI: 10.3390/jcm12206670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Circulating citrate may represent a proxy of mitochondrial dysfunction which plays a role in the development of vascular complications in type 2 diabetes (T2D). Here, we determined the associations between plasma citrate levels and cardiovascular (CV) mortality in T2D patients. In this prospective cohort study, 601 patients were included who participated in the Zwolle Outpatient Diabetes project Integrating Available Care (ZODIAC). Plasma citrate levels were measured by nuclear magnetic resonance spectroscopy. Cox proportional hazards regression models were used to evaluate the associations between plasma citrate and the risk of CV mortality. Over a median follow-up of 11.4 years, 119 (19.8%) of the 601 patients died from a CV cause. In multivariable Cox proportional hazards regression models, adjusting for conventional risk factors, plasma citrate was associated with an increased risk of CV mortality (the hazard ratio (HR) per 1-SD increment was 1.19 (95%CI: 1.00-1.40), p = 0.048). This association was prominent in males (n = 49 with CV mortality) (HR 1.52 (95%CI: 1.14-2.03), p = 0.005), but not in females (n = 70 with CV mortality) (HR 1.11 (95%CI: 0.90-1.37), p = 0.319) (age-adjusted Pinteraction = 0.044). In conclusion, higher plasma citrate levels are associated with an increased risk of CV mortality in patients with established T2D. Future studies are warranted to unravel the potential role of citrate-related pathways in the pathogenesis of T2D-related vascular complications.
Collapse
Affiliation(s)
- Arno R. Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Harry van Goor
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Peter R. van Dijk
- Department of Internal Medicine, Division of Endocrinology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (P.R.v.D.); (R.P.F.D.)
| | - Robin P. F. Dullaart
- Department of Internal Medicine, Division of Endocrinology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (P.R.v.D.); (R.P.F.D.)
| |
Collapse
|
32
|
Zhang Y, Chu L, Zhou X, Xu T, Shen Q, Li T, Wu Y. Vitamin B12-Induced Autophagy Alleviates High Glucose-Mediated Apoptosis of Islet β Cells. Int J Mol Sci 2023; 24:15217. [PMID: 37894898 PMCID: PMC10607738 DOI: 10.3390/ijms242015217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
High glucose levels can lead to the apoptosis of islet β cells, while autophagy can provide cytoprotection and promote autophagic cell death. Vitamin B12, a water-soluble B vitamin, has been shown to regulate insulin secretion and increase insulin sensitivity. However, the precise mechanism of action remains unclear. In this study, we investigated the influence of vitamin B12 on high glucose-induced apoptosis and autophagy in RIN-m5F cells to elucidate how vitamin B12 modulates insulin release. Our results demonstrate that exposure to 45 mM glucose led to a significant increase in the apoptosis rate of RIN-m5F cells. The treatment with vitamin B12 reduced the apoptosis rate and increased the number of autophagosomes. Moreover, vitamin B12 increased the ratio of microtubule-associated protein 1 light chain 3 beta to microtubule-associated protein 1 light chain 3 alpha (LC3-II/LC3-I), while decreasing the amount of sequestosome 1 (p62) and inhibiting the phosphorylation of p70 ribosomal protein S6 kinase (p70S6K) under both normal- and high-glucose conditions. The additional experiments revealed that vitamin B12 inhibited high glucose-induced apoptosis. Notably, this protective effect was attenuated when the autophagy inhibitor 3-methyladenine was introduced. Our findings suggest that vitamin B12 protects islet β cells against apoptosis induced by high glucose levels, possibly by inducing autophagy.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (L.C.); (X.Z.); (T.X.); (Q.S.)
| | - Ling Chu
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (L.C.); (X.Z.); (T.X.); (Q.S.)
| | - Xi’an Zhou
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (L.C.); (X.Z.); (T.X.); (Q.S.)
| | - Tingxia Xu
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (L.C.); (X.Z.); (T.X.); (Q.S.)
| | - Qingwu Shen
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (L.C.); (X.Z.); (T.X.); (Q.S.)
| | - Tao Li
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yanyang Wu
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (L.C.); (X.Z.); (T.X.); (Q.S.)
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Changsha 410128, China
| |
Collapse
|
33
|
Alshamrani AA, Al-Hamamah MA, Albekairi NA, Attia MSM, Ahmad SF, Assiri MA, Ansari MA, Nadeem A, Bakheet SA, Alanazi WA, Attia SM. Impacts of the DPP-4 Inhibitor Saxagliptin and SGLT-2 Inhibitor Dapagliflozin on the Gonads of Diabetic Mice. Biomedicines 2023; 11:2674. [PMID: 37893048 PMCID: PMC10604863 DOI: 10.3390/biomedicines11102674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Diabetes mellitus is a metabolic disease that can cause systemic problems, including testicular dysfunction. Several diabetes medications have demonstrated potential adverse effects on the male reproductive system; however, the effects of saxagliptin and dapagliflozin have not been sufficiently examined. This investigation studied the impacts of saxagliptin and dapagliflozin treatments on the gonads in a male mouse model of diabetes. Testicular disturbances were assessed by sperm DNA damage, diakinesis-metaphase I chromosome examination, and spermiogram analysis. Our results showed more sperm DNA damage, more spermatocyte chromosome aberrations, lower sperm motility/count, and more sperm morphological anomalies in diabetic mice than in the control mice. Dapagliflozin significantly restored all examined measures to the control values in diabetic mice, unlike saxagliptin, which exacerbated the reduction in sperm count and motility. Both drugs significantly restored the gonadal redox imbalances in diabetic mice by decreasing reactive oxygen species accumulation and increasing glutathione levels. In conclusion, our study presents preliminary evidence for the safety and efficacy of dapagliflozin in alleviating testicular abnormalities induced by diabetes, making it a promising candidate drug for patients with diabetes in their reproductive age. As saxagliptin may have negative effects on fertility, its prescription should be avoided in young male diabetic patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.); (M.A.A.-H.); (N.A.A.); (M.S.M.A.); (S.F.A.); (M.A.A.); (M.A.A.); (A.N.); (S.A.B.); (W.A.A.)
| |
Collapse
|
34
|
Baima G, Ribaldone DG, Romano F, Aimetti M, Romandini M. The Gum-Gut Axis: Periodontitis and the Risk of Gastrointestinal Cancers. Cancers (Basel) 2023; 15:4594. [PMID: 37760563 PMCID: PMC10526746 DOI: 10.3390/cancers15184594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Periodontitis has been linked to an increased risk of various chronic non-communicable diseases, including gastrointestinal cancers. Indeed, dysbiosis of the oral microbiome and immune-inflammatory pathways related to periodontitis may impact the pathophysiology of the gastrointestinal tract and its accessory organs through the so-called "gum-gut axis". In addition to the hematogenous spread of periodontal pathogens and inflammatory cytokines, recent research suggests that oral pathobionts may translocate to the gastrointestinal tract through saliva, possibly impacting neoplastic processes in the gastrointestinal, liver, and pancreatic systems. The exact mechanisms by which oral pathogens contribute to the development of digestive tract cancers are not fully understood but may involve dysbiosis of the gut microbiome, chronic inflammation, and immune modulation/evasion, mainly through the interaction with T-helper and monocytic cells. Specifically, keystone periodontal pathogens, including Porphyromonas gingivalis and Fusobacterium nucleatum, are known to interact with the molecular hallmarks of gastrointestinal cancers, inducing genomic mutations, and promote a permissive immune microenvironment by impairing anti-tumor checkpoints. The evidence gathered here suggests a possible role of periodontitis and oral dysbiosis in the carcinogenesis of the enteral tract. The "gum-gut axis" may therefore represent a promising target for the development of strategies for the prevention and treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Giacomo Baima
- Department of Surgical Sciences, University of Turin, 10125 Torino, Italy; (G.B.); (F.R.); (M.A.)
| | | | - Federica Romano
- Department of Surgical Sciences, University of Turin, 10125 Torino, Italy; (G.B.); (F.R.); (M.A.)
| | - Mario Aimetti
- Department of Surgical Sciences, University of Turin, 10125 Torino, Italy; (G.B.); (F.R.); (M.A.)
| | - Mario Romandini
- Department of Periodontology, Faculty of Dentistry, University of Oslo, 0313 Oslo, Norway
| |
Collapse
|
35
|
Haș IM, Tit DM, Bungau SG, Pavel FM, Teleky BE, Vodnar DC, Vesa CM. Cardiometabolic Risk: Characteristics of the Intestinal Microbiome and the Role of Polyphenols. Int J Mol Sci 2023; 24:13757. [PMID: 37762062 PMCID: PMC10531333 DOI: 10.3390/ijms241813757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiometabolic diseases like hypertension, type 2 diabetes mellitus, atherosclerosis, and obesity have been associated with changes in the gut microbiota structure, or dysbiosis. The beneficial effect of polyphenols on reducing the incidence of this chronic disease has been confirmed by numerous studies. Polyphenols are primarily known for their anti-inflammatory and antioxidant properties, but they can also modify the gut microbiota. According to recent research, polyphenols positively influence the gut microbiota, which regulates metabolic responses and reduces systemic inflammation. This review emphasizes the prebiotic role of polyphenols and their impact on specific gut microbiota components in patients at cardiometabolic risk. It also analyzes the most recent research on the positive effects of polyphenols on cardiometabolic health. While numerous in vitro and in vivo studies have shown the interaction involving polyphenols and gut microbiota, additional clinical investigations are required to assess this effect in people.
Collapse
Affiliation(s)
- Ioana Mariana Haș
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Flavia Maria Pavel
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
| | - Bernadette-Emoke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.-E.T.); (D.C.V.)
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.-E.T.); (D.C.V.)
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Cosmin Mihai Vesa
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (F.M.P.); (C.M.V.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
36
|
Gao J, Cao B, Zhao R, Li H, Xu Q, Wei B. Critical Signaling Transduction Pathways and Intestinal Barrier: Implications for Pathophysiology and Therapeutics. Pharmaceuticals (Basel) 2023; 16:1216. [PMID: 37765024 PMCID: PMC10537644 DOI: 10.3390/ph16091216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The intestinal barrier is a sum of the functions and structures consisting of the intestinal mucosal epithelium, mucus, intestinal flora, secretory immunoglobulins, and digestive juices. It is the first-line defense mechanism that resists nonspecific infections with powerful functions that include physical, endocrine, and immune defenses. Health and physiological homeostasis are greatly dependent on the sturdiness of the intestinal barrier shield, whose dysfunction can contribute to the progression of numerous types of intestinal diseases. Disorders of internal homeostasis may also induce barrier impairment and form vicious cycles during the response to diseases. Therefore, the identification of the underlying mechanisms involved in intestinal barrier function and the development of effective drugs targeting its damage have become popular research topics. Evidence has shown that multiple signaling pathways and corresponding critical molecules are extensively involved in the regulation of the barrier pathophysiological state. Ectopic expression or activation of signaling pathways plays an essential role in the process of shield destruction. Although some drugs, such as molecular or signaling inhibitors, are currently used for the treatment of intestinal diseases, their efficacy cannot meet current medical requirements. In this review, we summarize the current achievements in research on the relationships between the intestinal barrier and signaling pathways. The limitations and future perspectives are also discussed to provide new horizons for targeted therapies for restoring intestinal barrier function that have translational potential.
Collapse
Affiliation(s)
- Jingwang Gao
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Ruiyang Zhao
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Hanghang Li
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Qixuan Xu
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Bo Wei
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
| |
Collapse
|
37
|
Vitetta L, Gorgani NN, Vitetta G, Henson JD. Prebiotics Progress Shifts in the Intestinal Microbiome That Benefits Patients with Type 2 Diabetes Mellitus. Biomolecules 2023; 13:1307. [PMID: 37759707 PMCID: PMC10526165 DOI: 10.3390/biom13091307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Hypoglycemic medications that could be co-administered with prebiotics and functional foods can potentially reduce the burden of metabolic diseases such as Type 2 Diabetes Mellitus (T2DM). The efficacy of drugs such as metformin and sulfonylureas can be enhanced by the activity of the intestinal microbiome elaborated metabolites. Functional foods such as prebiotics (e.g., oligofructose) and dietary fibers can treat a dysbiotic gut microbiome by enhancing the diversity of microbial niches in the gut. These beneficial shifts in intestinal microbiome profiles include an increased abundance of bacteria such as Faecalibacterium prauznitzii, Akkermancia muciniphila, Roseburia species, and Bifidobacterium species. An important net effect is an increase in the levels of luminal SCFAs (e.g., butyrate) that provide energy carbon sources for the intestinal microbiome in cross-feeding activities, with concomitant improvement in intestinal dysbiosis with attenuation of inflammatory sequalae and improved intestinal gut barrier integrity, which alleviates the morbidity of T2DM. Oligosaccharides administered adjunctively with pharmacotherapy to ameliorate T2DM represent current plausible treatment modalities.
Collapse
Affiliation(s)
- Luis Vitetta
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nick N. Gorgani
- OzStar Therapeutics Pty Ltd., Pennant Hills, NSW 2120, Australia
| | - Gemma Vitetta
- Gold Coast University Hospital, Southport, QLD 4215, Australia
| | - Jeremy D. Henson
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
38
|
Balint L, Socaciu C, Socaciu AI, Vlad A, Gadalean F, Bob F, Milas O, Cretu OM, Suteanu-Simulescu A, Glavan M, Ienciu S, Mogos M, Jianu DC, Ursoniu S, Dumitrascu V, Vlad D, Popescu R, Petrica L. Metabolites Potentially Derived from Gut Microbiota Associated with Podocyte, Proximal Tubule, and Renal and Cerebrovascular Endothelial Damage in Early Diabetic Kidney Disease in T2DM Patients. Metabolites 2023; 13:893. [PMID: 37623837 PMCID: PMC10456401 DOI: 10.3390/metabo13080893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Complications due to type 2 diabetes mellitus (T2DM) such as diabetic kidney disease (DKD) and cerebral small vessel disease (CSVD) have a powerful impact on mortality and morbidity. Our current diagnostic markers have become outdated as T2DM-related complications continue to develop. The aim of the investigation was to point out the relationship between previously selected metabolites which are potentially derived from gut microbiota and indicators of endothelial, proximal tubule (PT), and podocyte dysfunction, and neurosonological indices. The study participants were 20 healthy controls and 90 T2DM patients divided into three stages: normoalbuminuria, microalbuminuria, and macroalbuminuria. Serum and urine metabolites were determined by untargeted and targeted metabolomic techniques. The markers of endothelial, PT and podocyte dysfunction were assessed by ELISA technique, and the neurosonological indices were provided by an ultrasound device with high resolution (MYLAB 8-ESAOTE Italy). The descriptive statistical analysis was followed by univariable and multivariable linear regression analyses. In conclusion, in serum, arginine (sArg), butenoylcarnitine (sBCA), and indoxyl sulfate (sIS) expressed a biomarker potential in terms of renal endothelial dysfunction and carotid atherosclerosis, whereas sorbitol (sSorb) may be a potential biomarker of blood-brain barrier (BBB) dysfunction. In urine, BCA and IS were associated with markers of podocyte damage, whereas PCS correlated with markers of PT dysfunction.
Collapse
Affiliation(s)
- Lavinia Balint
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
| | - Carmen Socaciu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
- Research Center for Applied Biotechnology and Molecular Therapy Biodiatech, SC Proplanta, Trifoiului 12G, 400478 Cluj-Napoca, Romania
| | - Andreea Iulia Socaciu
- Department of Occupational Health, University of Medicine and Pharmacy “Iuliu Haţieganu”, Victor Babes 8, 400347 Cluj-Napoca, Romania;
| | - Adrian Vlad
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
- Department of Internal Medicine II—Division of Diabetes and Metabolic Diseases, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania
| | - Florica Gadalean
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
| | - Flaviu Bob
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
| | - Oana Milas
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
| | - Octavian Marius Cretu
- Department of Surgery I—Division of Surgical Semiology I, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, Emergency Clinical Municipal Hospital Timisoara, 300041 Timisoara, Romania;
| | - Anca Suteanu-Simulescu
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
| | - Mihaela Glavan
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
| | - Silvia Ienciu
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
| | - Maria Mogos
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
| | - Dragos Catalin Jianu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
- Department of Neurosciences—Division of Neurology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Sorin Ursoniu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Department of Functional Sciences III, Division of Public Health and History of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Centre for Translational Research and Systems Medicine, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie, Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Victor Dumitrascu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
- Department of Biochemistry and Pharmacology IV, Division of Pharmacology, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Daliborca Vlad
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
- Department of Biochemistry and Pharmacology IV, Division of Pharmacology, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Roxana Popescu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
- Department of Microscopic Morphology II, Division of Cell and Molecular Biology II, “Victor Babes” University of Medicine and Pharmacy, No. 2, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Ligia Petrica
- Department of Internal Medicine II—Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital Timisoara, 300041 Timisoara, Romania; (L.B.); (F.B.); (O.M.); (A.S.-S.); (M.G.); (S.I.); (M.M.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.S.); (A.V.); (D.C.J.); (S.U.); (V.D.); (D.V.); (R.P.)
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Centre for Translational Research and Systems Medicine, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie, Murgu Sq. No. 2, 300041 Timisoara, Romania
| |
Collapse
|
39
|
Colella M, Charitos IA, Ballini A, Cafiero C, Topi S, Palmirotta R, Santacroce L. Microbiota revolution: How gut microbes regulate our lives. World J Gastroenterol 2023; 29:4368-4383. [PMID: 37576701 PMCID: PMC10415973 DOI: 10.3748/wjg.v29.i28.4368] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/16/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
The human intestine is a natural environment ecosystem of a complex of diversified and dynamic microorganisms, determined through a process of competition and natural selection during life. Those intestinal microorganisms called microbiota and are involved in a variety of mechanisms of the organism, they interact with the host and therefore are in contact with the organs of the various systems. However, they play a crucial role in maintaining host homeostasis, also influencing its behaviour. Thus, microorganisms perform a series of biological functions important for human well-being. The host provides the microorganisms with the environment and nutrients, simultaneously drawing many benefits such as their contribution to metabolic, trophic, immunological, and other functions. For these reasons it has been reported that its quantitative and qualitative composition can play a protective or harmful role on the host health. Therefore, a dysbiosis can lead to an association of unfavourable factors which lead to a dysregulation of the physiological processes of homeostasis. Thus, it has pre-viously noted that the gut microbiota can participate in the pathogenesis of autoimmune diseases, chronic intestinal inflammation, diabetes mellitus, obesity and atherosclerosis, neurological disorders (e.g., neurological diseases, autism, etc.) colorectal cancer, and more.
Collapse
Affiliation(s)
- Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Ioannis Alexandros Charitos
- Maugeri Clinical Scientific Research Institutes (IRCCS) of Pavia - Division of Pneumology and Respiratory Rehabilitation, Scientific Institute of Bari, Bari 70124, Italy
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| | - Concetta Cafiero
- Area of Molecular Pathology, Anatomic Pathology Unit, Fabrizio Spaziani Hospital, Frosinone 03100, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani”, Elbasan 3001, Albania
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, University of Bari “Aldo Moro”, Bari 70124, Italy
| |
Collapse
|
40
|
Zhu J, Jin J, Qi Q, Li L, Zhou J, Cao L, Wang L. The association of gut microbiome with recurrent pregnancy loss: A comprehensive review. Drug Discov Ther 2023; 17:157-169. [PMID: 37357394 DOI: 10.5582/ddt.2023.01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
The steady-state gut microbiome not only promotes the metabolism and absorption of nutrients that are difficult to digest by the host itself, but also participates in systemic metabolism. Once the dynamic balance is disturbed, the gut microbiome may lead to a variety of diseases. Recurrent pregnancy loss (RPL) affects 1-2% of women of reproductive age, and its prevalence has increased in recent years. According to the literature review, the gut microbiome is a new potential driver of the pathophysiology of recurrent abortion, and the gut microbiome has emerged as a new candidate for clinical prevention and treatment of RPL. However, few studies have concentrated on the direct correlation between RPL and the gut microbiome, and the mechanisms by which the gut microbiome influences recurrent miscarriage need further investigation. In this review, the effects of the gut microbiome on RPL were discussed and found to be associated with inflammatory response, the disruption of insulin signaling pathway and the formation of insulin resistance, maintenance of immunological tolerance at the maternal-fetal interface due to the interference with the immune imbalance of Treg/Th17 cells, and obesity.
Collapse
Affiliation(s)
- Jun Zhu
- The Affiliated Wenling Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jiaxi Jin
- The Affiliated Wenling Hospital of Wenzhou Medical University, Zhejiang, China
| | - Qing Qi
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Lisha Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
| | - Liwen Cao
- Center for Reproductive Medicine, Zhoushan Women and Children Hospital, Zhejiang, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
41
|
Memon H, Abdulla F, Reljic T, Alnuaimi S, Serdarevic F, Asimi ZV, Kumar A, Semiz S. Effects of combined treatment of probiotics and metformin in management of Type 2 diabetes: A systematic review and meta-analysis. Diabetes Res Clin Pract 2023:110806. [PMID: 37369280 DOI: 10.1016/j.diabres.2023.110806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Lifestyle changes and dietary intervention, including the use of probiotics, can modulate dysbiosis of gut microbiome and contribute to the management of type 2 diabetes mellitus (T2DM). This systematic review and meta-analysis aim to assess the efficacy of metformin plus probiotics versus metformin alone on outcomes in patients with T2DM. METHODS We searched MEDLINE and EMBASE from inception to February 2023 to identify all randomized controlled trials (RCTs), which compared the use of metformin plus probiotics versus metformin alone in adult patients with T2DM. Data were summarized as mean differences (MD) with 95% confidence interval (CI) and pooled under the random effects model. Findings Fourteen RCTs (17 comparisons, 1009 patients) were included in this systematic review. Pooled results show a significant decrease in fasting glucose (FG) (MD=-0.64, 95% CI=-1.06, -0.22) and HbA1c (MD=-0.29, 95% CI=-0.47, -0.10) levels in patients with T2DM treated with metformin plus probiotics versus metformin alone. The addition of probiotics to metformin resulted in lower odds of gastrointestinal adverse events (Odds ratio=0.18, 95% CI=0.09, 0.3.8; I2=0%). CONCLUSIONS The addition of probiotics to metformin therapy is associated with improvement in T2DM outcomes. However, high-quality and adequately reported RCTs are needed in the future to confirm our findings.
Collapse
Affiliation(s)
- Hamda Memon
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Fatima Abdulla
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Tea Reljic
- Research Methodology and Biostatistics Core, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Saif Alnuaimi
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Fadila Serdarevic
- Sarajevo Medical School, University Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina; Department of Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Zelija Velija Asimi
- Sarajevo Medical School, University Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| | - Ambuj Kumar
- Research Methodology and Biostatistics Core, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Sabina Semiz
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
42
|
Ciarambino T, Crispino P, Leto G, Minervini G, Para O, Giordano M. Microbiota and Glucidic Metabolism: A Link with Multiple Aspects and Perspectives. Int J Mol Sci 2023; 24:10409. [PMID: 37373556 DOI: 10.3390/ijms241210409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The global prevalence of overweight and obesity has dramatically increased in the last few decades, with a significant socioeconomic burden. In this narrative review, we include clinical studies aiming to provide the necessary knowledge on the role of the gut microbiota in the development of diabetic pathology and glucose-metabolism-related disorders. In particular, the role of a certain microbial composition of the fermentative type seems to emerge without a specific link to the development in certain subjects of obesity and the chronic inflammation of the adipose tissues, which underlies the pathological development of all the diseases related to glucose metabolism and metabolic syndrome. The gut microbiota plays an important role in glucose tolerance. Conclusion. New knowledge and new information is presented on the development of individualized therapies for patients affected by all the conditions related to reduced glucose tolerance and insulin resistance.
Collapse
Affiliation(s)
- Tiziana Ciarambino
- Internal Medicine Department, Hospital of Marcianise, ASL Caserta, 81037 Caserta, Italy
| | - Pietro Crispino
- Internal Medicine Department, Hospital of Latina, ASL Latina, 04100 Latina, Italy
| | - Gaetano Leto
- Department of Experimental Medicine, University La Sapienza Roma, 00185 Rome, Italy
| | - Giovanni Minervini
- Internal Medicine Department, Hospital of Lagonegro, AOR San Carlo, 85042 Lagonegro, Italy
| | - Ombretta Para
- Internal Emergency Department, Hospital of Careggi, University of Florence, 50121 Florence, Italy
| | - Mauro Giordano
- Department of Medical Science, University of Campania, L. Vanvitelli, 81100 Naples, Italy
| |
Collapse
|
43
|
Zhou X, Chen X, Zhang L, Yuan J, Lin H, Zhu M, Xu X, Dong G, Fu J, Wu W. Mannose-Binding Lectin Reduces Oxidized Low-Density Lipoprotein Induced Vascular Endothelial Cells Injury by Inhibiting LOX1-ox-LDL Binding and Modulating Autophagy. Biomedicines 2023; 11:1743. [PMID: 37371838 DOI: 10.3390/biomedicines11061743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Objective: To investigate the role of mannose-binding lectin (MBL) in modulating autophagy and protecting endothelial cells (ECs) from oxidized low-density lipoprotein (ox-LDL)-induced injury. Methods: Serum MBL concentration and carotid intima-media thickness (cIMT) were measured in 94 obese and 105 healthy children. ECs were transfected with MBL over-expression plasmid, LOX1 was knocked-down to explore the protective role of MBL in ox-LDL induced ECs injury. Dendritic cells (DCs) were co-cultured with ECs, and inflammatory factors, DC maturation, and autophagy was assessed. WT and ApoE-/- mice were fed with a high fat diet (HFD) with or without MBL-adenovirus injection for 16 weeks and aortic vascular endothelial tissue was isolated, then atherosclerotic plaque, cell injury and autophagy were analyzed. Results: Serum MBL concentration in obese children was lower than healthy controls and was negatively correlated with cIMT. The uptake of ox-LDL was decreased in LOX1 knock-down ECs. MBL over-expression in vitro inhibited LOX1-ox-LDL binding. Both LOX1 knock-down and MBL over-expression can ameliorate EC autophagy and cell injury. MBL over-expression in vivo alleviated atherosclerotic plaque formation, influenced DC maturation and down-regulated IL-6, IL-12, and TNF-a levels. Conclusions: MBL exerts a protective role in ox-LDL-induced EC injury by modulating DC maturation and EC autophagy via inhibiting LOX1-ox-LDL binding.
Collapse
Affiliation(s)
- Xuelian Zhou
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, China
| | - Xuefeng Chen
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, China
| | - Li Zhang
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, China
| | - Jinna Yuan
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, China
| | - Hu Lin
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, China
| | - Mingqiang Zhu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, China
| | - Xiaoqin Xu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, China
| | - Guanping Dong
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, China
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, China
| | - Wei Wu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou 310052, China
| |
Collapse
|
44
|
Cheong KL, Chen S, Teng B, Veeraperumal S, Zhong S, Tan K. Oligosaccharides as Potential Regulators of Gut Microbiota and Intestinal Health in Post-COVID-19 Management. Pharmaceuticals (Basel) 2023; 16:860. [PMID: 37375807 DOI: 10.3390/ph16060860] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The COVID-19 pandemic has had a profound impact worldwide, resulting in long-term health effects for many individuals. Recently, as more and more people recover from COVID-19, there is an increasing need to identify effective management strategies for post-COVID-19 syndrome, which may include diarrhea, fatigue, and chronic inflammation. Oligosaccharides derived from natural resources have been shown to have prebiotic effects, and emerging evidence suggests that they may also have immunomodulatory and anti-inflammatory effects, which could be particularly relevant in mitigating the long-term effects of COVID-19. In this review, we explore the potential of oligosaccharides as regulators of gut microbiota and intestinal health in post-COVID-19 management. We discuss the complex interactions between the gut microbiota, their functional metabolites, such as short-chain fatty acids, and the immune system, highlighting the potential of oligosaccharides to improve gut health and manage post-COVID-19 syndrome. Furthermore, we review evidence of gut microbiota with angiotensin-converting enzyme 2 expression for alleviating post-COVID-19 syndrome. Therefore, oligosaccharides offer a safe, natural, and effective approach to potentially improving gut microbiota, intestinal health, and overall health outcomes in post-COVID-19 management.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shutong Chen
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Bo Teng
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Suresh Veeraperumal
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou 535000, China
| |
Collapse
|
45
|
Bicknell B, Liebert A, Borody T, Herkes G, McLachlan C, Kiat H. Neurodegenerative and Neurodevelopmental Diseases and the Gut-Brain Axis: The Potential of Therapeutic Targeting of the Microbiome. Int J Mol Sci 2023; 24:9577. [PMID: 37298527 PMCID: PMC10253993 DOI: 10.3390/ijms24119577] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The human gut microbiome contains the largest number of bacteria in the body and has the potential to greatly influence metabolism, not only locally but also systemically. There is an established link between a healthy, balanced, and diverse microbiome and overall health. When the gut microbiome becomes unbalanced (dysbiosis) through dietary changes, medication use, lifestyle choices, environmental factors, and ageing, this has a profound effect on our health and is linked to many diseases, including lifestyle diseases, metabolic diseases, inflammatory diseases, and neurological diseases. While this link in humans is largely an association of dysbiosis with disease, in animal models, a causative link can be demonstrated. The link between the gut and the brain is particularly important in maintaining brain health, with a strong association between dysbiosis in the gut and neurodegenerative and neurodevelopmental diseases. This link suggests not only that the gut microbiota composition can be used to make an early diagnosis of neurodegenerative and neurodevelopmental diseases but also that modifying the gut microbiome to influence the microbiome-gut-brain axis might present a therapeutic target for diseases that have proved intractable, with the aim of altering the trajectory of neurodegenerative and neurodevelopmental diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, autism spectrum disorder, and attention-deficit hyperactivity disorder, among others. There is also a microbiome-gut-brain link to other potentially reversible neurological diseases, such as migraine, post-operative cognitive dysfunction, and long COVID, which might be considered models of therapy for neurodegenerative disease. The role of traditional methods in altering the microbiome, as well as newer, more novel treatments such as faecal microbiome transplants and photobiomodulation, are discussed.
Collapse
Affiliation(s)
- Brian Bicknell
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
| | - Ann Liebert
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Thomas Borody
- Centre for Digestive Diseases, Five Dock, NSW 2046, Australia;
| | - Geoffrey Herkes
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Craig McLachlan
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
| | - Hosen Kiat
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW 2109, Australia
- ANU College of Health and Medicine, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
46
|
Lampousi AM, Löfvenborg JE, Ahlqvist E, Tuomi T, Wolk A, Carlsson S. Antioxidant Nutrients and Risk of Latent Autoimmune Diabetes in Adults and Type 2 Diabetes: A Swedish Case-Control Study and Mendelian Randomization Analysis. Nutrients 2023; 15:nu15112546. [PMID: 37299509 DOI: 10.3390/nu15112546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Antioxidant vitamins C and E are inversely associated with type 1 diabetes (T1D). We investigated if antioxidants are also associated with latent autoimmune diabetes in adults (LADA), with low (LADAlow) and high (LADAhigh) autoantibody levels, type 2 diabetes (T2D), and estimates of beta cell function (HOMA-B) and insulin resistance (HOMA-IR). We used Swedish case-control data with incident cases of LADA (n = 584) and T2D (n = 1989) and matched population-based controls (n = 2276). Odds ratios (OR) and 95% confidence intervals (CI) were calculated per one standard deviation higher beta-carotene, vitamin C, vitamin E, selenium, and zinc intakes. Two-sample Mendelian randomization (MR) analyses assessed causality between genetically predicted circulating antioxidants and LADA, T1D, and T2D, using summary statistics from genome-wide association studies. Among the antioxidants, vitamins C and E were inversely associated with LADAhigh (OR 0.84, CI 0.73, 0.98 and OR 0.80, CI 0.69, 0.94 respectively), but not with LADAlow or T2D. Vitamin E was also associated with higher HOMA-B and lower HOMA-IR. MR analyses estimated an OR of 0.50 (CI 0.20, 1.25) for the effect of vitamin E on T1D, but did not support causal relationships between antioxidants and either LADA or T2D. In conclusion, vitamin E may have a protective effect on autoimmune diabetes, possibly through preserved beta cell function and less insulin resistance.
Collapse
Affiliation(s)
- Anna-Maria Lampousi
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Josefin E Löfvenborg
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Risk and Benefit Assessment, Swedish Food Agency, 751 26 Uppsala, Sweden
| | - Emma Ahlqvist
- Department of Clinical Sciences, Lund University, 214 28 Malmö, Sweden
| | - Tiinamaija Tuomi
- Department of Clinical Sciences, Lund University, 214 28 Malmö, Sweden
- Institute for Molecular Medicine Finland (FIMM) and Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, 00014 Helsinki, Finland
- Department of Endocrinology, Helsinki University Hospital, 00029 Helsinki, Finland
- Folkhälsan Research Center, 00250 Helsinki, Finland
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sofia Carlsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
47
|
Calero-Medina L, Jimenez-Casquet MJ, Heras-Gonzalez L, Conde-Pipo J, Lopez-Moro A, Olea-Serrano F, Mariscal-Arcas M. Dietary exposure to endocrine disruptors in gut microbiota: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163991. [PMID: 37169193 DOI: 10.1016/j.scitotenv.2023.163991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Endocrine disrupting chemicals (EDCs) can interfere with hormonal actions and have been associated with a higher incidence of metabolic disorders. They affect numerous physiological, biochemical, and endocrinal activities, including reproduction, metabolism, immunity, and behavior. The purpose of this review was to elucidate the association of EDCs in food with the gut microbiota and with metabolic disorders. EDC exposure induces changes that can lead to microbial dysbiosis. Products and by-products released by the microbial metabolism of EDCs can be taken up by the host. Changes in the composition of the microbiota and production of microbial metabolites may have a major impact on the host metabolism.
Collapse
Affiliation(s)
- Laura Calero-Medina
- Department of Nutrition and Food Science, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Maria Jose Jimenez-Casquet
- Department of Nutrition and Food Science, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Leticia Heras-Gonzalez
- Virgen de las Nieves University Hospital, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Javier Conde-Pipo
- Department of Nutrition and Food Science, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Alejandro Lopez-Moro
- Department of Nutrition and Food Science, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Fatima Olea-Serrano
- Department of Nutrition and Food Science, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Miguel Mariscal-Arcas
- Department of Nutrition and Food Science, School of Pharmacy, University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain.
| |
Collapse
|
48
|
Tawulie D, Jin L, Shang X, Li Y, Sun L, Xie H, Zhao J, Liao J, Zhu Z, Cui H, Wen W. Jiang-Tang-San-Huang pill alleviates type 2 diabetes mellitus through modulating the gut microbiota and bile acids metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154733. [PMID: 36870307 DOI: 10.1016/j.phymed.2023.154733] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Jiang-Tang-San-Huang (JTSH) pill, a traditional Chinese medicine (TCM) prescription, has long been applied to clinically treat type 2 diabetes mellitus (T2DM), while the underlying antidiabetic mechanism remains unclarified. Currently, it is believed that the interaction between intestinal microbiota and bile acids (BAs) metabolism mediates host metabolism and promotes T2DM. PURPOSE To elucidate the underlying mechanisms of JTSH for treating T2DM with animal models. METHODS In this study, male SD rats received high-fat diet (HFD) and streptozotocin (STZ) injection to induce T2DM and were treated with different dosages (0.27, 0.54 and 1.08 g/kg) of JTSH pill for 4 weeks; metformin was given as a positive control. Alterations of gut microbiota and BA profiles in the distal ileum were assessed by 16S ribosomal RNA gene sequencing and ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), respectively. Additionally, we conducted quantitative Real Time-PCR and western blotting to determine the mRNA and protein expression levels of intestinal farnesoid X receptor (FXR), fibroblast growth factor 15 (FGF15), Takeda G-protein-coupled receptor 5 (TGR5) and glucagon-like peptide 1 (GLP-1) as well as hepatic cytochrome P450, family 7, subfamily a, poly-peptide 1 (CYP7A1) and cytochrome P450, family 8, subfamily b, poly-peptide 1 (CYP8B1), which are involved in BAs metabolism and enterohepatic circulation. RESULTS Here, the results revealed that JTSH treatment significantly ameliorated hyperglycaemia, insulin resistance (IR), hyperlipidaemia, and pathological changes in the pancreas, liver, kidney and intestine and reduced the serum levels of pro-inflammatory cytokines in T2DM model rats. 16S rRNA sequencing and UPLC-MS/MS showed that JTSH treatment could modulate gut microbiota dysbiosis by preferentially increasing bacteria (e.g., Bacteroides, Lactobacillus, Bifidobacterium) with bile-salt hydrolase (BSH) activity, which might in turn lead to the accumulation of ileal unconjugated BAs (e.g., CDCA, DCA) and further upregulate the intestinal FXR/FGF15 and TGR5/GLP-1 signaling pathways. CONCLUSION The study demonstrated that JTSH treatment could alleviate T2DM by modulating the interaction between gut microbiota and BAs metabolism. These findings suggest that JTSH pill may serve as a promising oral therapeutic agent for T2DM.
Collapse
Affiliation(s)
- Dina Tawulie
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Lulu Jin
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xin Shang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yimei Li
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Le Sun
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Haixue Xie
- Yunnan Provincial Hospital of Chinese Medicine, Kunming 650021, China
| | - Jie Zhao
- Yunnan Provincial Hospital of Chinese Medicine, Kunming 650021, China
| | - Jiabao Liao
- Department of Emergency, Jiaxing Hospital of Traditional Chinese Medicine, Hangzhou 310003, China; Jiaxing Key Laboratory of Diabetic Angiopathy Research, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314033, China
| | - Zhangzhi Zhu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Huantian Cui
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China.
| | - Weibo Wen
- Yunnan Provincial Hospital of Chinese Medicine, Kunming 650021, China.
| |
Collapse
|
49
|
Barrios-Nolasco A, Domínguez-López A, Miliar-García A, Cornejo-Garrido J, Jaramillo-Flores ME. Anti-Inflammatory Effect of Ethanolic Extract from Tabebuia rosea (Bertol.) DC., Quercetin, and Anti-Obesity Drugs in Adipose Tissue in Wistar Rats with Diet-Induced Obesity. Molecules 2023; 28:molecules28093801. [PMID: 37175211 PMCID: PMC10180162 DOI: 10.3390/molecules28093801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity is characterized by the excessive accumulation of fat, which triggers a low-grade chronic inflammatory process. Currently, the search for compounds with anti-obesogenic effects that help reduce body weight, as well as associated comorbidities, continues. Among this group of compounds are plant extracts and flavonoids with a great diversity of action mechanisms associated with their beneficial effects, such as anti-inflammatory effects and/or as signaling molecules. In the bark of Tabebuia rosea tree, there are different classes of metabolites with anti-inflammatory properties, such as quercetin. Therefore, the present work studied the effect of the ethanolic extract of T. rosea and quercetin on the mRNA of inflammation markers in obesity compared to the drugs currently used. Total RNA was extracted from epididymal adipose tissue of high-fat diet-induced obese Wistar rats treated with orlistat, phentermine, T. rosea extract, and quercetin. The rats treated with T. rosea and quercetin showed 36 and 31% reductions in body weight compared to the obese control, and they likewise inhibited pro-inflammatory molecules: Il6, Il1b, Il18, Lep, Hif1a, and Nfkb1 without modifying the expression of Socs1 and Socs3. Additionally, only T. rosea overexpressed Lipe. Both T. rosea and quercetin led to a reduction in the expression of pro-inflammatory genes, modifying signaling pathways, which led to the regulation of the obesity-inflammation state.
Collapse
Affiliation(s)
- Alejandro Barrios-Nolasco
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía (ENMH), Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, Col. La Escalera, Alcaldía Gustavo A. Madero, Ciudad de Mexico 07320, Mexico
| | - Aarón Domínguez-López
- Laboratorio de Biología Molecular, Escuela Superior de Medicina (ESM), Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, Ciudad de Mexico 11340, Mexico
| | - Angel Miliar-García
- Laboratorio de Biología Molecular, Escuela Superior de Medicina (ESM), Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, Ciudad de Mexico 11340, Mexico
| | - Jorge Cornejo-Garrido
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía (ENMH), Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, Col. La Escalera, Alcaldía Gustavo A. Madero, Ciudad de Mexico 07320, Mexico
| | - María Eugenia Jaramillo-Flores
- Laboratorio de Polímeros, Department de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional, Wilfrido Massieu s/n esq. Manuel I. Stampa. Col. Unidad Profesional Adolfo López Mateos, Alcaldía Gustavo A. Madero, Ciudad de Mexico 07738, Mexico
| |
Collapse
|
50
|
Barakat H, Alfheeaid HA. Date Palm Fruit ( Phoenix dactylifera) and Its Promising Potential in Developing Functional Energy Bars: Review of Chemical, Nutritional, Functional, and Sensory Attributes. Nutrients 2023; 15:2134. [PMID: 37432292 DOI: 10.3390/nu15092134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 07/12/2023] Open
Abstract
Snack bars, known as energy bars, are widely consumed worldwide as highly nutritive on-the-go products. Due to the date fruit's significant nutritional and functional characteristics, it can be an exceptional choice for developing snack bars. Dates contain a wide range of macro- and micronutrients known for their strong bioactive properties. The functional properties of date fruit have been demonstrated in the literature and include antioxidant, anti-inflammatory, anti-tumor, antihypertensive, and antimicrobial activities. This review summarizes the available studies investigating the potential application of dates for developing nutritive and functional snack bars. Date paste was used as a main ingredient at 55-90% concentrations. In addition, protein sources were used to provide protein-rich snack bars, as date fruit is considered high in carbohydrates and low in protein. Skim milk powder was the most common and favorable protein source, delivering significant amounts of protein with limited negative effects on sensory attributes. Incorporating other ingredients, such as cereals or legumes, was also explored; adding such dry ingredients can promote positive nutritional effects along with improving sensory attributes, mainly in terms of the bars' textures. Dry ingredients can significantly lower moisture content, reducing the bars' fracturability to acceptable ranges. Reduced moisture content can also significantly enhance the shelf-life stability, as observed by limited microbial growth. Furthermore, the incorporation of bioactive or functional ingredients such as fruit peels, plant seeds, or plant leaf extracts was also reported; such ingredients promoted significant enhancements in the contents of phenolics or flavonoids, for instance, leading to an increase in the bars' antioxidant potential. Though dates are rich in such bioactive components, incorporating additional bioactive ingredients can boost the dates' functional properties. In conclusion, this review shows the high potential of the application of dates for developing nutritious and functional snack bars. Taking this into account, the snack bar market has grown remarkably over the past decade; thus, providing well-balanced, nutritious, and functional date-based bars in markets worldwide is expected to show positive consumer acceptance.
Collapse
Affiliation(s)
- Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Hani A Alfheeaid
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|