1
|
Madrigal-Santillán E, Portillo-Reyes J, Morales-González JA, Sánchez-Gutiérrez M, Izquierdo-Vega JA, Valadez-Vega C, Álvarez-González I, Chamorro-Cevallos G, Morales-González Á, Garcia-Melo LF, Batina N, Paniagua-Pérez R, Madrigal-Bujaidar E. A review of Ficus L. genus (Moraceae): a source of bioactive compounds for health and disease. Part 1. Am J Transl Res 2024; 16:6236-6273. [PMID: 39678553 PMCID: PMC11645579 DOI: 10.62347/mvbz4789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/10/2024] [Indexed: 12/17/2024]
Abstract
The Ficus L. genus, belonging to the Moraceae family, includes around 850 species that are widely distributed in tropical and subtropical regions around the world; including the Eastern Mediterranean, Asia, Africa, Australia, and a large territory of America. Among the most important species are F. deltoidea, F. exasperata, F. sycomorus, F. religiosa, F. microcarpa, F. hirta Vahl, F. benghalensis, F. racemosa, F. elástica, and F. carica. Different parts of Ficus plants (root, stem bark, latex, leaves, pulp and fruits) contain bioactive compounds [flavonoids (flavanols, flavones, flavonols, isoflavones, chalcones, anthocyanins), phenolic acids (hidroxylcinnamic acids, hidroxylbenzoic acids), phytosterols, terpenes (triterpenes, tetraterpenes, diterpenes, sesquiterpenes, monoterpenes), coumarins, hydroxybenzoates, phenylpropanoids, chlorins, pheophytins, megastigmanes, chitinases, organic acids, fatty acids, amino acids, alkaloids, glycosides] which together, are currently useful to more than 30 traditional ethnomedical uses. The present manuscript is the result of scientific search processed with the main electronic databases (PubMEd, SciELO, Latindex, Redalyc, BiologyBrowser, ScienceResearch, ScienceDirect, Academic Journals, Ethnobotany, and Scopus). This first review (Part 1), compiles information from published research (in vitro, in vivo and clinical studies) on its antimicrobial, antifungal, antiviral, anti-helminthic, hypoglycemic, hypolipidemic, hepatoprotective, anti-inflammatory, analgesic, and antipyretic properties; as well as its possible adverse and/or toxicological effects. Given the amount of evidence described in this review it aims to trigger a more detailed scientific research on the important pharmacological properties of all angiosperm plants of the genus Ficus L.
Collapse
Affiliation(s)
| | | | | | - Manuel Sánchez-Gutiérrez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de HidalgoPachuca de Soto, México
| | - Jeannett A Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de HidalgoPachuca de Soto, México
| | - Carmen Valadez-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de HidalgoPachuca de Soto, México
| | - Isela Álvarez-González
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalCiudad de México, México
| | | | | | - Luis Fernando Garcia-Melo
- Laboratorio de Nanotecnología e Ingeniería Molecular, Universidad Autónoma Metropolitana-IztapalapaCiudad de México, México
| | - Nikola Batina
- Laboratorio de Nanotecnología e Ingeniería Molecular, Universidad Autónoma Metropolitana-IztapalapaCiudad de México, México
| | | | | |
Collapse
|
2
|
Hou M, Tian H, Wu J, Deng Z. Metabolite identification and excretion of pinocembrin-7-O-β-D-glucoside in rats by UHPLC/MS. J Pharm Biomed Anal 2024; 248:116291. [PMID: 38852297 DOI: 10.1016/j.jpba.2024.116291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Pinocembrin-7-O-β-D-glucoside (PCBG) isolated from Penthorum chinense Pursh was proven to display a wide range of pharmacological effects including hepatoprotection, anti-hepatoma and antifungal activities, etc. The research aims to qualitatively analyze the metabolites of PCBG in rat plasma, urine, bile and feces, and further perform the excretion study of PCBG and its major metabolite pinocembrin (PCB). Fifteen rats were divided into three groups (n=5 for each group) for blood, bile, urine and feces collection, respectively. After PCBG suspension was intragastrically administered to rats at 50 mg/kg, biological samples were collected and processed. The metabolites in each matrix were detected by UHPLC-Q-Exactive-MS/MS. A total of 111 metabolites were observed in plasma, urine, bile and feces, which include hydroxylated, sulfated and glucuronized metabolites, etc. In addition, an UHPLC-MS/MS method was established and applied for the excretion quantification of PCBG and PCB in rat urine, bile, and feces samples. Studies on excretion have shown that PCBG is mainly excreted through feces. The cumulative excretion rates of PCBG and PCB in rat urine, bile and feces were (4.5±2.4)%, (0.2±0.1)% and (18.4±10.5)%, respectively. After hydrolysis by β-glucuronidase/sulfatase, the excretion rates of PCB in urine and bile were (5.7±2.8)% and (8.9±4.2)%. This study contributes to preclinical research on PCBG and explains its pharmacological effects.
Collapse
Affiliation(s)
- Miao Hou
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Haitao Tian
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jun Wu
- Shandong College of Traditional Chinese Medicine, Yantai 264199, China
| | - Zhipeng Deng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
3
|
Li Y, Luo X, Wei L, Huang X, Liang Y, Lin N, Jiang L, Lin Q, Chen Q. Quality evaluation for Ficus hirta Vahl granules, using TLC and HPLC fingerprint combined with chemical pattern recognition. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5584-5590. [PMID: 39093047 DOI: 10.1039/d4ay01097c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Ficus hirta Vahl is a healthy food with both medicinal and culinary properties and with anti-inflammatory and anti-aging effects. There is currently no standardized or universally accepted research strategy for evaluating the quality of Ficus hirta Vahl granules (FHGs). Therefore, the development of a comprehensive quality evaluation method is crucial for the quality control of FHGs. In this study, we used n-hexane : trichloromethane : ethyl acetate : glacial acetic acid = 20 : 4 : 7 : 1 as the optimal developing agent for TLC to separate and identify 15 batches of FHGs from different origins. Using HPLC, a fingerprint with 7 common peaks was established, and peaks 6 and 7 were attributed to psoralen and bergapten, respectively. The content of the identified components was determined. Further quality evaluation of FHGs was performed using chemical pattern recognition, and the results showed that hierarchical cluster analysis (HCA) could cluster 15 batches of FHGs into 2 categories. Principal component analysis (PCA) showed that 2 principal components can show the similarities and differences between different batches of FHGs. Orthogonal partial least squares discrimination (OPLS-DA) showed that components 5, 6 (psoralen) and 7 (bergapten) are landmark components that cause differences in FHG quality from different regions. By integrating the analytical modes of TLC, HPLC fingerprint and chemical pattern recognition, a scientific basis is provided for the comprehensive control and evaluation of herbal medicine quality.
Collapse
Affiliation(s)
- Yangling Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, P. R. China.
| | - Xian Luo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, P. R. China.
| | - Lixiao Wei
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, P. R. China.
| | - Xiaohong Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, P. R. China.
| | - Yongjuan Liang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, P. R. China.
| | - Ning Lin
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, P. R. China.
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, P. R. China
| | - Lin Jiang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, P. R. China.
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, P. R. China
| | - Qinghua Lin
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, P. R. China.
| | - Qing Chen
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Nanning 530200, P. R. China.
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, P. R. China
| |
Collapse
|
4
|
Feng Y, Liu Z, Han C, Chen J, Lin X, Du W, Zhang Y, Dong B, Zheng Y, Lu K, Liang Q. Ficus hirta Vahl. alleviate LPS induced apoptosis via down-regulating of miR-411 in orange-spotted grouper (Epinephelus coioides) spleen cell. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 157:105191. [PMID: 38705263 DOI: 10.1016/j.dci.2024.105191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Ficus hirta Vahl. (FhV) has been shown to have antimicrobial and antiviral efficacy. To further ascertain the pharmacological properties of FhV., and to search for alternatives to antibiotics. An in vitro experiment was carried out to evaluate what influence FhV. would have on LPS-induced apoptosis. In this study, Fas, an apoptosis receptor, was cloned, which included a 5'-UTR of 39 bp, an ORF of 951 bp, a protein of 316 amino acids, and a 3'-UTR of 845 bp. EcFas was most strongly expressed in the spleen tissue of orange-spotted groupers. In addition, the apoptosis of fish spleen cells induced by LPS was concentration-dependent. Interestingly, appropriate concentrations of FhV. alleviated LPS-induced apoptosis. Inhibition of miR-411 further decreased the inhibitory effect of Fas on apoptosis, which reduced Bcl-2 expression and mitochondrial membrane potential, enhanced the protein expression of Bax and Fas. More importantly, the FhV. could activate miR-411 to improve this effect. In addition, luciferase reporter assays showed that miR-411 binds to Fas 3'-UTR to inhibit Fas expression. These findings provide evidence that FhV. alleviates LPS-induced apoptosis by activating miR-411 to inhibit Fas expression and, therefore, provided possible strategies for bacterial infections in fish.
Collapse
Affiliation(s)
- YuXin Feng
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - ZhengXinYu Liu
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - CaoYuan Han
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - JiaQian Chen
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - XinHao Lin
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - WangHao Du
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Yu Zhang
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - BeiBei Dong
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - YiKai Zheng
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - KeXiang Lu
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China.
| | - QingJian Liang
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China; College of Life Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
5
|
Ye XS, Tian WJ, Wang GH, Hu LJ, Leng CL, Sun BL, Liu W, Shu XJ, Chen HF. Four undescribed coumarin derivatives, with ten amides from the roots of Ficus hirta and their cytotoxic activities. Bioorg Chem 2024; 144:107116. [PMID: 38237391 DOI: 10.1016/j.bioorg.2024.107116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
Four undescribed coumarin derivatives, ficusalt A (1) and ficusalt B (2), a pair of racemic coumarins, (±) ficudimer A (3a/3b), along with ten known amides, were isolated from the roots of Ficus hirta. Their structures were elucidated by several spectroscopic data analyses, including HRESIMS, NMR, and X-ray single-crystal diffraction. The cytotoxic activities of all compounds against HeLa, HepG2, MCF-7, and H460 cell lines were detected using the MTT assay. Among these, 5 showed the highest activity against HeLa cells. Subsequently, the apoptotic, anti-invasive, and anti-migration effects of 5 on HeLa cells were determined by flow cytometer, transwell invasion assay, and wound-healing assay, respectively. The result suggested that 5 distinctly induced the apoptosis in HeLa cells and inhibited their invasion and migration. Further studies on anticancer mechanisms were conducted using Western blotting. As a result, 5 increased the cleavage of PARP and the expression of pro-apoptotic protein Bax. Moreover, 5 notably upregulated the phosphorylation of p38 and JNK, whereas inhibited the expression of p-ERK and p-AKT. Our results demonstrated that 5 could be a potential leading compound for further application in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Xian-Sheng Ye
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Wen-Jing Tian
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Guang-Hui Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Li-Juan Hu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Chang-Long Leng
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Bin-Lian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Wei Liu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xi-Ji Shu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China.
| | - Hai-Feng Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
6
|
Wu D, Wu J, Cheng X, Qian J, Du R, Tang S, Lian Y, Qiao Y. Safety assessment of marigold flavonoids from marigold inflorescence residue. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115520. [PMID: 35792278 DOI: 10.1016/j.jep.2022.115520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Marigold flavonoids, extracted from marigold (Tagetes erecta L.) inflorescence residues, have attracted significant attention with respect to antioxidant, anti-inflammatory and chelating properties. However, the toxicity of marigold flavonoids have not yet been fully investigated. AIM OF THE STUDY The main purpose of this study was to assess the safety of marigold flavonoids extracted from Marigold (Tagetes erecta L.) in order to provide information on its nonclinical safety. Thus, the acute oral toxicity, in vitro Ames test, sperm aberration study, bone marrow micronucleus test, subchronic oral toxicity test, and teratogenic potential were carried out in rats or mice. MATERIALS AND METHODS For an acute oral toxicity test, SD rats and ICR mice (male and female, n = 5) orally received a single dose of 5000 mg/kg marigold flavonoids. Evaluation of marigold flavonoids genotoxic potential with a battery of tests, including an in vitro bacterial reverse mutation test using four mutant strains of Salmonella typhimurium (TA97、TA98、TA100、TA102), an sperm aberration test and an in vivo micronucleus test using bone marrow cells ICR mice that were orally administered marigold flavonoids, an subchronic oral toxicity study and teratogenic test employing male and female SD rats that were orally administered marigold flavonoids. All animals tests were completed in accordance with GB 15193 for toxicity tests. RESULTS In the acute oral toxicity test, marigold flavonoids given at the dose of 5000 mg/kg body weight for 14 days didn't produce any abnormal clinical symptoms or mortality in SD rats and ICR mice (both sex, n = 5). There was no evidence of genotoxicity of marigold flavonoids based on the results of the in vitro bacterial reverse mutation test (up to 1250 μg/plate), the sperm aberration test (up to 5000 mg/kg body weight), the in vivo micronucleus test (up to 5000 mg/kg body weight), the subchronic oral toxicity study (up to 10 g/kg feed dose) and the teratogenic test (up to 1250 mg/kg body weight). CONCLUSIONS We found that marigold flavonoids are safe with regard to acute toxicity in rats or mice as well as genotoxicity such as mutagenesis or clastogenesis under the present experimental conditions. These results might support the safety of marigold flavonoids as a potential therapeutic material for the traditional use of herbal medicines and for the further development of novel antioxidant.
Collapse
Affiliation(s)
- Di Wu
- Beijing University of Chinese Medicine, Beijing, 100105, China; Chenguang Biological Technology Group Co, Ltd, Handan, 057250, China
| | - Juanjuan Wu
- Chenguang Biological Technology Group Co, Ltd, Handan, 057250, China
| | - Xinying Cheng
- Chenguang Biological Technology Group Co, Ltd, Handan, 057250, China
| | - Jianrui Qian
- Chenguang Biological Technology Group Co, Ltd, Handan, 057250, China
| | - Ruiliang Du
- China Agricultural University, Beijing, 100193, China
| | - Shusheng Tang
- China Agricultural University, Beijing, 100193, China
| | - Yunhe Lian
- Chenguang Biological Technology Group Co, Ltd, Handan, 057250, China.
| | - Yanjiang Qiao
- Beijing University of Chinese Medicine, Beijing, 100105, China.
| |
Collapse
|
7
|
Xiao R, Luo G, Liao W, Chen S, Han S, Liang S, Lin Y. Association of human gut microbiota composition and metabolic functions with Ficus hirta Vahl dietary supplementation. NPJ Sci Food 2022; 6:45. [PMID: 36167833 PMCID: PMC9515076 DOI: 10.1038/s41538-022-00161-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/09/2022] [Indexed: 12/16/2022] Open
Abstract
Ficus hirta Vahl (FHV), a traditional herbal ingredient of the tonic diet, receives increasing popularity in southern China. However, it is largely unknown that how a FHV diet (FHVD) affects the human gut microbiome. In this exploratory study, a total of 43 healthy individuals were randomized into the FHVD (n = 25) and Control (n = 18) groups to receive diet intervention for 8 weeks. 16S rRNA gene sequencing, metagenomic sequencing and metabolic profile of participants were measured to assess the association between FHV diet and gut microbiome. A preservation effect of Faecalibacterium and enrichment of Dialister, Veillonella, Clostridium, and Lachnospiraceae were found during the FHVD. Accordingly, the pathway of amino acid synthesis, citrate cycle, coenzyme synthesis, and partial B vitamin synthesis were found to be more abundant in the FHVD. In addition, serine, glutamine, gamma-aminobutyric acid, tryptamine, and short-chain fatty acids (SCFAs) were higher after the FHVD. The conjoint analysis of FHV components and in-vitro fermentation confirmed that the improved SCFAs concentration was collectively contributed by the increasing abundance of key enzyme genes and available substrates. In conclusion, the muti-omics analysis showed that the FHVD optimized the structure of the gut microbial community and its metabolic profile, leading to a healthy tendency, with a small cluster of bacteria driving the variation rather than a single taxon.
Collapse
Affiliation(s)
- Ruiming Xiao
- South China University of Technology South China Univ Technol, School of Biology & Biological Engineering, Guangzhou, China.,Guangdong Key Lab Fermentation & Enzyme Engineering, Guangzhou, 510006, China
| | - Guangjuan Luo
- South China University of Technology South China Univ Technol, School of Biology & Biological Engineering, Guangzhou, China.,Guangdong Key Lab Fermentation & Enzyme Engineering, Guangzhou, 510006, China
| | - Wanci Liao
- South China University of Technology South China Univ Technol, School of Biology & Biological Engineering, Guangzhou, China.,Guangdong Key Lab Fermentation & Enzyme Engineering, Guangzhou, 510006, China
| | - Shuting Chen
- South China University of Technology South China Univ Technol, School of Biology & Biological Engineering, Guangzhou, China.,Guangdong Key Lab Fermentation & Enzyme Engineering, Guangzhou, 510006, China
| | - Shuangyan Han
- South China University of Technology South China Univ Technol, School of Biology & Biological Engineering, Guangzhou, China.,Guangdong Key Lab Fermentation & Enzyme Engineering, Guangzhou, 510006, China
| | - Shuli Liang
- South China University of Technology South China Univ Technol, School of Biology & Biological Engineering, Guangzhou, China.,Guangdong Key Lab Fermentation & Enzyme Engineering, Guangzhou, 510006, China
| | - Ying Lin
- South China University of Technology South China Univ Technol, School of Biology & Biological Engineering, Guangzhou, China. .,Guangdong Key Lab Fermentation & Enzyme Engineering, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Ficus spp. fruits: Bioactive compounds and chemical, biological and pharmacological properties. Food Res Int 2022; 152:110928. [DOI: 10.1016/j.foodres.2021.110928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/16/2021] [Accepted: 12/25/2021] [Indexed: 12/25/2022]
|
9
|
Liang Q, Dong W, Wang F, Wang W, Zhang J, Liu X. Ficus hirta Vahl. promotes antioxidant enzyme activity under ammonia stress by inhibiting miR-2765 expression in Penaeus vannamei. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112989. [PMID: 34794028 DOI: 10.1016/j.ecoenv.2021.112989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Ficus hirta Vahl. has been reported to have hepatoprotective, antitumor, antibacterial functions, and is used to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Ammonia nitrogen is one of the most common environmental stress factors in aquaculture. Long-term exposure to high concentrations of ammonia nitrogen can induce oxidative stress and increase the risk of infections. However, whether Ficus hirta Vahl. has effect on ammonia nitrogen stress is unclear. In present study we report that Ficus hirta Vahl. improves the activity of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) of shrimp and decreases shrimp mortality caused by ammonia nitrogen stress. It is demonstrated that miR-2765 is negatively regulate the antioxidant capacity. We find that SOD was a direct target gene of miR-2765. MiR-2765 can bind to 3'-untranslated region (3'-UTR) of SOD to inhibit its transcription. Furthermore, Ficus hirta Vahl. down-regulates miR-2765 to activate the antioxidant capacity to alleviate the damage caused by ammonia nitrogen stress. Interestingly, overexpression of miR-2765 could attenuate the protective effect of Ficus hirta Vahl. on shrimp under ammonia nitrogen stress. These data indicate that Ficus hirta Vahl. alleviates the damage of ammonia nitrogen stress in shrimp by repressing miR-2765 and activating the antioxidant enzyme system. This study will provide a theoretical basis and a new perspective for assessing the toxicity mechanism of ammonia nitrogen in the process of farming on shrimp.
Collapse
Affiliation(s)
- QingJian Liang
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China.
| | - WenNa Dong
- College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - FeiFei Wang
- College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - WeiNa Wang
- College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Jian Zhang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, PR China
| | - Xing Liu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, PR China.
| |
Collapse
|
10
|
Moon SH, Son JL, Shin SJ, Oh SH, Kim SH, Bae JM. Inhibitory Effect of Asplenium incisum on Bacterial Growth, Inflammation, and Osteoclastogenesis. ACTA ACUST UNITED AC 2021; 57:medicina57070641. [PMID: 34206271 PMCID: PMC8307819 DOI: 10.3390/medicina57070641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022]
Abstract
Background and Objectives:Asplenium incisum, a natural plant, is known to possess numerous pharmacological and biochemical properties. However, the inhibitory effect of A. incisum against Porphyromonas gingivalis and other factors related to periodontal disease have not yet been demonstrated. This study aimed to investigate the potential of A. incisum extract as a phytotherapeutic candidate for improving periodontal diseases by assessing its antibacterial, anti-inflammatory, and anti-osteoclastogenic activities. Materials and Methods: The inhibition of proliferation of P. gingivalis by A. incisum and the sustainability of its antibacterial activity were evaluated in this study. The production of inflammatory cytokines (tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)) and nitric oxide (NO) from lipopolysaccharide-stimulated RAW 264.7 cells was assessed using an enzyme-linked immunosorbent assay. To identify the anti-osteoclastogenic activity, tartrate-resistant acid phosphatase (TRAP) staining and TRAP activity analyses were performed on bone marrow macrophages. Results: The proliferation of P. gingivalis was significantly inhibited by A. incisum (p < 0.001), and the antibacterial activity was sustained for up to 3 days. A. incisum showed anti-inflammatory activities by significantly decreasing the release of TNF-α, IL-6 (p < 0.05), and NO (p < 0.01). In addition, A. incisum significantly suppressed TRAP-positive cells and TRAP activity (at 30 μg/mL, p < 0.01) without causing any cytotoxicity (p > 0.05). Conclusions:A. incisum showed antibacterial, anti-inflammatory, and anti-osteoclastogenic activities, suggesting it has strong therapeutic potential against periodontal diseases.
Collapse
Affiliation(s)
- Seong-Hee Moon
- Department of Dental Biomaterials, Institute of Biomaterials & Implant, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Korea; (S.-H.M.); (S.-H.O.)
| | - Ju-Lee Son
- Department of Dental Hygiene, Wonkwang Health Science University, 514 Iksan-daero, Iksan 54538, Korea;
| | - Seong-Jin Shin
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Korea;
| | - Seung-Han Oh
- Department of Dental Biomaterials, Institute of Biomaterials & Implant, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Korea; (S.-H.M.); (S.-H.O.)
| | - Seong-Hwan Kim
- Innovative Target Research Center, Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea;
| | - Ji-Myung Bae
- Department of Dental Biomaterials, Institute of Biomaterials & Implant, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Korea; (S.-H.M.); (S.-H.O.)
- Correspondence: ; Tel.: +82-63-850-6859
| |
Collapse
|
11
|
Extraction optimization of antifungal compounds from Thalictrum foliolosum DC. roots. SOUTH AFRICAN JOURNAL OF BOTANY 2021. [DOI: 10.1016/j.sajb.2021.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Bouhlali EDT, Derouich M, Ben-Amar H, Meziani R, Essarioui A. Exploring the potential of using bioactive plant products in the management of Fusarium oxysporum f.sp. albedinis: the causal agent of Bayoud disease on date palm (Phoenix dactylifera L.). BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-00071-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
Background
“Bayoud” disease caused by Fusarium oxysporum f. sp. albedinis (Foa) poses a serious threat to date palm (Phoenix dactylifera L.) in Morocco. However, research studies performed to discover biological methods to control this disease remain limited. The present study has set objectives to determine antifungal activity of five plants extracts (Acacia cyanophylla, Cupressus atlantica, Eucalyptus torquata, Nerium oleander, and Schinus molle) against Foa and link this effect to their content in polyphenols and flavonoids as well as their antioxidant properties.
Results
Plant extracts showed significant differences (p < 0.05) regarding their antifungal activity. The extracts of E. torquata and C. atlantica showed the strongest antifungal effect resulting in the inhibition of mycelial growth, sporulation, and spore germination in a dose-dependent manner. In addition, there were significant differences among the examined plant extracts in respect to their total polyphenols (1.536–7.348 g GAE/100 g DW), flavonoids (0.986–5.759 g RE/100 g DW), and antioxidant properties measured by Trolox equivalent antioxidant capacity (TEAC) (7.47–38.97 mmol TE/100 g DW) and ferric-reducing antioxidant power (FRAP) assay (8.95–47.36 mmol TE/100 g DW). Moreover, the antifungal potential of plant extracts was found to be moderately to strongly correlated with their polyphenol and flavonoid contents as well as their antioxidant activity, implying that the effective inhibitory activity of these plant extracts is partly due to their richness in antioxidative secondary metabolites.
Conclusion
Our findings shed further light on plants as a-yet-untapped resource of bioactive compounds and constructed the foundation for the development of new biological approaches to best manage Bayoud disease.
Collapse
|
13
|
In Vitro Anticancer Potential of Berberis lycium Royle Extracts against Human Hepatocarcinoma (HepG2) Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8256809. [PMID: 33110920 PMCID: PMC7582056 DOI: 10.1155/2020/8256809] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 01/17/2023]
Abstract
Human liver cancer has emerged as a serious health concern in the world, associated with poorly available therapies. The Berberis genus contains vital medicinal plants with miraculous healing properties and a wide range of bioactivities. In this study, different crude extracts of B. lycium Royle were prepared and screened against Human Hepatocarcinoma (HepG2) cell lines. The water/ethanolic extract of B. lycium Royle (BLE) exhibited significant antiproliferative activity against the HepG2 cancer cell line with an IC50 value of 47 μg/mL. The extract decreased the clonogenic potential of HepG2 cells in a dose-dependent manner. It induced apoptotic cell death in HepG2 cells that were confirmed by cytometric analysis and microscopic examination of cellular morphology through DAPI-stained cells. Biochemical evidence of apoptosis came from elevating the intracellular ROS level that was accompanied by the loss of mitochondrial membrane potential. The mechanism of apoptosis was further confirmed by gene expression analysis using RT-qPCR that revealed the decline in Bcl-2 independent of p53 mRNA and a rise in CDK1 while downregulating CDK5, CDK9, and CDK10 mRNA levels at 48 h of BLE treatment. The most active fraction was subjected to HPLC which indicated the presence of berberine (48 μg/mL) and benzoic acid (15.8 μg/mL) as major compounds in BLE and a trace amount of luteolin, rutin, and gallic acid. Our study highlighted the importance of the most active BLE extract as an excellent source of nutraceuticals against Human Hepatocarcinoma that can serve as an herbal natural cure against liver cancer.
Collapse
|
14
|
Chen C, Chen J, Wan C. Pinocembrin-7-Glucoside (P7G) Reduced Postharvest Blue Mold of Navel Orange by Suppressing Penicillium italicum Growth. Microorganisms 2020; 8:E536. [PMID: 32276525 PMCID: PMC7232162 DOI: 10.3390/microorganisms8040536] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
The current study aimed to examine the in vitro and in vivo antifungal potential of pinocembrin-7-glucoside (P7G). P7G is an antifungal flavanone glycoside isolated from Ficus hirta Vahl. fruit against Penicillium italicum, a causative pathogen of blue mold disease in citrus fruit, and this study elucidates its possible action mechanism. P7G had a prominent mycelial growth inhibitory activity against P. italicum, with an observed half maximal effective concentration, minimum inhibitory concentration and minimum fungicidal concentration of 0.08, 0.2, and 0.8 g/L, respectively. The data from the in vivo test show that P7G significantly reduced blue mold symptoms and disease development of P. italicum in artificially inoculated "Newhall" navel orange. Compared to the control, increases in the cell membrane permeability of P. italicum supernatant and decreases in the intracellular constituent (e.g., soluble protein, reducing sugar, and total lipid) contents of P. italicum mycelia were identified, supporting scanning electron microscopy and transmission electron microscopy observations. Furthermore, a marked decline in both chitin and glucanase contents of P. italicum mycelia treated with P7G was induced by increasing its related degrading enzyme activities, suggesting that the cell wall structure was destroyed. The current study indicated that P7G may be a novel alternative for reducing blue mold by suppressing mycelial growth of P. italicum via a cell membrane/wall-targeting mechanism.
Collapse
Affiliation(s)
- Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Non-destructive Testing of Fruits & Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruit and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Non-destructive Testing of Fruits & Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruit and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China;
- Pingxiang University, Pingxiang 337055, China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Non-destructive Testing of Fruits & Vegetables/Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruit and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China;
| |
Collapse
|