1
|
Myrzagulova S, N ZA, Kumar M, Kumar D, Kumar A. Foam-Based Drug Delivery Systems for Skin Disorders: A Comprehensive Review. AAPS PharmSciTech 2025; 26:102. [PMID: 40185995 DOI: 10.1208/s12249-025-03098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
Foam-based drug delivery systems signify a significant innovation in dermatology, facilitating improved drug penetration and administration via a gas-liquid dispersion matrix. These formulations have shown considerable promise in the medical, cosmetic, and pharmaceutical fields. Recent improvements in topical foams have resulted in their extensive utilization in dermatological therapies, with a growing emphasis on categorization techniques grounded in formulation composition and the creation of novel methodologies for assessing essential physicochemical factors. Foam formulations comprising calcipotriol and betamethasone demonstrate 30% enhanced therapeutic effectiveness in the treatment of psoriasis compared to traditional topical therapies. The low-density, aerated structure of foams promotes improved skin covering and hydration, which is especially advantageous for disorders like eczema. Moreover, novel advances such as propellant-free foams and the incorporation of nanotechnology have broadened the use of foam-based delivery methods in targeted drug administration and customized medicine. Ongoing research into new biomaterials and refined formulation procedures seeks to overcome these constraints, ensuring that foam-based systems emerge as a breakthrough method in dermatological care. These systems promise to enhance clinical results and overall patient quality of life by increasing medication bioavailability, patient adherence, and therapeutic effectiveness.
Collapse
Affiliation(s)
- Syrsulu Myrzagulova
- Department of Pathological Physiology, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Zhexenova Azhar N
- Department of Pathological Physiology, West Kazakhstan Marat, Ospanov Medical University, Aktobe, Kazakhstan
| | - Mohit Kumar
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), 151001, Bathinda, Punjab, India.
| | - Devesh Kumar
- Institute of Pharmaceutical Research, GLA University, Uttar Pradesh, Mathura, 281406, India
| | - Akshay Kumar
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), 151001, Bathinda, Punjab, India
| |
Collapse
|
2
|
Jęśkowiak-Kossakowska I, Gębarowski T, Skórkowska-Telichowska K, Wiatrak B. In Vitro Studies of the Effect of Oil Emulsions from Transgenic Flax Varieties on the Treatment of Wound Healing and Care of Human Skin with the Tendency to Inflammation. Int J Mol Sci 2025; 26:2544. [PMID: 40141186 PMCID: PMC11941795 DOI: 10.3390/ijms26062544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Excessive amounts of free-oxygen radicals produced during inflammation induce oxidative stress and lead to cell damage, thus delaying the transition of inflammation into the proliferation in the wound healing process. Oxidative stress on skin cells also plays an important role in the pathogenesis of inflammatory skin diseases. The aim of the planned in vitro studies was to assess the mechanisms of regenerative action and protection of cells against oxidative stress of three oil emulsions from transgenic (GMO) flax varieties M, B, and MB and a linseed emulsion from traditional NIKE linseed oil. Antioxidant and gene-protective properties were identified for the tested oil emulsions in a healthy cell model and in an in vitro model of cells under oxidative stress. The wound-healing regenerative potential of these linseed emulsions was also assessed in the proliferation, cell cycle, migration, and apoptosis and necrosis assays. The conducted research presented that the tested transgenic oil emulsions are safe for human skin because they do not induce the proliferation of skin cancer cells and, at the same time, induce the migration processes of normal human skin cells. Additionally, their use increases the ability to eliminate damaged cells. Transgenic linseed oils provide a gene-protective effect and an increased antioxidant effect, resulting in increased protection of skin cells against oxidative stress, which plays an important role in the pathogenesis of atopic dermatitis and psoriasis. Linen emulsion B has the best regenerative and protective properties against human epidermis cancer, which is probably due to the presence of an increased amount of stigmasterol in its composition along with the appropriate content of polyphenol compounds, as well as an increased amount of oleic and linoleic acids.
Collapse
Affiliation(s)
- Izabela Jęśkowiak-Kossakowska
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland;
| | - Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, The Wroclaw University of Environmental and Life Sciences, Kożuchowska 1/3, 51-631 Wroclaw, Poland;
| | - Katarzyna Skórkowska-Telichowska
- Department of Non-Surgical Clinical Sciences, Faculty of Medicine, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland;
- Department of Endocrinology, Jerzy Gromkowski Regional Specialist Hospital, Koszarowa 5, 51-149 Wroclaw, Poland
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland;
| |
Collapse
|
3
|
Gonçalves S, Fernandes L, Caramelo A, Martins M, Rodrigues T, Matos RS. Soothing the Itch: The Role of Medicinal Plants in Alleviating Pruritus in Palliative Care. PLANTS (BASEL, SWITZERLAND) 2024; 13:3515. [PMID: 39771213 PMCID: PMC11677410 DOI: 10.3390/plants13243515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/05/2025]
Abstract
Chronic pruritus, or persistent itching, is a debilitating condition that severely impacts quality of life, especially in palliative care settings. Traditional treatments often fail to provide adequate relief or are associated with significant side effects, prompting interest in alternative therapies. This review investigates the antipruritic potential of eight medicinal plants: chamomile (Matricaria chamomilla), aloe vera (Aloe barbadensis), calendula (Calendula officinalis), curcumin (Curcuma longa), lavender (Lavandula angustifolia), licorice (Glycyrrhiza glabra), peppermint (Mentha piperita), and evening primrose (Oenothera biennis). These plants are analyzed for their traditional applications, active bioactive compounds, mechanisms of action, clinical evidence, usage, dosage, and safety profiles. Comprehensive searches were conducted in databases including PubMed, Web of Science, Scopus, and b-on, focusing on in vitro, animal, and clinical studies using keywords like "plant", "extract", and "pruritus". Studies were included regardless of publication date and limited to English-language articles. Findings indicate that active compounds such as polysaccharides in aloe vera, curcuminoids in turmeric, and menthol in peppermint exhibit significant anti-inflammatory, antioxidant, and immune-modulating properties. Chamomile and calendula alleviate itching through anti-inflammatory and skin-soothing effects, while lavender and licorice offer antimicrobial benefits alongside antipruritic relief. Evening primrose, rich in gamma-linolenic acid, is effective in atopic dermatitis-related itching. Despite promising preclinical and clinical results, challenges remain in standardizing dosages and formulations. The review highlights the necessity of further clinical trials to ensure efficacy and safety, advocating for integrating these botanical therapies into complementary palliative care practices. Such approaches emphasize holistic treatment, addressing chronic pruritus's physical and emotional burden, thereby enhancing patient well-being.
Collapse
Affiliation(s)
- Sara Gonçalves
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- School of Health, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associação Internacional de Aromaterapeutas Profissionais (IAAP-Portugal), 4445-088 Alfena, Portugal;
| | - Lisete Fernandes
- Centro de Química-Vila Real (CQ-VR), UME-CIDE Unidade de Microscopia Eletrónica-Centro de Investigação e Desenvolvimento, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Ana Caramelo
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- School of Health, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- RISE-Health Research Network, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Maria Martins
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Palliative Medicine, Local Health Unit of Trás-os-Montes and Alto Douro EPE, 5400-261 Chaves, Portugal
| | - Tânia Rodrigues
- Associação Internacional de Aromaterapeutas Profissionais (IAAP-Portugal), 4445-088 Alfena, Portugal;
| | - Rita S. Matos
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Local Health Unit of Trás-os-Montes and Alto Douro (ULSTMAD), 5050-275 Peso da Régua, Portugal
- Palliative Medicine, Local Health Unit of Nordeste, 5370-210 Mirandela, Portugal
| |
Collapse
|
4
|
Agrawal R, Jurel P, Deshmukh R, Harwansh RK, Garg A, Kumar A, Singh S, Guru A, Kumar A, Kumarasamy V. Emerging Trends in the Treatment of Skin Disorders by Herbal Drugs: Traditional and Nanotechnological Approach. Pharmaceutics 2024; 16:869. [PMID: 39065566 PMCID: PMC11279890 DOI: 10.3390/pharmaceutics16070869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Since the earliest days, people have been employing herbal treatments extensively around the world. The development of phytochemical and phytopharmacological sciences has made it possible to understand the chemical composition and biological properties of a number of medicinal plant products. Due to certain challenges like large molecular weight and low bioavailability, some components of herbal extracts are not utilized for therapeutic purposes. It has been suggested that herbal medicine and nanotechnology can be combined to enhance the benefits of plant extracts by lowering dosage requirements and adverse effects and increasing therapeutic activity. Using nanotechnology, the active ingredient can be delivered in an adequate concentration and transported to the targeted site of action. Conventional therapy does not fulfill these requirements. This review focuses on different skin diseases and nanotechnology-based herbal medicines that have been utilized to treat them.
Collapse
Affiliation(s)
- Rutvi Agrawal
- Rajiv Academy for Pharmacy, Mathura 281001, Uttar Pradesh, India; (R.A.); (A.G.)
| | - Priyanka Jurel
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India; (P.J.); (R.D.); (R.K.H.)
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India; (P.J.); (R.D.); (R.K.H.)
| | - Ranjit Kumar Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India; (P.J.); (R.D.); (R.K.H.)
| | - Akash Garg
- Rajiv Academy for Pharmacy, Mathura 281001, Uttar Pradesh, India; (R.A.); (A.G.)
| | - Ashwini Kumar
- Research and Development Cell, Department of Mechanical Engineering, School of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad 121003, Haryana, India;
| | - Sudarshan Singh
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Arun Kumar
- School of Pharmacy, Sharda University, Greater Noida 201306, Uttar Pradesh, India
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
5
|
Semenescu I, Similie D, Diaconeasa Z, Danciu C. Recent Advances in the Management of Rosacea through Natural Compounds. Pharmaceuticals (Basel) 2024; 17:212. [PMID: 38399428 PMCID: PMC10892689 DOI: 10.3390/ph17020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Rosacea is a chronic skin disorder that affects more than 5% of the world's population, with the number increasing every year. Moreover, studies show that one-third of those suffering from rosacea report a degree of depression and are less compliant with treatment. Despite being the subject of prolonged studies, the pathogenesis of rosacea remains controversial and elusive. Since most medications used for the management of this pathology have side effects or simply do not yield the necessary results, many patients lose trust in the treatment and drop it altogether. Thus, dermato-cosmetic products with natural ingredients are gaining more and more notoriety in front of synthetic ones, due to the multiple benefits and the reduced number and intensity of side effects. This review is a comprehensive up-to-date report of studies that managed to prove the beneficial effects of different botanicals that may be useful in the short and long-term management of rosacea-affected skin. Based on recent preclinical and clinical studies, this review describes the mechanisms of action of a large array of phytochemicals responsible for alleviating the clinical symptomatology of the disease. This is useful in further aiding and better comprehending the way plant-based products may help in managing this complex condition, paving the way for research in this area of study.
Collapse
Affiliation(s)
- Iulia Semenescu
- Department of Pharmacognosy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (I.S.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Diana Similie
- Department of Pharmacognosy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (I.S.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Zorita Diaconeasa
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, Calea Manastur, 3-5, 400372 Cluj-Napoca, Romania;
| | - Corina Danciu
- Department of Pharmacognosy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (I.S.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| |
Collapse
|
6
|
Apaza Ticona L, Hervás Povo B, Sánchez Sánchez-Corral J, Rumbero Sánchez Á. Anti-inflammatory effects of TNF-α and ASK1 inhibitory compounds isolated from Schkuhria pinnata used for the treatment of dermatitis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117051. [PMID: 37598765 DOI: 10.1016/j.jep.2023.117051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE The Andean Schkuhria pinnata species commonly known as 'Canchalagua' is used as an infusion in Andean countries to treat various anti-inflammatory and skin-related pathologies. AIM OF THE STUDY This study determined the anti-inflammatory activity of the aqueous extract from Schkuhria pinnata, identified compounds with high biological activity and performed a structure-activity relationship analysis to determine their binding mechanism. MATERIALS AND METHODS A bio-guided isolation of the active compounds of Schkuhria pinnata was carried out by selecting the most active sub-extracts and fractions to test their anti-inflammatory activity against the ASK1 and TNF-α cytokines. RESULTS Three compounds were obtained, and their structures were elucidated by nuclear magnetic resonance. The compounds were (3R,4R)-4-(3,4-dimethoxybenzyl)-3-(4-hydroxy-3-methoxybenzyl) dihydrofuran-2(3H)-one (1), N-[2,3-dihydro-1,3-dimethyl-6-[(2R)-2-methyl-1-piperazinyl]-2-oxo-1H-benzimidazol-5-yl]-2-methoxybenzamide (2), and N-hydroxy-1-cyclopentene-1-carboxamide (3). Regarding their anti-inflammatory activity, the three compounds inhibited the TNF-α and ASK1 cytokines, however, compound 2 was the most active, with an IC50 of 19.08 and 8.94 nM, respectively. CONCLUSION The anti-inflammatory activity of the aqueous extract of Schkuhria pinnata was evaluated, followed by the isolation of three compounds and the study of their pharmacological activity. The three compounds have been shown as promising treatment against dermatitis, confirming at the same time their traditional use.
Collapse
Affiliation(s)
- Luis Apaza Ticona
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, University Complutense of Madrid. Plza. Ramón y Cajal S/n, 28040 Madrid, Spain; Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid. Cantoblanco, 28049 Madrid, Spain.
| | - Belén Hervás Povo
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid. Cantoblanco, 28049 Madrid, Spain
| | - Javier Sánchez Sánchez-Corral
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid. Cantoblanco, 28049 Madrid, Spain
| | - Ángel Rumbero Sánchez
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid. Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
7
|
Varshney M, Bahadur S. Comprehensive Review on Phytoconstituents-based Nanomedicine for the Treatment of Atopic Dermatitis. Curr Pharm Biotechnol 2024; 25:737-756. [PMID: 37888809 DOI: 10.2174/0113892010245092230922180341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 10/28/2023]
Abstract
Atopic dermatitis (AD) is known as a chronic disease characterized by eczematous and pruritus skin lesions. The pathology behind atopic dermatitis etiology is loss of epidermal barrier, which prevents the production of protein filaggrin that can induce T-cell infiltration and inflammation. Treatment of AD is majorly based on limiting skin repair as well as reducing inflammation and itching. There are several remedies available for the treatment of AD, such as Janus kinase and calcineurin inhibitors, topical corticosteroids, and phosphodiesterase-4 inhibitors. The conventional formulations in the market have limited safety and efficacy. Hence, effective treatment of atopic dermatitis requires the development of novel, efficacious, reliable, and specific therapies. Recent research data have revealed that some naturally occurring medicinal plants have potential applications in the management of AD through different mechanisms. The nanotechnology-based therapeutics have gained a lot of attention in the last decade for the improvement in the activity of drugs having low absorption due to poor solubility, thus leading to lesser bioavailability. Therapies based on nanotechnology can be an effective way to overcome these obstacles. Due to their effective propensity to provide better drug diffusion and bioavailability as well as drug targeting potential at the desired site of action, these approaches may have decreased adverse drug effects, better penetration, and enhanced therapeutic efficacy. Hence, this review highlights the potential of phytoconstituents-based novel formulations for the treatment of atopic dermatitis. Furthermore, recent patents on therapeutic approaches to atopic dermatitis have also been briefly described.
Collapse
Affiliation(s)
- Mayuri Varshney
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U.P. India
| | - Shiv Bahadur
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U.P. India
| |
Collapse
|
8
|
Wang Y, Tian Z, Huang S, Dang N. Tripterygium wilfordii Hook. F. and Its Extracts for Psoriasis: Efficacy and Mechanism. Drug Des Devel Ther 2023; 17:3767-3781. [PMID: 38144417 PMCID: PMC10749103 DOI: 10.2147/dddt.s439534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Psoriasis is an inflammatory autoimmune skin condition that is clinically marked by chronic erythema and scaling. The traditional Chinese herb Tripterygium wilfordii Hook. F. (TwHF) is commonly used in the treatment of immune-related skin illnesses, such as psoriasis. In clinical studies, PASI (Psoriasis Area and Severity Index) were dramatically decreased by TwHF and its extracts. Their benefits for psoriasis also include relief from psoriasis symptoms such as itching, dryness, overall lesion scores and quality of life. And the pathological mechanisms include anti-inflammation, immunomodulation and potentially signaling pathway modulations, which are achieved by modulating type-3 inflammatory cytokines including IL-22, IL-23, and IL-17 as well as immune cells like Th17 lymphocytes, γδT cells, and interfering with IFN-SOCS1, NF-κB and IL- 36α signaling pathways. TwHF and its extracts may cause various adverse drug reactions, such as gastrointestinal responses, aberrant hepatocytes, reproductive issues, and liver function impairment, but at adequate doses, they are regarded as an alternative therapy for the treatment of psoriasis. In this review, the effectiveness and mechanisms of TwHF and its extracts in psoriasis treatment are elucidated.
Collapse
Affiliation(s)
- Yingchao Wang
- Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Zhaochun Tian
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Shuhong Huang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Ningning Dang
- Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
9
|
AlDehlawi H, Jazzar A. The Power of Licorice ( Radix glycyrrhizae) to Improve Oral Health: A Comprehensive Review of Its Pharmacological Properties and Clinical Implications. Healthcare (Basel) 2023; 11:2887. [PMID: 37958031 PMCID: PMC10648065 DOI: 10.3390/healthcare11212887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/20/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Licorice (Radix glycyrrhizae) is a plant root extract widely used in various applications, including cosmetics, food supplements, and traditional medicine. It has a long history of medicinal use in different cultures due to its diverse pharmacological properties. Licorice has traditionally been used for treating gastrointestinal problems, respiratory infections, cough, bronchitis, arthritis, and skin conditions. In recent years, the potential therapeutic benefits of licorice for oral health have gained significant interest. This paper aims to provide a comprehensive review of the effects of licorice extracts and their bioactive components on common oral diseases such as dental caries, periodontitis, halitosis, candidiasis, and recurrent aphthous ulcers. The chemical composition of licorice has shown the presence of several bioactive compounds such as glycyrrhizin, glabridin, isoliquiritigenin (ISL), and licochalcone exhibiting various pharmacological activities, including anti-inflammatory, antimicrobial, antioxidative, and immunomodulatory effects. Interestingly, in certain patients, licorice has shown a promising potential to inhibit the spread of viruses, prevent biofilm formation, reduce inflammation, boost immune responses, alleviate pain, and exert antioxidative effects. In this review, we provide a brief overview of the current understanding of licorice's therapeutic benefits in the treatment of oral ailments, emphasising its potential as an alternative treatment option for oral diseases. Further research is warranted to explore its efficacy, safety, and clinical applications using placebo-controlled clinical trials.
Collapse
Affiliation(s)
- Hebah AlDehlawi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | | |
Collapse
|
10
|
Chen C, Wang P, Zhang L, Liu X, Zhang H, Cao Y, Wang X, Zeng Q. Exploring the Pathogenesis and Mechanism-Targeted Treatments of Rosacea: Previous Understanding and Updates. Biomedicines 2023; 11:2153. [PMID: 37626650 PMCID: PMC10452301 DOI: 10.3390/biomedicines11082153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Rosacea is a chronic inflammatory skin disease characterized by recurrent erythema, flushing, telangiectasia, papules, pustules, and phymatous changes in the central area of the face. Patients with this condition often experience a significant negative impact on their quality of life, self-esteem, and overall well-being. Despite its prevalence, the pathogenesis of rosacea is not yet fully understood. Recent research advances are reshaping our understanding of the underlying mechanisms of rosacea, and treatment options based on the pathophysiological perspective hold promise to improve patient outcomes and reduce incidence. In this comprehensive review, we investigate the pathogenesis of rosacea in depth, with a focus on emerging and novel mechanisms, and provide an up-to-date overview of therapeutic strategies that target the diverse pathogenic mechanisms of rosacea. Lastly, we discuss potential future research directions aimed at enhancing our understanding of the condition and developing effective treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China
| | - Qingyu Zeng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China
| |
Collapse
|
11
|
Nikolaev B, Yakovleva L, Fedorov V, Li H, Gao H, Shevtsov M. Nano- and Microemulsions in Biomedicine: From Theory to Practice. Pharmaceutics 2023; 15:1989. [PMID: 37514175 PMCID: PMC10383468 DOI: 10.3390/pharmaceutics15071989] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Nano- and microemulsions are colloidal systems that are widely used in various fields of biomedicine, including wound and burn healing, cosmetology, the development of antibacterial and antiviral drugs, oncology, etc. The stability of these systems is governed by the balance of molecular interactions between nanodomains. Microemulsions as a colloidal form play a special important role in stability. The microemulsion is the thermodynamically stable phase from oil, water, surfactant and co-surfactant which forms the surface of drops with very small surface energy. The last phenomena determines the shortage time of all fluid dispersions including nanoemulsions and emulgels. This review examines the theory and main methods of obtaining nano- and microemulsions, particularly focusing on the structure of microemulsions and methods for emulsion analysis. Additionally, we have analyzed the main preclinical and clinical studies in the field of wound healing and the use of emulsions in cancer therapy, emphasizing the prospects for further developments in this area.
Collapse
Affiliation(s)
- Boris Nikolaev
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, 194064 Saint Petersburg, Russia
| | - Ludmila Yakovleva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, 194064 Saint Petersburg, Russia
| | - Viacheslav Fedorov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
- Department of Inorganic Chemistry and Biophysics, Saint-Petersburg State University of Veterinary Medicine, Chernigovskaya Str. 5, 196084 Saint Petersburg, Russia
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
- Laboratory of Biomedical Cell Technologies, Far Eastern Federal University, 690091 Vladivostok, Russia
| |
Collapse
|
12
|
Sobkowska D, Szałapska A, Pawlaczyk M, Urbańska M, Micek I, Wróblewska-Kończalik K, Sobkowska J, Jałowska M, Gornowicz-Porowska J. The Role of Cosmetology in an Effective Treatment of Rosacea: A Narrative Review. Clin Cosmet Investig Dermatol 2023; 16:1419-1430. [PMID: 37303984 PMCID: PMC10252991 DOI: 10.2147/ccid.s412800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Rosacea is a chronic inflammatory facial skin disease usually occurring in middle-aged patients. It manifests itself as an inflammatory condition with perivascular infiltrate, dilated blood vessels, lymphoedema, hyperplasia of sebaceous glands, and disorders of connective tissue structures brought on by fibrosis. Rosacea is characterized by multifactorial inflammatory mechanisms, and therefore it requires an interdisciplinary approach including adequate skin care, topical and/or systemic therapy, and physical modalities to successfully treat the various symptoms and disease subtypes. However, data regarding the possible role of cosmetologists in rosacea remains scanty and equivocal. The objectives of cosmetology therapy include restoration and regeneration, anti-inflammatory effects, the strengthening of blood vessels and regulation of their permeability, and the regulation of keratinization. Vascular abnormalities can be targeted with specific light and laser devices. Therefore, the present paper aims to review the latest advances and summarize different aspects concerning skin care in rosacea. Particular attention has been paid to the co-operation of cosmetologists with other specialists in order to bring about the interdisciplinary management of rosacea. It is also important to keep in mind that it is usually necessary to combine various methods of treatment, as this approach is more effective than monotherapy for attaining satisfactory cosmetic results in rosacea patients.
Collapse
Affiliation(s)
- Daria Sobkowska
- Department and Division of Practical Cosmetology and Prevention of Skin Diseases, Poznan University of Medical Sciences, Poznan, 60-806, Poland
| | - Aleksandra Szałapska
- Department and Division of Practical Cosmetology and Prevention of Skin Diseases, Poznan University of Medical Sciences, Poznan, 60-806, Poland
| | - Mariola Pawlaczyk
- Department and Division of Practical Cosmetology and Prevention of Skin Diseases, Poznan University of Medical Sciences, Poznan, 60-806, Poland
| | - Maria Urbańska
- Department and Division of Practical Cosmetology and Prevention of Skin Diseases, Poznan University of Medical Sciences, Poznan, 60-806, Poland
| | - Iwona Micek
- Department and Division of Practical Cosmetology and Prevention of Skin Diseases, Poznan University of Medical Sciences, Poznan, 60-806, Poland
| | | | | | - Magdalena Jałowska
- Department of Dermatology, Poznan University of Medical Sciences, Poznan, 60-355, Poland
| | - Justyna Gornowicz-Porowska
- Department and Division of Practical Cosmetology and Prevention of Skin Diseases, Poznan University of Medical Sciences, Poznan, 60-806, Poland
| |
Collapse
|
13
|
Wu S, Sun Z, Guo Z, Li P, Mao Q, Tang Y, Chen H, Peng H, Wang S, Cao Y. The effectiveness of blood-activating and stasis-transforming traditional Chinese medicines (BAST) in lung cancer progression-a comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116565. [PMID: 37172918 DOI: 10.1016/j.jep.2023.116565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Blood-activating and stasis-transforming traditional Chinese medicines (BAST) are a class of herbs that have the effect of dilating blood vessels and dispersing stagnation. Modern pharmaceutical research has demonstrated that they are capable of improving hemodynamics and micro-flow, resist thrombosis and promote blood flow. BAST contain numerous active ingredients, which can theoretically regulate multiple targets at the same time and have a wide range of pharmacological effects in the treatment of diseases including human cancers. Clinically, BAST have minimal side effects and can be used in combination with Western medicine to improve patients' quality of life, lessen adverse effects and minimize the risk of recurrence and metastasis of cancers. AIM OF THE REVIEW We aimed to summarize the research progression of BAST on lung cancer in the past five years and present a prospect for the future. Particularly, this review further analyzes the effects and molecular mechanisms that BAST inhibit the invasion and metastasis of lung cancer. MATERIALS AND METHODS Relevant studies about BSAT were collected from PubMed and Web of science. RESULTS Lung cancer is one of the malignant tumors with the highest mortality rate. Most patients with lung cancer are diagnosed at an advanced stage and are highly susceptible to metastasis. Recent studies have shown that BAST, a class of traditional Chinese medicine (TCM) with the function of opening veins and dispersing blood stasis, significantly improve hemodynamics and microcirculation, prevent thrombosis and promote blood flow, and thereby inhibiting the invasion and metastasis of lung cancer. In the current review, we analyzed 51 active ingredients extracted from BAST. It was found that BAST and their active ingredients contribute to the prevention of invasion and metastasis of lung cancer through multiple mechanisms, such as regulation of EMT process, specific signaling pathway and metastasis-related genes, tumor blood vessel formation, immune microenvironment and inflammatory response of tumors. CONCLUSIONS BSAT and its active ingredients have showed promising anticancer activity and significantly inhibit the invasion and metastasis of lung cancer. A growing number of studies have realized their potential clinical significance in the therapy of lung cancer, which will provide substantial evidences for the development of new TCM for lung cancer therapy.
Collapse
Affiliation(s)
- Siqi Wu
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhe Sun
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zehuai Guo
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Peiqin Li
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Qianqian Mao
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yang Tang
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Hongyu Chen
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Huiting Peng
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Sisi Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yang Cao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
14
|
Lin J, Zhu Z, Chen Y, Ma Z, Zuo W, Zhu M. Synthesis and Cytotoxicity Evaluation of Betulin Cycloolefin Derivatives by Ruthenium-Catalyzed Ring-Closing Metathesis. JOURNAL OF NATURAL PRODUCTS 2023; 86:842-849. [PMID: 36857482 DOI: 10.1021/acs.jnatprod.2c01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The combination of ring-closing metathesis with betulin enables the design and synthesis of novel biomolecules representing a library of triterpenoid derivatives for potential pharmacological research. In this work, cyclic olefin betulin derivatives were attempted to be prepared by the combination of ring-closing metathesis with betulin. Dicyclohexyl carbodiimide coupling reaction allowed the transformation of betulin into two types of linear olefin derivatives that have different methylene spacer lengths between the olefin and ester groups. Subsequently, betulin-based cycloolefins were synthesized by ring-closing metathesis using Grubbs first-generation catalyst. The influence of different parameters including solvents, temperature, catalysts, and catalyst loading on ring-closing metathesis was investigated. Cytotoxicity results indicated that these betulin-based olefin derivatives, derived from renewable bioresources, have potential applications in the biomedical field.
Collapse
Affiliation(s)
- Jiahui Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Zihao Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yuwen Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Weiwei Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
15
|
Kolahdooz H, Khori V, Erfani-Moghadam V, Livani F, Mohammadi S, Memarian A. Niosomal Curcumin Suppresses IL17/IL23 Immunopathogenic Axis in Skin Lesions of Psoriatic Patients: A Pilot Randomized Controlled Trial. Life (Basel) 2023; 13:life13051076. [PMID: 37240721 DOI: 10.3390/life13051076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Psoriasis (PS) is characterized by hyperplasia of epidermis and infiltration of immune cells in the dermis. A negligible susceptibility of hypodermic permeation for local anti-inflammatory remedies is one of the major causes of medication failures. Although curcumin (CUR) has indicated effectiveness in treatment of inflammation, its successful permeation through the stratum corneum is yet a challenging issue. Therefore, niosome (NIO) nanoparticles were used as curcumin carriers to enhance its delivery and anti-inflammatory effects. Curcumin-niosome (CUR-NIO) formulations were constructed by the thin-film-hydration (TFH) technique and were added to hyaluronic acid and Marine-collagen gel-based formulation. Five mild-to-moderate PS patients (18-60 years) with PASI scores < 30 with symmetrical and similar lesions were included in the study. The prepared formulation (CUR 15 µM) was topically administered for 4 weeks on the skin lesions, in comparison to the placebo. Clinical skin manifestations were monitored and skin punches were obtained for further gene expression analyses. There was a significant reduction in redness, scaling, and an apparent improvement in CUR-NIO-treated group in comparison to the placebo-treated counterpart. The gene expression analyses resulted in significantly downregulation of IL17, IL23, IL22, and TNFα, S100A7, S100A12, and Ki67 in CUR-NIO-treated lesions. Consequently, CUR-NIO could provide therapeutic approaches for the patients with mild-to-moderate PS by suppressing the IL17/IL23 immunopathogenic axis.
Collapse
Affiliation(s)
- Hanieh Kolahdooz
- Student Research Committee, Golestan University of Medical Sciences, Gorgan 49341-74515, Iran
- Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan 49341-74515, Iran
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan 49341-74515, Iran
| | - Vahid Erfani-Moghadam
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan 49341-74515, Iran
| | - Fatemeh Livani
- Clinical Research Development Unit (CRDU), Sayyad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan 49341-74515, Iran
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan 49341-74515, Iran
| | - Saeed Mohammadi
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan 49341-74515, Iran
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan 49341-74515, Iran
| | - Ali Memarian
- Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan 49341-74515, Iran
- Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan 49341-74515, Iran
| |
Collapse
|
16
|
Chang ZY, Chen CW, Tsai MJ, Chen CC, Alshetaili A, Hsiao YT, Fang JY. The elucidation of structure-activity and structure-permeation relationships for the cutaneous delivery of phytosterols to attenuate psoriasiform inflammation. Int Immunopharmacol 2023; 119:110202. [PMID: 37075671 DOI: 10.1016/j.intimp.2023.110202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Phytosterols have been reported to exert anti-inflammatory activity. This study aimed to investigate the capacity of campesterol, β-sitosterol, and stigmasterol on the mitigation of psoriasiform inflammation. We also tried to establish structure-activity and structure-permeation relationships for these plant sterols. To support this study, we first approached the in silico data of the physicochemical properties and the molecular docking of phytosterols with stratum corneum (SC) lipids. The anti-inflammatory activity of the phytosterols was explored in the activated keratinocytes and macrophages. Using the activated keratinocyte model, a significant inhibition of IL-6 and CXCL8 overexpression by phytosterols was detected. A comparable inhibition level was found for the three phytosterols tested. The macrophage-based study showed that the anti-IL-6 and anti-CXCL8 activities of campesterol were greater than those of the other compounds, which indicated that a phytosterol structure without a double bond on C22 and with methyl moiety on C24 was more effective. The conditioned medium of phytosterol-treated macrophages decreased STAT3 phosphorylation in the keratinocytes, suggesting the inhibition of keratinocyte hyperproliferation. β-sitosterol was the penetrant with the highest pig skin absorption (0.33 nmol/mg), followed by campesterol (0.21 nmol/mg) and stigmasterol (0.16 nmol/mg). The therapeutic index (TI) is a parameter measured by multiplying the cytokine/chemokine suppression percentage with skin absorption for anticipating the anti-inflammatory activity after topical delivery. β-sitosterol is a potential candidate for treating psoriatic inflammation due to having the greatest TI value. In this study, β-sitosterol attenuated epidermal hyperplasia and immune cell infiltration in the psoriasis-like mouse model. The psoriasiform epidermis thickness could be reduced from 92.4 to 63.8 μm by the topical use of β-sitosterol, with a downregulation of IL-6, TNF-α, and CXCL1. The skin tolerance study manifested that the reference drug betamethasone but not β-sitosterol could generate barrier dysfunction. β-sitosterol possessed anti-inflammatory activity and facile skin transport, showing the potential for development as an anti-psoriatic agent.
Collapse
Affiliation(s)
- Zi-Yu Chang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chun-Wei Chen
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Ming-Jun Tsai
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan; School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan; Department of Neurology, An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Chin-Chang Chen
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Yu-Tai Hsiao
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
17
|
Miastkowska M, Sikora E, Kulawik-Pióro A, Kantyka T, Bielecka E, Kałucka U, Kamińska M, Szulc J, Piasecka-Zelga J, Zelga P, Staniszewska-Ślęzak E. Bioactive Lavandula angustifolia essential oil-loaded nanoemulsion dressing for burn wound healing. In vitro and in vivo studies. BIOMATERIALS ADVANCES 2023; 148:213362. [PMID: 36921462 DOI: 10.1016/j.bioadv.2023.213362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
The aim of this study was to develop a dressing with bioactive lavender in a new form of nanoemulsion, and to verify its biosafety and effectiveness in burn wound healing. As part of this research, the composition of the bioactive carrier of lavender oil in the form of a nanoemulsion obtained using ultrasound was optimised. The mean particle size of the internal phase and polydispersity were determined using the dynamic light scattering method using a Zestasizer NanoZS by Malvern and using cryo-transmission electron microscopy (TEM). These studies confirmed that the selected formulation had a particle size of approximately 180 nm and remained stable over time. The preparation was also subjected to rheological analysis (viscosity approximately 480 mPa·s) and a pH test (approximately 6). A macroemulsion (ME) with the same qualitative composition was developed as a reference. Nanoformulations and MEs were tested for skin penetration using Raman spectroscopy in an in vitro model. Research has shown that both formulations deliver oil to living layers of the skin. Subsequently, studies were conducted to confirm the effect of lavender oil in emulsion systems on the mitigation of the inflammatory reaction and its pro-regenerative effect on the wound healing process in an in vitro cell culture model. The safe concentration of the oil in the emulsion preparation was also determined based on preliminary in vivo tests of skin sensitisation and irritation as well as an hemocompatibility test of the preparation.
Collapse
Affiliation(s)
- Małgorzata Miastkowska
- Department of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland.
| | - Elżbieta Sikora
- Department of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Agnieszka Kulawik-Pióro
- Department of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Tomasz Kantyka
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Cracow, Poland
| | - Ewa Bielecka
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Cracow, Poland
| | - Urszula Kałucka
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Cracow, Poland
| | - Marta Kamińska
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Cracow, Poland
| | - Joanna Szulc
- Nofer Institute of Occupational Medicine, Research Laboratory for Medicine and Veterinary Products in the GMP Quality System, Św. Teresy od Dzieciątka Jezus 8, 91-348 Lodz, Poland
| | - Joanna Piasecka-Zelga
- Nofer Institute of Occupational Medicine, Research Laboratory for Medicine and Veterinary Products in the GMP Quality System, Św. Teresy od Dzieciątka Jezus 8, 91-348 Lodz, Poland
| | - Piotr Zelga
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | | |
Collapse
|
18
|
Liu XX, Chen CY, Li L, Guo MM, He YF, Meng H, Dong YM, Xiao PG, Yi F. Bibliometric Study of Adaptogens in Dermatology: Pharmacophylogeny, Phytochemistry, and Pharmacological Mechanisms. Drug Des Devel Ther 2023; 17:341-361. [PMID: 36776447 PMCID: PMC9912821 DOI: 10.2147/dddt.s395256] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Background Adaptogens are a class of medicinal plants that can nonspecifically enhance human resistance. Most of the plant adaptogens have relevant applications in dermatology, but there are still few studies related to their particular action and co-operative mechanisms in topical skin application. Methods Plant adaptogens related articles and reviews that published between 1999 and 2022 were obtained from the Web of Science Core Collection database. Various bibliographic elements were collected, including the annual number of publications, countries/regions, and keywords. CiteSpace, a scientometric software, was used to conduct bibliometric analyses. Also, the patsnap global patent database was used to analyze the patent situation of plant adaptogens in the field of cosmetics up to 2021. Results We found that the effects of plant adaptogens on skin diseases mainly involve atopic dermatitis, acne, allergic contact dermatitis, psoriasis, eczema, and androgenetic alopecia, etc. And the effects on skin health mainly involve anti-aging and anti-photoaging, anti-bacterial and anti-fungal, anti-inflammatory, whitening, and anti-hair loss, etc. Also, based on the results of patent analysis, it is found that the effects of plant adaptogens on skin mainly focus on aging retardation. The dermatological effects of plant adaptogens are mainly from Fabaceae Lindl., Araliaceae Juss. and Lamiaceae Martinov., and their mainly efficacy phytochemical components are terpenoids, phenolic compounds and flavonoids. Conclusion The plant adaptogens can repair the skin barrier and maintain skin homeostasis by regulating the skin HPA-like axis, influencing the oxidative stress pathway to inhibit inflammation, and regulating the extracellular matrix (ECM) components to maintain a dynamic equilibrium, ultimately achieving the treatment of skin diseases and the maintenance of a healthy state.
Collapse
Affiliation(s)
- Xiao-Xing Liu
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Chun-Yu Chen
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Li Li
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Miao-Miao Guo
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Yi-Fan He
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Hong Meng
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Yin-Mao Dong
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People’s Republic of China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People’s Republic of China
| | - Fan Yi
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People’s Republic of China,Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People’s Republic of China,Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People’s Republic of China,Correspondence: Fan Yi, Email
| |
Collapse
|
19
|
Osterne VJS, Oliveira MV, De Schutter K, Serna S, Reichardt NC, Smagghe G, Cavada BS, Van Damme EJM, Nascimento KS. A galactoside-specific Dalbergieae legume lectin from seeds of Vataireopsis araroba (Aguiar) Ducke. Glycoconj J 2023; 40:85-95. [PMID: 36287345 DOI: 10.1007/s10719-022-10082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022]
Abstract
The Dalbergieae lectin group encompasses several lectins with significant differences in their carbohydrate specificities and biological properties. The current work reports on the purification and characterization of a GalNAc/Gal-specific lectin from Vataireopsis araroba (Aguiar) Ducke, designated as VaL. The lectin was purified from the seeds in a single step using guar gum affinity chromatography. The lectin migrated as a single band of about 35 kDa on SDS-PAGE and, in native conditions, occurs as a homodimer. The purified lectin is stable at temperatures up to 60 °C and in a pH range from 7 to 8 and requires divalent cations for its activity. Sugar-inhibition assays demonstrate the lectin specificity towards N-acetyl-D-galactosamine, D-galactose and related sugars. Furthermore, glycan array analyses show that VaL interacts preferentially with glycans containing terminal GalNAc/Galβ1-4GlcNAc. Biological activity assays were performed using three insect cell lines: CF1 midgut cells from the spruce budworm Choristoneura fumiferana, S2 embryo cells from the fruit fly Drosophila melanogaster, and GutAW midgut cells from the corn earworm Helicoverpa zea. In vitro assays indicated a biostatic effect for VaL on CF1 cells, but not on S2 and GutAW cells. The lectin presented a biostatic effect by reducing the cell growth and inducing cell agglutination, suggesting an interaction with glycans on the cell surface. VaL has been characterized as a galactoside-specific lectin of the Dalbergieae tribe, with sequence similarity to lectins from Vatairea and Arachis.
Collapse
Affiliation(s)
- Vinicius J S Osterne
- Laboratory for Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - Messias V Oliveira
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60455-760, Fortaleza, Brazil
| | - Kristof De Schutter
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, 9000, Ghent, Belgium
| | - Sonia Serna
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, 20014, San Sebastian, Spain
| | - Niels-Christian Reichardt
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, 20014, San Sebastian, Spain
- CIBER-BBN, 20009, San Sebastian, Spain
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, 9000, Ghent, Belgium
| | - Benildo S Cavada
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60455-760, Fortaleza, Brazil
| | - Els J M Van Damme
- Laboratory for Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000, Ghent, Belgium.
| | - Kyria Santiago Nascimento
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60455-760, Fortaleza, Brazil.
| |
Collapse
|
20
|
The Therapeutic Wound Healing Bioactivities of Various Medicinal Plants. Life (Basel) 2023; 13:life13020317. [PMID: 36836674 PMCID: PMC9960863 DOI: 10.3390/life13020317] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The skin serves as the body's first line of defense, guarding against mechanical, chemical, and thermal damage to the interior organs. It includes a highly developed immune response that serves as a barrier against pathogenic infections. Wound healing is a dynamic process underpinned by numerous cellular activities, including homeostasis, inflammation, proliferation, and remodeling, that require proper harmonious integration to effectively repair the damaged tissue. Following cutaneous damage, microorganisms can quickly enter the tissues beneath the skin, which can result in chronic wounds and fatal infections. Natural phytomedicines that possess considerable pharmacological properties have been widely and effectively employed forwound treatment and infection prevention. Since ancient times, phytotherapy has been able to efficiently treat cutaneous wounds, reduce the onset of infections, and minimize the usage of antibiotics that cause critical antibiotic resistance. There are a remarkable number of wound-healing botanicals that have been widely used in the Northern Hemisphere, including Achiella millefolium, Aloe vera, Althaea officinalis, Calendula officinalis, Matricaria chamomilla, Curcuma longa, Eucalyptus, Jojoba, plantain, pine, green tea, pomegranate, and Inula. This review addresses the most often used medicinal plants from the Northern Hemisphere that facilitate the treatment of wounds, and also suggests viable natural alternatives that can be used in the field of wound care.
Collapse
|
21
|
Schempp CM, Schwabe K, Kurz B, Niebel D, Becker-Weimann SY. [Aspects of sustainability of topical therapy]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2023; 74:21-26. [PMID: 36592193 DOI: 10.1007/s00105-022-05086-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Topical compounds are an important treatment option in dermatology. Many ingredients and packaging do not yet sufficiently fulfill sustainable criteria. OBJECTIVES This article aims to provide a compact overview of sustainability criteria of topical compounds and packaging. MATERIALS AND METHODS Based on a selective literature search and personal experience, common ingredients and packaging of topical preparations are summarized. RESULTS Topical preparations often contain mineral oils, acrylates, silicones and polyethylene glycols (PEG), which show poor biodegradability and may accumulate in the environment. As an alternative to these non-renewable substances, plant-based fats, oils, and waxes can be used. Biopolymers such as plant-based gum, agar-agar, pectin, and biologically produced hyaluronic acid are an alternative to plastic polymers. The environmental footprint of glass as packaging material is overestimated. Currently, plastics and aluminum may be preferable when recycled correctly. CONCLUSION The production of topical formulations without using mineral oils, silicones, acrylates, and PEGs is technically challenging. A sustainable packaging material that fulfills all relevant functionalities is not yet available. Packaging should meet high requirements regarding ecological, economic, and social factors. Better performance with respect to new opportunities in recycling and waste management should be incorporated. Overall, the legislative authorities should provide relevant incentives for more sustainable topical compounds and packaging.
Collapse
Affiliation(s)
- Christoph M Schempp
- Klinik für Dermatologie und Venerologie, Universitätsklinikum Freiburg, Hauptstraße 7, 79104, Freiburg, Deutschland
| | - Kay Schwabe
- BSI Beauty Science Intelligence GmbH, Frankenring 30, 30855, Langenhagen, Deutschland
| | - Bernadett Kurz
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Deutschland
| | - Dennis Niebel
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Deutschland
| | - Su Youn Becker-Weimann
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Frankfurt am Main, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Deutschland.
| |
Collapse
|
22
|
Kędzierska M, Bańkosz M, Drabczyk A, Kudłacik-Kramarczyk S, Jamroży M, Potemski P. Silver Nanoparticles and Glycyrrhiza glabra (Licorice) Root Extract as Modifying Agents of Hydrogels Designed as Innovative Dressings. Int J Mol Sci 2022; 24:ijms24010217. [PMID: 36613661 PMCID: PMC9820111 DOI: 10.3390/ijms24010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/04/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
The interest in the application of plant extracts as modifiers of polymers intended for biomedical purposes is constantly increasing. The therapeutical properties of the licorice root, including its anti-inflammatory and antibacterial activity, make this plant particularly promising. The same applies to silver nanoparticles showing antibacterial properties. Thus the main purpose of the research was to design hydrogel dressings containing both licorice root extract and nanosilver so as to obtain a system promoting wound regeneration processes by preventing infection and inflammation within the wound. The first step included the preparation of the plant extract via the solid-liquid extraction using the Soxhlet extractor and the synthesis of silver nanoparticles by the chemical reduction of silver ions using a sodium borohydride as a reducing agent. Subsequently, hydrogels were synthesized via photopolymerization and subjected to studies aiming at characterizing their sorption properties, surface morphology via scanning electron microscopy, and their impact on simulated physiological liquids supported by defining these liquids' influence on hydrogels' structures by FT-IR spectroscopy. Next, the tensile strength of hydrogels and their percentage elongation were determined. Performed studies also allowed for determining the hydrogels' wettability and free surface energies. Finally, the cytotoxicity of hydrogels towards L929 murine fibroblasts via the MTT reduction assay was also verified. It was demonstrated that developed materials showed stability in simulated physiological liquids. Moreover, hydrogels were characterized by high elasticity (percentage elongation within the range of 24-29%), and their surfaces were hydrophilic (wetting angles below 90°). Hydrogels containing both licorice extract and nanosilver showed smooth and homogeneous surfaces. Importantly, cytotoxic properties towards L929 murine fibroblasts were excluded; thus, developed materials seem to have great potential for application as innovative dressings.
Collapse
Affiliation(s)
- Magdalena Kędzierska
- Department of Chemotherapy, Medical University of Lodz, Copernicus Memorial Hospital of Lodz, 93-513 Lodz, Poland
| | - Magdalena Bańkosz
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
- Correspondence: (A.D.); (M.J.)
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Mateusz Jamroży
- Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
- Correspondence: (A.D.); (M.J.)
| | - Piotr Potemski
- Department of Chemotherapy, Medical University of Lodz, Copernicus Memorial Hospital of Lodz, 93-513 Lodz, Poland
| |
Collapse
|
23
|
Efficacy of Lazolex® Gel in the Treatment of Herpes Simplex Mucocutaneous Infections and the Prevention of Recurrences: A Pilot Study. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:4413679. [DOI: 10.1155/2022/4413679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022]
Abstract
Background. Previous in vitro and in vivo studies indicated that walnut extract has a therapeutic effect on herpes simplex infections. This study aimed to evaluate the efficacy and tolerance of Lazolex® Gel (Iveriapharma, Tbilisi, Georgia), an emollient gel to treat mucocutaneous lesions caused by herpes simplex virus. Methods. A single-center, single-arm, open-label, phase II clinical trial was conducted with 30 patients divided into two groups: 15 patients with herpes simplex virus type 1 (HSV-1) infections and 15 with herpes simplex virus type 2 (HSV-2). All received topical treatment with Lazolex® Gel four times a day for 10 days. The efficacy and tolerance of the treatment were evaluated on day 10 and day 20 of the study. Recurrence rates were also evaluated both prior to treatment with Lazolex® and over a 4-year follow-up period subsequent to treatment. Results. The median effective time to resolution of symptoms (itching, burning, and pain) was 1.97 days in the HSV-1 group and 3.11 days in the HSV-2 group. The median effective time for vesicles and erosion to disappear was 3.64 days in the HSV-1 group and 3.88 days for the HSV-2 group. Finally, the median effective time for inflammatory signs to disappear was 5.70 and 4.32 days, respectively. Following treatment with Lazolex® Gel, the frequency of outbreaks decreased from a median of 2.00 and 1.00 times per year in the HSV-1 and HSV-2 cohorts to 0.25 and 0.00 (
and
), respectively. Conclusions. Topical treatment with Lazolex® Gel applied to lesions four times a day for 10 days was shown to be effective and safe in the treatment of herpes simplex mucocutaneous infections and dramatically reduced the rate of recurrence. Clinical trial was approved by Drug Agency of Ministry of Labour, Health and Social Affairs of Georgia, registration # DA Nº CT-000032, date of approval 01.10.2007.
Collapse
|
24
|
Yuksekdag S. The efficacy of St John's wort oil macerates on intractable skin lesions of patients with idiopathic granulomatous mastitis: preliminary results. J Wound Care 2022; 31:1006-1010. [DOI: 10.12968/jowc.2022.31.11.1006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Objective: St John's wort (SJW, Hypericum perforatum) has a long history of medicinal use, mainly for its antidepressive effects and for wound healing. However, to the best of our knowledge, this is the first clinical study evaluating the effects of topical SJW oil macerates on the intractable skin lesions of idiopathic granulomatous mastitis (IGM). Method: SJW oil massage (twice daily for two minutes) was recommended between 2016 and 2019, only for patients with persistent or intractable skin lesions, after complete regression of granulomatous mass with two cycles of high-dose oral steroid and empiric antibiotics. Skin lesions were assessed and graded, before and after treatment, as clear, mild, moderate and severe. A questionnaire was also completed for each patient at the end of the six-week treatment. Results: A total of 21 patients with persistent IGM lesions used SJW oil after completion of the standard treatment protocol. All patients were women, and the mean age was 36.6 years. Hyperaemia (100%), scaling (61%), induration (52%) and ulcers (28%) were the predominant skin lesions. Distribution of the lesions according to the degree of severity were graded mild, moderate and severe, and seen in 35%, 41% and 23% of the patients, respectively. When compared with pre-treatment scores, there were very significant regressions (clear: 76.4%, mild: 17.6%, moderate: 3.9%, severe: 1.9%; p<0.001 for each). The overall success rate (total clearance or decrease/decline in lesions) of treatment was 94%. Conclusion: SJW oil massage seems to be very effective in patients with IGM-related persistent skin lesions.
Collapse
Affiliation(s)
- Sema Yuksekdag
- Department of General Surgery, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
25
|
Tsioutsiou EE, Amountzias V, Vontzalidou A, Dina E, Stevanović ZD, Cheilari A, Aligiannis N. Medicinal Plants Used Traditionally for Skin Related Problems in the South Balkan and East Mediterranean Region—A Review. Front Pharmacol 2022; 13:936047. [PMID: 35865952 PMCID: PMC9294246 DOI: 10.3389/fphar.2022.936047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
A review research was conducted to provide an overview of the ethnobotanical knowledge of medicinal plants and traditional medical practices for the treatment of skin disorders in Albania, Cyprus, Greece, and Turkey. The geographical and ecological characteristics of the Balkan Peninsula and Mediterranean Sea, along with the historical connection among those countries, gave rise to the development of a distinct flora and to the uses of common medicinal plants against various skin ailments, respectively. The review focuses on the detailed study of 128 ethnobotanical surveys conducted in these areas and the species used for skin ailments were singled out. The analysis showed that 967 taxa belonging to 418 different genera and 111 different families are used in the treatment of skin related problems. The majority of the plants belong to the families of Asteraceae (11.7%), Lamiaceae (7.4%), Rosaceae (6.7%), Plantaginaceae (5.4%), and Malvaceae (3.8%). Their usage is internal or external to treat ailments such as wounds and burns (22.1%), hemorrhoids (14.7%), boils, abscesses, and furuncles (8.2%). Beside specific skin disorders, numerous species appeared to be used for their antifungal, antimicrobial, and antiseptic activity (9.1%). Literature evaluation highlighted that, the most commonly used species are Plantago major L. (Albania, Turkey), Hypericum perforatum L. (Greece, Turkey), Sambucus nigra L. (Cyprus, Greece), Ficus carica L. (Cyprus, Turkey), Matricaria chamomilla L. (Cyprus, Greece), and Urtica dioica L. (Albania, Turkey), while many medicinal plants reported by interviewees were common in all four countries. Finally, to relate this ethnopharmacological knowledge and trace its expansion and diversification through centuries, a comparison of findings was made with the use of the species mentioned in Dioscorides’ “De Materia Medica” for skin disorders. This work constitutes the first comparative study performed with ethnobotanical data for skin ailments gathered in the South Balkan and East Mediterranean areas. Results confirm the primary hypothesis that people in Albania, Cyprus, Greece, and Turkey are closely related in terms of traditionally using folk medicinal practices. Nevertheless, more field studies conducted, especially in remote places of these regions, can help preserve the traditional medical knowledge, aiming at the discovery of new phytotherapeutics against dermatological diseases.
Collapse
Affiliation(s)
- Efthymia Eleni Tsioutsiou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Vaios Amountzias
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Argyro Vontzalidou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Evanthia Dina
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Antigoni Cheilari
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Antigoni Cheilari,
| | - Nektarios Aligiannis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
26
|
Zhang Y, Heinemann N, Rademacher F, Darvin ME, Raab C, Keck CM, Vollert H, Fluhr JW, Gläser R, Harder J, Meinke MC. Skin Care Product Rich in Antioxidants and Anti-Inflammatory Natural Compounds Reduces Itching and Inflammation in the Skin of Atopic Dermatitis Patients. Antioxidants (Basel) 2022; 11:antiox11061071. [PMID: 35739968 PMCID: PMC9219975 DOI: 10.3390/antiox11061071] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/29/2023] Open
Abstract
The atopic dermatitis (AD) complex pathogenesis mechanism reveals marked changes of certain signaling factors as well as some morphological alterations in the epidermis. Reduced resilience against environmental factors and oxidative stress often makes the treatment with corticosteroids or tacrolismus ointments indispensable. In view of the correlation between oxidative stress and AD pathological factors, antioxidants can be incorporated into AD management strategies. This study investigates a curly kale, apple and green tea-containing natural extract rich in antioxidants for its effects on signaling inflammatory molecules and skin barrier enhancement in human epidermal keratinocytes- (NHEKs) based cell assays. Furthermore, the skin penetration on porcine ears was measured ex vivo using Raman micro spectroscopy. Finally, in a double-blind half-side, placebo-controlled clinical study, the effects of a formulation containing this extract were analyzed for the influence of lesion severity, epidermal barrier function, and pruritus in mild to moderately AD patients. Summarizing our results: The extract reduces expression of inflammatory cytokines in keratinocytes and increases barrier-related molecules. The verum formulation with a very high antioxidant capacity used in AD patients with mild to moderate lesions reduces itching, local SCORAD, and improves barrier function and the hydration of skin lesions.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Dermatology, Venerology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (Y.Z.); (M.E.D.); (C.R.); (J.W.F.)
| | - Nina Heinemann
- Department of Dermatology, Medical Faculty, Christian-Albrecht University Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany; (N.H.); (F.R.); (R.G.); (J.H.)
| | - Franziska Rademacher
- Department of Dermatology, Medical Faculty, Christian-Albrecht University Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany; (N.H.); (F.R.); (R.G.); (J.H.)
| | - Maxim E. Darvin
- Department of Dermatology, Venerology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (Y.Z.); (M.E.D.); (C.R.); (J.W.F.)
| | - Christian Raab
- Department of Dermatology, Venerology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (Y.Z.); (M.E.D.); (C.R.); (J.W.F.)
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany;
| | - Cornelia M. Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany;
| | | | - Joachim W. Fluhr
- Department of Dermatology, Venerology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (Y.Z.); (M.E.D.); (C.R.); (J.W.F.)
- Institute of Allergy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Regine Gläser
- Department of Dermatology, Medical Faculty, Christian-Albrecht University Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany; (N.H.); (F.R.); (R.G.); (J.H.)
| | - Jürgen Harder
- Department of Dermatology, Medical Faculty, Christian-Albrecht University Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany; (N.H.); (F.R.); (R.G.); (J.H.)
| | - Martina C. Meinke
- Department of Dermatology, Venerology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (Y.Z.); (M.E.D.); (C.R.); (J.W.F.)
- Correspondence: ; Tel.: +49-30-450-518244
| |
Collapse
|
27
|
Phytoecdysteroids from Serratula coronata L. for Psoriatic Skincare. Molecules 2022; 27:molecules27113471. [PMID: 35684408 PMCID: PMC9181847 DOI: 10.3390/molecules27113471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
Phytoecdysones from Serratula coronata seem to be promising agents for skincare in patients with psoriasis. The aim of the study was to determine the effects of creams containing the extract of S. coronata on psoriatic lesions. Creams with different formulas were prepared: 0-Lekobaza®, 1-Lekobaza®, S. coronata, 2-Lekobaza®, Salicylic acid, 3-Lekobaza®, S. coronata, Salicylic acid. After examination of skin penetration and biosafety, the designated cream was applied twice daily for 6 weeks on 72 psoriatic plaques located on elbows or knees. The lesions were assessed at baseline and follow-up of 6 weeks. The lesions area was measured, and severity of scaling, erythema, and infiltration was assessed using a 5-point scale (from 0—none to 4—very severe). Skin hydration and structure, pH, transepidermal water loss, erythema, and melanin index were analyzed instrumentally. Creams 1, 2, and 3 significantly reduced the area of psoriatic plaques. Improvement in erythema and infiltration was observed for creams 1 and 3. Creams 1–3 reduced scaling. Our study confirmed a beneficial effect of creams containing S. coronata extract on psoriatic lesions.
Collapse
|
28
|
Draelos ZD. The Efficacy and Tolerability of Turmeric and Salicylic Acid in Psoriasis Treatment. Psoriasis (Auckl) 2022; 12:63-71. [PMID: 35516971 PMCID: PMC9064175 DOI: 10.2147/ptt.s360448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Patients and Methods Results Conclusion
Collapse
Affiliation(s)
- Zoe Diana Draelos
- Dermatology Consulting Services, PLLC, High Point, NC, USA
- Correspondence: Zoe Diana Draelos, Dermatology Consulting Services, PLLC, 2444 North Main Street, High Point, NC, 27262, USA, Tel +1-336-841-2040, Fax +1 336-841-2044, Email
| |
Collapse
|
29
|
Isaac JA, Daburi A, Ifeanyi B, Ben-Umeh KC, Adedokun AA, Builders P. Senna podocarpa Emulgel: A Herbal Alternative for Chemical Burn Wound Treatment. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1744474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Senna podocarpa (SP) leaves are used in folk medicines for treatment of burns and wounds as poultices on wound surface. However, to the best of our knowledge, the wound healing ability of this plant has not been scientifically evaluated. This work aimed to determine the wound healing potential of the crude extract of SP leaves, and to evaluate the benefit of its preparation as an emulgel. In this study, the formulations of 2.5% of SP emulgel (F1) and 7.5% of SP emulgel (F2) were prepared by mixing the emulsion phase with the gel phase in a ratio of 1:1, and then physical appearance, globule size, pH, viscosity, swelling, water activity, extrudability, occlusion, spreadability, stability, and wound healing ability were determined. Phytochemical screening showed the presence of alkaloids, saponins, tannins, cardiac glycosides, flavonoids, anthraquinones, and phenols within the hydro-ethanolic extract of SP leaves, and high flavonoid content is believed to be responsible for its healing attributes. Our formulations showed acceptable physical properties. Hematoxylin-eosin and Verhoeff–Van Gieson stain showed that F2 could induce the accumulation of fibroblasts, fibrocytes, inflammatory cells, gland cells, epidermal cells, adipocytes, and collagen in the process of wound healing in mice injured with hydrochloric acid. Encouragingly, the percent of wound contractions in mice treated with F1, F2, and SP leaf poultice were 64, 87, and 50, respectively, suggesting the superior healing properties exhibited by SP emulgel over SP leaf poultice, and this may due to the occlusive property of emulgels. In conclusion, F2 of crude extract of SP leaves has better pharmacological effects on burn and wound healing, and may represent a preferred choice to treat burn wounds in the future.
Collapse
Affiliation(s)
- Johnson Ajeh Isaac
- Department of Pharmaceutical Technology and Raw Materials Development, National Institute for Pharmaceutical Research and Development (NIPRD), Abuja, Nigeria
| | - Aisha Daburi
- Department of Pharmacology and Toxicology, National Institute for Pharmaceutical Research and Development (NIPRD), Abuja, Nigeria
| | - Benneth Ifeanyi
- Department of Pharmaceutical Technology and Raw Materials Development, National Institute for Pharmaceutical Research and Development (NIPRD), Abuja, Nigeria
| | - Kenechukwu Chijioke Ben-Umeh
- Department of Pharmaceutical Technology and Raw Materials Development, National Institute for Pharmaceutical Research and Development (NIPRD), Abuja, Nigeria
| | - Abiodun Abigail Adedokun
- Department of Pharmaceutical Technology and Raw Materials Development, National Institute for Pharmaceutical Research and Development (NIPRD), Abuja, Nigeria
| | - Philip Builders
- Department of Pharmaceutical Technology and Raw Materials Development, National Institute for Pharmaceutical Research and Development (NIPRD), Abuja, Nigeria
| |
Collapse
|
30
|
Hurth Z, Faber ML, Gendrisch F, Holzer M, Haarhaus B, Cawelius A, Schwabe K, Schempp CM, Wölfle U. The Anti-Inflammatory Effect of Humulus lupulus Extract In Vivo Depends on the Galenic System of the Topical Formulation. Pharmaceuticals (Basel) 2022; 15:ph15030350. [PMID: 35337147 PMCID: PMC8951350 DOI: 10.3390/ph15030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 02/05/2023] Open
Abstract
We demonstrated the anti-inflammatory and anti-oxidative effects of Humulus lupulus (HL) extract on solar simulator-irradiated primary human keratinocytes (PHKs) by analyzing ERK and p38 MAPK phosphorylation and production of IL-6 and IL-8. The anti-inflammatory effect of topically applied HL was further tested in vivo on human skin. To this end, we developed an oil-in-water (O/W) and a water-in-oil (W/O) cream with a lipid content of 40%. The anti-inflammatory effect of 1% HL extract incorporated in these two vehicles was assessed in a randomized, prospective, placebo controlled, double-blind UVB erythema study with 40 healthy volunteers. Hydrocortisone acetate (HCA) in the corresponding vehicle served as positive control. Surprisingly, both HL and HCA were only effective in the O/W system but not in the W/O formulation. Release studies using vertical diffusion cells (Franz cells) revealed that HCA was released in much higher amounts from the O/W cream compared to the W/O formulation. In summary, we have shown that 1% HL extract exerts anti-inflammatory effects comparable to 1% HCA, but only when incorporated in our O/W cream. Our findings confirm the critical role of the vehicle in topical anti-inflammatory systems.
Collapse
Affiliation(s)
- Zita Hurth
- Research Center Skinitial, Department of Dermatology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (Z.H.); (M.-L.F.); (F.G.); (B.H.); (C.M.S.)
| | - Marie-Luise Faber
- Research Center Skinitial, Department of Dermatology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (Z.H.); (M.-L.F.); (F.G.); (B.H.); (C.M.S.)
| | - Fabian Gendrisch
- Research Center Skinitial, Department of Dermatology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (Z.H.); (M.-L.F.); (F.G.); (B.H.); (C.M.S.)
| | - Martin Holzer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany;
| | - Birgit Haarhaus
- Research Center Skinitial, Department of Dermatology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (Z.H.); (M.-L.F.); (F.G.); (B.H.); (C.M.S.)
| | - Anja Cawelius
- Flavex Naturextrakte GmbH, 66780 Rehlingen, Germany;
| | - Kay Schwabe
- BSI-Beauty Science Intelligence GmbH, 30855 Langenhagen, Germany;
| | - Christoph Mathis Schempp
- Research Center Skinitial, Department of Dermatology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (Z.H.); (M.-L.F.); (F.G.); (B.H.); (C.M.S.)
| | - Ute Wölfle
- Research Center Skinitial, Department of Dermatology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (Z.H.); (M.-L.F.); (F.G.); (B.H.); (C.M.S.)
- Correspondence: ; Tel.: +49-761-270-68250
| |
Collapse
|
31
|
Goels T, Eichenauer E, Tahir A, Prochaska P, Hoeller F, Heiß EH, Glasl S. Exudates of Picea abies, Pinus nigra, and Larix decidua: Chromatographic Comparison and Pro-Migratory Effects on Keratinocytes In Vitro. PLANTS (BASEL, SWITZERLAND) 2022; 11:599. [PMID: 35270069 PMCID: PMC8912572 DOI: 10.3390/plants11050599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Balms and resins of Picea abies, Larix decidua, and Pinus nigra are traditionally used to treat wounds. Three chromatographic techniques differing in separation capacity and technical demands were employed to distinguish among these plant exudates. A TLC method was established for fingerprint comparison, providing a quick overview of a large number of samples at low cost. HPLC-DAD (RP18) and UHPSFC-DAD (Torus 2-Picolylamin), hyphenated to ESI-MS, represented orthogonal chromatographic systems with high separation performance. The developed methods allow for the separation and detection of major and minor constituents belonging to different compound classes (phenyl carboxylic acids, lignans, diterpene resin acids). The qualitative compositions of the diterpene resin acids, the main compounds in the exudates, were comparable in all three genera. Differences were detected in the distribution of hydroxylated diterpene resin acids, pinoresinol, and hydroxycinnamic acids. The three tested chromatographic systems with varying demands on lab equipment offer appropriate tools for the quality assessment of Picea abies, Larix decidua, and Pinus nigra. The extracts were furthermore tested at three different concentrations (10 µg/mL, 3 µg/mL, and 1 µg/mL) for boosted re-epithelialization, a crucial step in the wound-healing process, in an in vitro HaCaT keratinocyte-based scratch assay. Lysophosphatidic acid (LPA, 10 µM) and extracts of several medicinal plants well known for their wound-healing properties (birch, marigold, St. John's wort, manuka honey) were used as positive controls. Picea abies and Pinus nigra showed concentration dependency; significant activity was measured for Larix decidua at 3 µg/mL.
Collapse
|
32
|
A systematic comparison of the effect of topically applied anthraquinone aglycones to relieve psoriasiform lesion: The evaluation of percutaneous absorption and anti-inflammatory potency. Biomed Pharmacother 2021; 145:112482. [PMID: 34915669 DOI: 10.1016/j.biopha.2021.112482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 11/21/2022] Open
Abstract
The anthraquinones derived from rhubarb are reported to have anti-inflammatory activity. The present study aimed to assess the topical application of rhubarb anthraquinone aglycones for psoriasis treatment. The antipsoriatic effect of five anthraquinones, including aloe-emodin, rhein, emodin, physcion, and chrysophanol, was compared to elucidate a structure-permeation relationship. Molecular modeling was employed to determine the physicochemical properties. Both macrophages (differentiated THP-1) and keratinocytes (HaCaT) were used to examine the anti-inflammatory activity in the cell-based study. The in vitro pig skin absorption showed that chrysophanol was the compound with the highest cutaneous accumulation. Topically applied rhein was detected to be largely delivered to the receptor compartment. The absorption of rhein was increased by 5-fold in the barrier-deficient skin as compared to intact skin. By stimulating macrophages with imiquimod (IMQ) to model the inflammation in psoriasis, it was found that the anthraquinones significantly reduced IL-6, IL-23, and TNF. The cytokine inhibition level was comparable for the five compounds. The anthraquinones suppressed cytokines by inhibiting the activation of MAPK and NF-κB signaling. The anthraquinones also downregulated IL-6, IL-8, and IL-24 in the inflammatory keratinocytes stimulated with TNF. Rhein and chrysophanol were comparable to curtail the STAT3 phosphorylation in keratinocytes induced by the conditioned medium of stimulated macrophages. The IMQ-induced psoriasiform mouse model demonstrated the improvement of scaling, erythema, and epidermal hyperplasia by topically applied rhein or chrysophanol. The epidermal acanthosis evoked by IMQ was reduced with rhein and chrysophanol by 3-fold. The histological profiles exhibit that both anthraquinone compounds diminished the number of macrophages and neutrophils in the lesional skin, skin-draining lymph node, and spleen. Rhein and chrysophanol showed multifunctional inhibition, by regulating several targets for alleviating psoriasiform inflammation.
Collapse
|
33
|
Sanna F, Bratzu J, Angioni L, Pina Sorighe M, Cocco C, Argiolas A, Melis MR. Oxytocin-conjugated saporin injected into the substantia nigra of male rats alters the activity of the nigrostriatal dopaminergic system: A behavioral and neurochemical study. Brain Res 2021; 1773:147705. [PMID: 34744015 DOI: 10.1016/j.brainres.2021.147705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
Saporin conjugated to oxytocin (OXY-SAP) destroys neurons expressing oxytocinergic receptors. When injected unilaterally in the substantia nigra of male rats, OXY-SAP causes a dose-dependent decrease up to 55 % in nigral Tyrosine Hydroxylase (TH)-immunoreactivity compared to control mock peptide BLANK-SAP- and PBS-treated rats or the contralateral substantia nigra. TH decrease was parallel to a dopamine content decrease in the ipsilateral striatum compared to BLANK-SAP- or PBS-treated rats or the contralateral striatum. OXY-SAP-treated rats showed a small but significant increase of locomotor activity 28 days after intranigral injection in the Open field test compared to BLANK-SAP- or PBS-treated rats, in line with an inhibitory role of nigral oxytocin on locomotor activity. OXY-SAP-, but not BLANK-SAP- or PBS-treated rats, also showed marked dose-dependent rotational turning ipsilateral to the injected substantia nigra when challenged with d-amphetamine, but not with apomorphine. Under isoflurane anesthesia OXY-SAP-treated rats showed levels of extracellular dopamine in the dialysate from the ipsilateral striatum only half those of BLANK-SAP- or PBS-treated rats or the contralateral striatum. When treated with d-amphetamine, OXY-SAP_60/120 rats showed increased extracellular dopamine levels in the dialysate from the ipsilateral striatum two third/one third only of those found in BLANK-SAP- or PBS-treated rats or the contralateral striatum, respectively. These results show that OXY-SAP destroys nigrostriatal dopaminergic neurons expressing oxytocin receptors leading to a reduced striatal dopamine function.
Collapse
Affiliation(s)
- Fabrizio Sanna
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| | - Jessica Bratzu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| | - Laura Angioni
- Department of Biomedical Sciences, Neuro-Endocrine-Fluorescence (NEF) Laboratory, University of Cagliari, Italy.
| | - Maria Pina Sorighe
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| | - Cristina Cocco
- Department of Biomedical Sciences, Neuro-Endocrine-Fluorescence (NEF) Laboratory, University of Cagliari, Italy.
| | - Antonio Argiolas
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, Cagliari, Italy; Institute of Neuroscience, National Research Council, Cagliari Section, University of Cagliari, Cagliari, Italy.
| | - Maria Rosaria Melis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
34
|
Yasmeen, Iqubal MK, Khan MA, Agarwal NB, Ali J, Baboota S. Nanoformulations-based advancement in the delivery of phytopharmaceuticals for skin cancer management. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Alan Z, Özgüldü H, Erdal MS, Bucak AY, Üresin AY, Akalın E. Evaluation of clinical trials of the plants, which have ethnobotanical uses for skin disorders in Turkey: a review. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00316-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Abstract
Background
Ethnobotanical studies investigating a large number of traditional herbs and uses have an important role in the discovery of new drugs. Nowadays, some of these traditional herbs are researched directly in the clinical trials. In this study, it is aimed to evaluate the 19 plant species that have been identified in the clinical trials among 300 plant species belonging to 79 families with traditional use for skin problems in Turkey.
Main body
Natural sources are very important to treat diseases for thousands of years. The ethnopharmacological research of natural products ranges from the collection of biogenic samples such as plants to preclinical and clinical studies with the aim of developing drug templates or new drugs. In the ethnopharmacological approach, it is aimed to reach the result based on the traditional and modern knowledge about natural resources. The biggest advantage of this approach is synthesizing new and old information. After the plant or natural compound is determined, other processes work similarly with conventional drugs.
Methods
Ethnobotanical papers, thesis and projects in Istanbul University Faculty of Pharmacy Department of Pharmaceutical Botany and databases (PubMed and Google Scholar) have been sought and results were synthesized.
Results
Most of the clinical uses of herbs have been seen similar to their traditional uses. On the other hand, there are some plants on which their clinical uses differ from the traditional uses such as Borago officinalis, Calendula officinalis or Euphorbia peplus. When the frequency of traditional uses of herbs are compared, Plantago species, Plantago major and Plantago lanceolata are the most used taxa in Turkey, secondly, Hypericum perforatum comes. However, Plantago species are not of much interest in clinical trials. It is seen that most of the plants in the clinical research are tried for wound healing occuring due to different origins such as cancer, surgery and injury.
Side effects were observed only during the application of Allium cepa, Cydonia oblonga and H. perforatum.
Conclusions
When clinical trials are evaluated in terms of efficacy and overall results, significant differences and effective results are seen in treatment groups given herbs in comparison with placebo or control groups.
Collapse
|
36
|
Lademann J, Mansouri P, Nahavandi A, Ahlers A, Zibakalam-Mofrad F, Brower B, Nahavandi M, Feddern F, Darvin ME, Schanzer S, Richter H, Meinke MC, Rezaii SA, Rohaninasab M, Farshi S, Iacobelli M, Jung S. In vivo skin penetration, radical protection and structural changes after topical application of a herbal oil cream compared to topical calcipotriol in mild to moderate psoriasis. Skin Pharmacol Physiol 2021; 34:337-350. [PMID: 34404045 DOI: 10.1159/000518970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/09/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Juergen Lademann
- Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Parvin Mansouri
- Tehran University of Medical Science, TUMS, Skin and Stem Cell Research Center, Tehran, Iran
| | | | | | | | | | | | | | - Maxim E Darvin
- Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sabine Schanzer
- Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Heike Richter
- Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Martina C Meinke
- Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Seyed Ahmad Rezaii
- Tehran University of Medical Science, TUMS, Research Management Office, Tehran, Iran
| | - Masoumeh Rohaninasab
- Tehran University of Medical Science, TUMS, Skin and Stem Cell Research Center, Tehran, Iran
| | - Susan Farshi
- Tehran University of Medical Science, TUMS, Skin and Stem Cell Research Center, Tehran, Iran
| | | | - Sora Jung
- Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
37
|
Wang L, Ahmad S, Wang X, Li H, Luo Y. Comparison of Antioxidant and Antibacterial Activities of Camellia Oil From Hainan With Camellia Oil From Guangxi, Olive Oil, and Peanut Oil. Front Nutr 2021; 8:667744. [PMID: 34012974 PMCID: PMC8126635 DOI: 10.3389/fnut.2021.667744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background/Aim: Camellia oil from Hainan (SY) is a unique vegetable oil in Hainan, China, due to the geographical environment and oil extraction only through simple physical treatments. To compare SY with camellia oil from Guangxi (SC), olive oil (GL), and peanut oil (HS), this study analyzed the antioxidant and antibacterial activity of four vegetable oils. Methods: Using Gallic acid, BHT as the control, Saccharomyces cerevisiae as the model organism, the antioxidant activities of vegetable oils were measured in vitro and in vivo, and the antibacterial activity was measured with the minimum inhibitory concentration (MIC) method. Results: The major contents of SY, SC, and HS were oleic Acid; the major content of GL was squalene. The highest total flavonoids content of SY was 39.50 ± 0.41 mg RE/g DW; and the highest total phenolic content of SC was 47.05 ± 0.72 mg GAE/g DW. SY exhibited the strongest scavenging activity of hydroxyl radical (HO·) and superoxide anions (O2-·), the IC50 value were 2.06 mg/mL, 0.62 mg/mL, respectively; and SC showed the strongest DPPH· and ABTS· scavenging activity and the reducing abilities. SY showed excellent effect on survival rate, protection rate, flavonoids uptake of S. cerevisiae cells, decreased MDA content and ROS level, inhibited CAT, POD, and GR enzyme activity. The absorption of SC total phenols was the highest by cells. The activity showed GL had a broad-spectrum antibacterial activity. Conclusion: Thus, SY shows potential antioxidant activity and provides an important reference value for people to choose edible vegetable oils.
Collapse
Affiliation(s)
- Lanying Wang
- College of Plant Protection, Hainan University, Haikou, China
| | - Shakil Ahmad
- College of Plant Protection, Hainan University, Haikou, China
| | - Xi Wang
- College of Plant Protection, Hainan University, Haikou, China
| | - Hua Li
- College of Plant Protection, Hainan University, Haikou, China
| | - Yanping Luo
- College of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
38
|
The Effect of Herbal Medicinal Products on Psoriasis-Like Keratinocytes. Biomolecules 2021; 11:biom11030371. [PMID: 33801280 PMCID: PMC8000521 DOI: 10.3390/biom11030371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by hyperproliferation of keratinocytes and expression of pro-inflammatory cytokines in the epidermis. New biological drugs were developed for the systemic treatment of moderate to severe psoriasis. However, products for the topical treatment of mild psoriasis are still required. Here, we examined the effect of natural compounds on psoriasis-like keratinocytes in vitro and ex vivo. Psoriasis-like keratinocytes were generated by treating human primary keratinocytes with the psoriasis-associated cytokines IL-17A, TNF-α and IL-22. Initially, 10 botanical extracts from Ayurvedic Medicine, Traditional Chinese Medicine, Northern American traditional medicine and Occidental Monastic Medicine were investigated using BrdU assays and IL-6 and IL-8 ELISAs. Curcuma amada, Humulus lupulus and Hypericum perforatum turned out to be the most effective plant extracts. In vitro, the plant extracts inhibited the expression of anti-microbial peptides (β-defensin 2), the hyperproliferation marker keratin 17, the glucose transporter 1 and downregulated the nuclear translocation of NF-κB and pSTAT3. In an ex vivo psoriasis model, Humulus lupulus displayed the most prominent anti-proliferative and anti-inflammatory effect. In conclusion, among the plant extracts investigated, Humulus lupulus showed the most promising anti-psoriatic effect. It is an interesting candidate for topical psoriasis treatment that should be further studied in clinical trials.
Collapse
|
39
|
Hadeler EK, Maderal AD. Drug interactions of natural supplements in dermatology: a review. Int J Dermatol 2020; 60:1183-1189. [PMID: 33368259 DOI: 10.1111/ijd.15389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/14/2020] [Accepted: 12/02/2020] [Indexed: 11/30/2022]
Abstract
Limited information is available on the drug-drug interactions of natural supplements in dermatology. Many natural supplements are available over the counter, but drug-drug interactions can occur. This study reviews the clinical use and drug interactions of six natural supplements commonly recommended in dermatology: nicotinic acid (nicotinamide), polypodium leucotomos (heliocare), turmeric, horse chestnut seed extract, zinc, and N-acetylcysteine. We reviewed the drug-drug interactions of each supplement using the PubMed database and IBM Micromedex. For nicotinic acid, zinc, horse chestnut, and N-acetylcysteine, IBM Micromedex generated 11, 23, one, and two results, respectively. Further review of literature from PubMed identified two drug interactions with polypodium leucotomos, two with turmeric, and two more with zinc. Notable interactions included an increased risk of myopathy and rhabdomyolysis when nicotinic acid is taken by patients using statins, an increased risk of bleeding associated with horse chestnut seed, especially when used in combination with warfarin, and reduced plasma concentration in many drugs when taken with zinc. Furthermore, N-acetylcysteine may interfere with concentrations of other medications used in the psychiatric setting, and polypodium leucotomos and turmeric may interfere with the CYP metabolic pathway, which may affect drugs metabolized by this pathway. Prior to recommending a treatment, dermatologists should foster awareness of these interactions. In order to advance the practice as a whole, research should continue to evaluate the drug interactions of these natural supplements.
Collapse
Affiliation(s)
- Edward K Hadeler
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Andrea D Maderal
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
40
|
Nanoemulsion Gel Formulation Optimization for Burn Wounds: Analysis of Rheological and Sensory Properties. Processes (Basel) 2020. [DOI: 10.3390/pr8111416] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: Despite the variety of treatment methods for wounds and scars after burns, there are still few effective preparations that can be used in a non-invasive therapy. Recent years have seen significant development of nanomedicine and nanotechnology in the treatment of infection in burn wounds. Proposal: The aim of this work was to develop a formula of a nanoemulsion gel for skin regeneration after burns, and to compare its rheological and sensory properties, as well as the effectiveness of post-burn skin regeneration with preparations available on the market. Methods: At the first stage of studies the composition and parameters of the preparation of sea buckthorn oil-based O/W (oil-in-water) nanoemulsion containing hyaluronic acid and aloe vera gel, as the active ingredients were optimized. Then, the nanoemulsion was added to the gel matrix composed of carbomer (1%) and water which resulted in receiving nanoemulgel. The physicochemical parameters of the obtained samples were characterized by means of dynamic light scattering method and scanning electron microscope. Rheological, sensory and influence on skin condition analysis was conducted for selected market products and developed nanoemulgel. Results: Nanoemulsion gel (d = 211 ± 1.4 nm, polydispersity index (PDI) = 0.205 ± 0.01) was characterized by semi-solid, non-sticky consistency, porous structure, law viscosity, good “primary” and “secondary” skin feelings and pleasant sensorical properties. It improves the condition of burned skin by creating a protective layer on the skin and increasing the hydration level. Conclusion: Due to the fact that the obtained nanoemulsion gel combines the advantages of an emulsion and a gel formulation, it can be a promising alternative to medical cosmetics available on the market, as a form of formulation used in skin care after burns.
Collapse
|