1
|
Mathioudakis N. A Berberine Derivative for Treatment of Type 2 Diabetes. JAMA Netw Open 2025; 8:e2462195. [PMID: 40029665 DOI: 10.1001/jamanetworkopen.2024.62195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Affiliation(s)
- Nestoras Mathioudakis
- Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
2
|
Ayipo YO, Chong CF, Abdulameed HT, Mordi MN. Bioactive alkaloidal and phenolic phytochemicals as promising epidrugs for diabetes mellitus 2: A review of recent development. Fitoterapia 2024; 175:105922. [PMID: 38552806 DOI: 10.1016/j.fitote.2024.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/16/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Type 2 diabetes (T2D) remains a major chronic metabolic disorder affecting hundreds of millions of the global population, mostly among adults, engendering high rates of morbidity and mortality. It is characterized by complex aetiologies including insulin deficiency and resistance, and hyperglycemia, and these significantly constitute therapeutic challenges. Several pathways have been implicated in its pathophysiology and treatment including the epigenetic regulatory mechanism, notably, deoxyribonucleic acid (DNA) methylation/demethylation, histone modification, non-coding ribonucleic acid (ncRNA) modulation and other relevant pathways. Many studies have recently documented the implications of phytochemicals on the aforementioned biomarkers in the pathogenesis and treatment of T2D. In this review, the cellular and molecular mechanisms of the epigenetic effects of some bioactive alkaloidal and phenolic phytochemicals as potential therapeutic alternatives for T2D have been overviewed from the recent literature (2019-2024). From the survey, the natural product-based compounds, C1-C32 were curated as potent epigenetic modulators for T2D. Their cellular and molecular mechanisms of anti-T2D activities with relevant epigenetic biomarkers were revealed. Although, more comprehensive experimental analyses are observably required for validating their activity and toxicological indices. Thus, perspectives and challenges were enumerated for such demanding future translational studies. The review reveals advances in scientific efforts towards reversing the global trend of T2D through epigenetic phytotherapeutics.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Department of Chemistry and Industrial Chemistry, Kwara State University, P. M. B., 1530, Malete, Ilorin, Nigeria; Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia.
| | - Chien Fung Chong
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Hassan Taiye Abdulameed
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia; Department of Biochemistry, Kwara State University, P. M. B., 1530, Malete, Ilorin, Nigeria
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
3
|
Cesarone MR, Hu S, Belcaro G, Cornelli U, Feragalli B, Corsi M, Scipione V, Scipione C, Cotellese R, Hosoi M, Cox D. Borderline hyperlipidemia preventive management with Berberine PL in asymptomatic prevention of early atherosclerosis. Minerva Gastroenterol (Torino) 2024; 70:10-15. [PMID: 37856087 DOI: 10.23736/s2724-5985.23.03540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
BACKGROUND The aim of this pilot, efficacy supplement registry was to use a supplementary management with berberine to control hyperlipidemia. The supplement Berberine (Berbevis™ as Sophy® tablets) was used to control lipids and to evaluate (as a natural, preventive management) the early evolution of subclinical atherosclerosis in subjects (otherwise healthy, not using drugs) with borderline hyperlipidemia. METHODS The registry involved two groups of subjects not using drugs for a total of 50 subjects and three months of supplementation. RESULTS The registry groups using standard management (SM) or SM and supplement were resulted comparable. No side effects were observed during the three months of berberine supplementation. No tolerability problems were reported. All subjects managed with berberine completed the three-month registry. Compliance was >97% (% of correctly used tablets). Total cholesterol was significantly decreased with berberine (P<0.05) and HDL was significantly improved (P<0.5) with supplementation. Triglycerides decreased in the berberine groups (P<0.05) and the levels of CoQ10 remained within normal values in supplemented subjects. Oxidative stress - measured in Carr units - was significantly decreased with berberine (P<0.05). Routine blood tests remained within normal values during the registry. Body weight was significantly more decreased (P<0.05) with berberine in comparison with standard management. The fat proportion also decreased (P<0.05) with berberine supplementation and the abdominal fat thickness (in the peri-umbilical area) was significantly decreased after berberine supplementation (P<0.05). CONCLUSIONS This pilot registry indicates that berberine administration is effective in reducing lipids (decreasing weight, fat percentage and abdominal fat) in otherwise healthy subjects not using drugs. A longer study, with more advanced hyperlipidemic subjects is suggested. Predictive analytics according to Siegel suggests that a six-month study with 60 patients, in more advanced hyperlipidemic, also evaluating the intima-media thickness for the analysis of vascular benefits, may produce a stronger evaluation for this product.
Collapse
Affiliation(s)
| | - Shu Hu
- IRVINE3 Labs, Chieti-Pescara University, Chieti, Italy
| | - Gianni Belcaro
- IRVINE3 Labs, Chieti-Pescara University, Chieti, Italy -
| | | | - Beatrice Feragalli
- Department of Or Biotec Sciences, Chieti-Pescara University, Chieti, Italy
| | | | | | | | - Roberto Cotellese
- Department of Or Biotec Sciences, Chieti-Pescara University, Chieti, Italy
| | - Morio Hosoi
- IRVINE3 Labs, Chieti-Pescara University, Chieti, Italy
| | - David Cox
- IRVINE3 Labs, Chieti-Pescara University, Chieti, Italy
| |
Collapse
|
4
|
Khedr SM, Ghareeb DA, Fathy SA, Hamdy GM. Berberine-loaded albumin nanoparticles reverse aflatoxin B1-induced liver hyperplasia. BMC Pharmacol Toxicol 2023; 24:42. [PMID: 37559065 PMCID: PMC10413506 DOI: 10.1186/s40360-023-00683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Hepatocellular carcinoma (HCC) can be produced from aflatoxin B1 (AFB1) administration. Although berberine (BER) acts as an anticancer agent and can counteract the AFB1 effect, it has low bioavailability. Nanotechnology can overcome this problem. This research aimed to synthesize berberine nanoparticles (NPs) and then estimate their therapeutic effect compared to that of berberine against aflatoxin-induced hepatotoxicity. The desolvation method was used to prepare BER-NPs. Aflatoxicosis was induced by 5 consecutive intraperitoneal injections (IP) of 200 µg/kg/day AFB dissolved in dimethylsulfoxide (DMSO). After the induction period, two treatments were performed: the first with 100 mg/kg BER and the second with 10 mg/kg BER-NPs. Liver, kidney, and diabetic profiles were estimated by using standardized methods. Hepatic oxidative stress, inflammatory, cancer cell proliferation, and invasion markers were used by ELISA and qPCR techniques. The TEM image shows that both BSA NPs and BER-BSA NPs had spherical, regular, and uniform shapes. The BER encapsulation efficiency % was 78.5. The formed-BER-BSA NPs showed a loading capacity % of 7.71 and the synthesis yield % of 92.6. AFB1 increases pro-oxidant markers, decreases antioxidant systems, stimulates inflammatory enzymes, inhibits anti-inflammatory markers, decreases tumor suppressor enzymes, increases oncogenes, increases glycolytic activity, prevents cell death, and promotes cell growth. Most of the biochemical markers and hepatic architecture were normalized in the BER-BSA NP-treated group but not in the BER-treated group. Altogether, the obtained data proved that treatment with BER-NPs was more efficient than treatment with berberine against aflatoxicoses induced in rats.
Collapse
Affiliation(s)
- Sarah M Khedr
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Doaa A Ghareeb
- Bio-Screening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Shadia A Fathy
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Germine M Hamdy
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
5
|
Sukhikh S, Babich O, Prosekov A, Kalashnikova O, Noskova S, Bakhtiyarova A, Krol O, Tsvetkova E, Ivanova S. Antidiabetic Properties of Plant Secondary Metabolites. Metabolites 2023; 13:metabo13040513. [PMID: 37110171 PMCID: PMC10144365 DOI: 10.3390/metabo13040513] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
The prevalence of diabetes mellitus is one of the major medical problems that the modern world is currently facing. Type 1 and Type 2 diabetes mellitus both result in early disability and death, as well as serious social and financial problems. In some cases, synthetic drugs can be quite effective in the treatment of diabetes, though they have side effects. Plant-derived pharmacological substances are of particular interest. This review aims to study the antidiabetic properties of secondary plant metabolites. Existing review and research articles on the investigation of the antidiabetic properties of secondary plant metabolites, the methods of their isolation, and their use in diabetes mellitus, as well as separate articles that confirm the relevance of the topic and expand the understanding of the properties and mechanisms of action of plant metabolites, were analyzed for this review. The structure and properties of plants used for the treatment of diabetes mellitus, including plant antioxidants, polysaccharides, alkaloids, and insulin-like plant substances, as well as their antidiabetic properties and mechanisms for lowering blood sugar, are presented. The main advantages and disadvantages of using phytocomponents to treat diabetes are outlined. The types of complications of diabetes mellitus and the effects of medicinal plants and their phytocomponents on them are described. The effects of phytopreparations used to treat diabetes mellitus on the human gut microbiota are discussed. Plants with a general tonic effect, plants containing insulin-like substances, plants-purifiers, and plants rich in vitamins, organic acids, etc. have been shown to play an important role in the treatment of type 2 diabetes mellitus and the prevention of its complications.
Collapse
Affiliation(s)
- Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| | - Olga Kalashnikova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Svetlana Noskova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Alina Bakhtiyarova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Olesia Krol
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Elena Tsvetkova
- Department of Biochemistry, St. Petersburg State University, 199034 Saint-Petersburg, Russia
- Department of General Pathology and Pathological Physiology, Institute of Experimental Medicine, 197022 Saint-Petersburg, Russia
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Department of TNSMD Theory and Methods, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| |
Collapse
|
6
|
Law SK, Wang Y, Lu X, Au DCT, Chow WYL, Leung AWN, Xu C. Chinese medicinal herbs as potential prodrugs for obesity. Front Pharmacol 2022; 13:1016004. [PMID: 36263142 PMCID: PMC9573959 DOI: 10.3389/fphar.2022.1016004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is a leading worldwide health threat with ever-growing prevalence, it promotes the incidence of various diseases, particularly cardiovascular disease, metabolic syndrome, diabetes, hypertension, and certain cancers. Traditional Chinese Medicine (TCM) has been used to control body weight and treat obesity for thousands of years, Chinese medicinal herbs provide a rich natural source of effective agents against obesity. However, some problems such as complex active ingredients, poor quality control, and unclear therapeutic mechanisms still need to be investigated and resolved. Prodrugs provide a path forward to overcome TCM deficiencies such as absorption, distribution, metabolism, excretion (ADME) properties, and toxicity. This article aimed to review the possible prodrugs from various medicinal plants that demonstrate beneficial effects on obesity and seek to offer insights on prodrug design as well as a solution to the global obesity issues.
Collapse
Affiliation(s)
- Siu Kan Law
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Faculty of Science and Technology, The Technological and Higher Education Institute of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yanping Wang
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, Hong Kong SAR, China
| | - Xinchen Lu
- Faculty of Science and Technology, The Technological and Higher Education Institute of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Dawn Ching Tung Au
- Faculty of Science and Technology, The Technological and Higher Education Institute of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wesley Yeuk Lung Chow
- Faculty of Science and Technology, The Technological and Higher Education Institute of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | | - Chuanshan Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Chuanshan Xu,
| |
Collapse
|
7
|
Okuno K, Xu C, Pascual-Sabater S, Tokunaga M, Han H, Fillat C, Kinugasa Y, Goel A. Berberine Overcomes Gemcitabine-Associated Chemoresistance through Regulation of Rap1/PI3K-Akt Signaling in Pancreatic Ductal Adenocarcinoma. Pharmaceuticals (Basel) 2022; 15:1199. [PMID: 36297310 PMCID: PMC9611392 DOI: 10.3390/ph15101199] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Gemcitabine (Gem)-based chemotherapy is one of the first-line treatments for pancreatic ductal adenocarcinoma (PDAC). However, its clinical effect is limited due to development of chemoresistance. Various naturally occurring compounds, including Berberine (BBR), provide an anti-cancer efficacy with time-tested safety, individually and in combination with chemotherapeutic drugs. Accordingly, we hypothesized that BBR might enhance the chemosensitivity to Gem in PDAC. In this study, cell culture studies using MIA PaCa-2 and BxPC-3 cells, followed by analysis in patient-derived organoids were performed to evaluate the anti-cancer effects of BBR in PDAC. Considering that cancer is a significant manifestation of increased chronic inflammatory stress, systems biology approaches are prudent for the identification of molecular pathways and networks responsible for phytochemical-induced anti-cancer activity, we used these approaches for BBR-mediated chemosensitization to Gem. Firstly, Gem-resistant (Gem-R) PDAC cells were established, and the combination of BBR and Gem revealed superior anti-cancer efficacy in Gem-R cells. Furthermore, the combination treatment induced cell cycle arrest and apoptosis in Gem-R PDAC cells. Transcriptomic profiling investigated the Rap1 and PI3K-Akt signaling pathway as a key regulator of Gem-resistance and was a key mediator for BBR-mediated chemosensitization in PDAC cells. All cell culture-based findings were successfully validated in patient-derived organoids. In conclusion, we demonstrate that BBR-mediated reversal of chemoresistance to Gem manifests through Rap1/PI3K-Akt signaling in PDAC.
Collapse
Affiliation(s)
- Keisuke Okuno
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Caiming Xu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116004, China
| | - Silvia Pascual-Sabater
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Masanori Tokunaga
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Haiyong Han
- Molecular Medicine Division, The Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Cristina Fillat
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA 91016, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
8
|
Urasaki Y, Le TT. A Composition of Phytonutrients for Glycemic and Weight Management. Nutrients 2022; 14:nu14183784. [PMID: 36145160 PMCID: PMC9501537 DOI: 10.3390/nu14183784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 02/06/2023] Open
Abstract
Maintaining healthy body weight is an important component of any effective diabetes management plan. However, glycemic management using insulin generally leads to weight gain. In addition, weight loss medications prescribed for diabetes management are often associated with adverse side effects, which limit their long-term usage. Alternatively, nutrition intervention provides a safe, readily accessible, and inexpensive option for diabetes management. This study describes a composition of phytonutrients comprising berberine, cinnamaldehyde, and curcumin for glycemic and weight management. Functional complementarity between berberine, cinnamaldehyde, and curcumin provides an effective means to improve insulin sensitivity without increasing adiposity. In primary human omental preadipocytes, cinnamaldehyde and curcumin additively enhance insulin-stimulated activation of Akt2 and glucose uptake, whereas berberine inhibits de novo fatty acid biosynthesis and fat cell differentiation. In a diet-induced obesity murine model, a dietary supplement with berberine, cinnamaldehyde, and curcumin prevents weight gain, improves glucose tolerance, and reduces HbA1c, blood lipids, visceral adiposity, and liver steatosis. Collectively, the composition of phytonutrients comprising berberine, cinnamaldehyde, and curcumin protects against obesity and pre-diabetic conditions in a diet-induced obesity murine model. Safety and efficacy assessment of nutrition intervention using combined berberine, cinnamaldehyde, and curcumin for glycemic and weight management in future clinical trials are warranted.
Collapse
|
9
|
Huang YH, Wu YH, Tang HY, Chen ST, Wang CC, Ho WJ, Lin YH, Liu GH, Lin PY, Lo CJ, Yeh YM, Cheng ML. Gut Microbiota and Bile Acids Mediate the Clinical Benefits of YH1 in Male Patients with Type 2 Diabetes Mellitus: A Pilot Observational Study. Pharmaceutics 2022; 14:pharmaceutics14091857. [PMID: 36145605 PMCID: PMC9505101 DOI: 10.3390/pharmaceutics14091857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Our previous clinical trial showed that a novel concentrated herbal extract formula, YH1 (Rhizoma coptidis and Shen-Ling-Bai-Zhu-San), improved blood glucose and lipid control. This pilot observational study investigated whether YH1 affects microbiota, plasma, and fecal bile acid (BA) compositions in ten untreated male patients with type 2 diabetes (T2D), hyperlipidemia, and a body mass index ≥ 23 kg/m2. Stool and plasma samples were collected for microbiome, BA, and biochemical analyses before and after 4 weeks of YH1 therapy. As previous studies found, the glycated albumin, 2-h postprandial glucose, triglycerides, total cholesterol, and low-density lipoprotein cholesterol levels were significantly improved after YH1 treatment. Gut microbiota revealed an increased abundance of the short-chain fatty acid-producing bacteria Anaerostipes and Escherichia/Shigella. Furthermore, YH1 inhibited specific phylotypes of bile salt hydrolase-expressing bacteria, including Parabacteroides, Bifidobacterium, and Bacteroides caccae. Stool tauro-conjugated BA levels increased after YH1 treatment. Plasma total BAs and 7α-hydroxy-4-cholesten-3-one (C4), a BA synthesis indicator, were elevated. The reduced deconjugation of BAs and increased plasma conjugated BAs, especially tauro-conjugated BAs, led to a decreased glyco- to tauro-conjugated BA ratio and reduced unconjugated secondary BAs. These results suggest that YH1 ameliorates T2D and hyperlipidemia by modulating microbiota constituents that alter fecal and plasma BA compositions and promote liver cholesterol-to-BA conversion and glucose homeostasis.
Collapse
Affiliation(s)
- Yueh-Hsiang Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yi-Hong Wu
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hsiang-Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Szu-Tah Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Chih-Ching Wang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Wan-Jing Ho
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Yi-Hsuan Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Geng-Hao Liu
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Pei-Yeh Lin
- Department of Medical Nutrition Therapy, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chi-Jen Lo
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Correspondence: (Y.-M.Y.); (M.-L.C.)
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (Y.-M.Y.); (M.-L.C.)
| |
Collapse
|
10
|
Lewis KD, Falk M. Toxicological assessment of dihydroberberine. Food Chem Toxicol 2022; 168:113301. [PMID: 35868606 DOI: 10.1016/j.fct.2022.113301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
A battery of studies was conducted to examine the toxicological potential of dihydroberberine (DHBBR), a derivative of berberine (BBR). The genotoxicity studies conducted on DHBBR, including the bacterial reverse mutation test, the mouse lymphoma assay, and the in vivo micronucleus test showed that DHBBR is non-mutagenic and non-clastogenic. An acute oral toxicity study revealed that the LD50 of DHBBR in female Sprague Dawley rats was greater than 2000 mg/kg bw. In a 14-day oral dose range finding study, the maximum tolerated dose was the high dose, 120 mg/kg bw/day. Based on a 90-day oral toxicity study in males and female Sprague Dawley rats, it was concluded that the NOAEL for DHBBR is 100 mg/kg bw/day, the highest dose tested.
Collapse
Affiliation(s)
- Kara D Lewis
- LSRO Solutions LLC, 2286 Dunster Lane, Rockville, MD, 20854, USA
| | - Michael Falk
- LSRO Solutions LLC, 2286 Dunster Lane, Rockville, MD, 20854, USA.
| |
Collapse
|
11
|
Okuno K, Garg R, Yuan YC, Tokunaga M, Kinugasa Y, Goel A. Berberine and Oligomeric Proanthocyanidins Exhibit Synergistic Efficacy Through Regulation of PI3K-Akt Signaling Pathway in Colorectal Cancer. Front Oncol 2022; 12:855860. [PMID: 35600365 PMCID: PMC9114748 DOI: 10.3389/fonc.2022.855860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Naturally occurring dietary botanicals offer time-tested safety and anti-cancer efficacy, and a combination of certain compounds has shown to overcome the elusive chemotherapeutic resistance, which is of great significance for improving the mortality of patients with colorectal cancer (CRC). Accordingly, herein, we hypothesized that berberine (BBR) and oligomeric proanthocyanidins (OPCs) might regulate synergistically multiple oncogenic pathways to exert a superior anti-cancer activity in CRC. METHODS We performed a series of cell culture studies, followed by their interrogation in patient-derived organoids to evaluate the synergistic effect of BBR and OPCs against CRC. In addition, by performing whole genome transcriptomic profiling we identified the key targeted genes and pathways regulated by the combined treatment. RESULTS We first demonstrated that OPCs facilitated enhanced cellular uptake of BBR in CRC cells by measuring the fluorescent signal of BBR in cells treated individually or their combination. The synergism between BBR and OPCs were investigated in terms of their anti-tumorigenic effect on cell viability, clonogenicity, migration, and invasion. Furthermore, the combination treatment potentiated the cellular apoptosis in an Annexin V binding assay. Transcriptomic profiling identified oncogene MYB in PI3K-AKT signaling pathway might be critically involved in the anti-tumorigenic properties of the combined treatment. Finally, we successfully validated these findings in patient-derived CRC tumor organoids. CONCLUSIONS Collectively, we for the first time demonstrate that a combined treatment of BBR and OPCs synergistically promote the anti-tumorigenic properties in CRC possibly through the regulation of cellular apoptosis and oncogene MYB in the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Keisuke Okuno
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, United States
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rachana Garg
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, United States
| | - Yate-Ching Yuan
- Translational Bioinformatics, Center for Informatics, City of Hope, Duarte, CA, United States
| | - Masanori Tokunaga
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, United States
- City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| |
Collapse
|
12
|
Ai X, Yu P, Peng L, Luo L, Liu J, Li S, Lai X, Luan F, Meng X. Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases. Front Pharmacol 2022; 12:762654. [PMID: 35370628 PMCID: PMC8964367 DOI: 10.3389/fphar.2021.762654] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional Chinese medicine plays a significant role in the treatment of various diseases and has attracted increasing attention for clinical applications. Vascular diseases affecting vasculature in the heart, cerebrovascular disease, atherosclerosis, and diabetic complications have compromised quality of life for affected individuals and increase the burden on health care services. Berberine, a naturally occurring isoquinoline alkaloid form Rhizoma coptidis, is widely used in China as a folk medicine for its antibacterial and anti-inflammatory properties. Promisingly, an increasing number of studies have identified several cellular and molecular targets for berberine, indicating its potential as an alternative therapeutic strategy for vascular diseases, as well as providing novel evidence that supports the therapeutic potential of berberine to combat vascular diseases. The purpose of this review is to comprehensively and systematically describe the evidence for berberine as a therapeutic agent in vascular diseases, including its pharmacological effects, molecular mechanisms, and pharmacokinetics. According to data published so far, berberine shows remarkable anti-inflammatory, antioxidant, antiapoptotic, and antiautophagic activity via the regulation of multiple signaling pathways, including AMP-activated protein kinase (AMPK), nuclear factor κB (NF-κB), mitogen-activated protein kinase silent information regulator 1 (SIRT-1), hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), janus kinase 2 (JAK-2), Ca2+ channels, and endoplasmic reticulum stress. Moreover, we discuss the existing limitations of berberine in the treatment of vascular diseases, and give corresponding measures. In addition, we propose some research perspectives and challenges, and provide a solid evidence base from which further studies can excavate novel effective drugs from Chinese medicine monomers.
Collapse
Affiliation(s)
- Xiaopeng Ai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Peiling Yu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lixia Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuling Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengqian Li
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xianrong Lai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Luan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Lack of berberine effect on bone mechanical properties in rats with experimentally induced diabetes. Pharmacotherapy 2022; 146:112562. [DOI: 10.1016/j.biopha.2021.112562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 11/20/2022]
|
14
|
Park Y, Jung W, Yang E, Nam KY, Bong WR, Kim J, Kim KY, Lee S, Cho JY, Hong JH, Kim J. Evaluation of food effects on the pharmacokinetics of Pelargonium sidoides and Coptis with each bioactive compound berberine and epicatechin after a single oral dose of an expectorant and antitussive agent UI026 in healthy subjects. Transl Clin Pharmacol 2022; 30:49-56. [PMID: 35419311 PMCID: PMC8979756 DOI: 10.12793/tcp.2022.30.e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 11/19/2022] Open
Abstract
UI026 is an expectorant and antitussive agent which is a new combination of Pelargonium sidoides extract and Coptis extract. The bioactive compounds of Pelargonium sidoides and Coptis extracts were identified as epicatechin and berberine, respectively. This study evaluated the effect of food on the pharmacokinetics (PKs) and safety of UI026. A randomized, open-label, single-dose, 2-treatment, parallel study in 12 healthy male subjects was performed. Subjects received a single oral dose of UI026 (27 mL of syrup) under a fed or fasted condition according to their randomly assigned treatment. Blood samples for the PK analysis were obtained up to 24 hours post-dose for berberine and 12 hours post-dose for epicatechin. The PK parameters were calculated by non-compartmental analysis. In the fed condition, the mean maximum plasma concentration (Cmax) and mean area under the plasma concentration-time curve from time zero to the last observed time point (AUClast) for berberine were approximately 33% and 67% lower, respectively, compared with the fasted condition, both showing statistically significant difference. For epicatechin, the mean Cmax and mean AUClast were about 29% and 45% lower, respectively, compared to the fasting condition, neither of which showed a statistically significant difference. There were no drug-related adverse events. This finding suggests that food affects the systemic exposure and bioavailability of berberine and epicatechin.
Collapse
Affiliation(s)
- Yewon Park
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - WonTae Jung
- Global R&D, Korea United Pharm., Inc., Seoul 06116, Korea
| | - Eunsol Yang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Kyu-Yeol Nam
- Global R&D, Korea United Pharm., Inc., Seoul 06116, Korea
| | - Woo-Ri Bong
- Global R&D, Korea United Pharm., Inc., Seoul 06116, Korea
| | | | | | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jang-Hee Hong
- Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - JaeWoo Kim
- H Plus Yangji Hospital, Seoul 08779, Korea
| |
Collapse
|
15
|
Zhao Z, Zeng J, Guo Q, Pu K, Yang Y, Chen N, Zhang G, Zhao M, Zheng Q, Tang J, Hu Q. Berberine Suppresses Stemness and Tumorigenicity of Colorectal Cancer Stem-Like Cells by Inhibiting m 6A Methylation. Front Oncol 2021; 11:775418. [PMID: 34869024 PMCID: PMC8634032 DOI: 10.3389/fonc.2021.775418] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are able to survive after cancer therapies, resulting in tumor progression and recurrence, as is seen in colorectal cancer. Therapies targeting CSCs are regarded as novel and promising strategies for efficiently eradicating tumors. Berberine, an isoquinoline alkaloid extracted from the Chinese herbal medicine Coptis chinensis, was found to have antitumor activities against colorectal cancer, without knowing whether it exerts inhibitory effects on colorectal CSCs and the potential mechanisms. METHODS In this study, we examined the inhibitory roles of Berberine on CSCs derived from HCT116 and HT29 by culturing in serum-free medium. We also examined the effects of Berberine on m6A methylation via regulating fat mass and obesity-associated protein (FTO), by downregulating β-catenin. RESULTS We examined the effects of Berberine on the tumorigenicity, growth, and stemness of colorectal cancer stem-like cells. The regulatory effect of Berberine on N6-methyladenosine (m6A), an abundant mRNA modification, was also examined. Berberine treatment decreased cell proliferation by decreasing cyclin D1 and increasing p27 and p21 and subsequently induced cell cycle arrest at the G1/G0 phase. Berberine treatment also decreased colony formation and induced apoptosis. Berberine treatment transcriptionally increased FTO and thus decreased m6A methylation, which was reversed by both FTO knockdown and the addition of the FTO inhibitor FB23-2. Berberine induced FTO-related decreases in stemness in HCT116 and HT29 CSCs. Berberine treatment also increased chemosensitivity in CSCs and promoted chemotherapy agent-induced apoptosis. Moreover, we also found that Berberine treatment increased FTO by decreasing β-catenin, which is a negative regulator of FTO. CONCLUSIONS Our observation that Berberine effectively decreased m6A methylation by decreasing β-catenin and subsequently increased FTO suggests a role of Berberine in modulating stemness and malignant behaviors in colorectal CSCs.
Collapse
Affiliation(s)
- Ziyi Zhao
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Geriatric Department, Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Qiang Guo
- Department of Geriatrics, Chengdu First People’s Hospital, Chengdu, China
| | - Kunming Pu
- Department of Ultrasound, the Second People’s Hospital of Chengdu, Chengdu, China
| | - Yi Yang
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Nianzhi Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gang Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiao Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiongying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Pharmacokinetics and Pharmacological Activities of Berberine in Diabetes Mellitus Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9987097. [PMID: 34471420 PMCID: PMC8405293 DOI: 10.1155/2021/9987097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Traditional Chinese medicine (TCM) has good clinical application prospects in diabetes treatment. In addition, TCM is less toxic and/or has fewer side effects and provides various therapeutic effects. Berberine (BBR) is isolated as the main component in many TCM kinds (e.g., Rhizoma Coptidis and Berberidis Cortex). Furthermore, BBR can reduce blood sugar and blood fat, alleviate inflammation, and improve the state of patients. Based on the recent study results of BBR in diabetes treatment, the BBR pharmacokinetics and mechanism on diabetes are mainly studied, and the specific molecular mechanism of related experimental BBR is systematically summarized and analyzed. Clinical studies have proved that BBR has a good therapeutic effect on diabetes, suggesting that BBR may be a promising drug candidate for diabetes. More detailed BBR mechanisms and pathways of BBR need to be studied further in depth, which will help understand the BBR pharmacology in diabetes treatment.
Collapse
|
17
|
Yang S, Li D, Yu Z, Li Y, Wu M. Multi-Pharmacology of Berberine in Atherosclerosis and Metabolic Diseases: Potential Contribution of Gut Microbiota. Front Pharmacol 2021; 12:709629. [PMID: 34305616 PMCID: PMC8299362 DOI: 10.3389/fphar.2021.709629] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis (AS), especially atherosclerotic cardiovascular diseases (ASCVDs), and metabolic diseases (such as diabetes, obesity, dyslipidemia, and nonalcoholic fatty liver disease) are major public health issues worldwide that seriously threaten human health. Exploring effective natural product-based drugs is a promising strategy for the treatment of AS and metabolic diseases. Berberine (BBR), an important isoquinoline alkaloid found in various medicinal plants, has been shown to have multiple pharmacological effects and therapeutic applications. In view of its low bioavailability, increasing evidence indicates that the gut microbiota may serve as a target for the multifunctional effects of BBR. Under the pathological conditions of AS and metabolic diseases, BBR improves intestinal barrier function and reduces inflammation induced by gut microbiota-derived lipopolysaccharide (LPS). Moreover, BBR reverses or induces structural and compositional alterations in the gut microbiota and regulates gut microbe-dependent metabolites as well as related downstream pathways; this improves glucose and lipid metabolism and energy homeostasis. These findings at least partly explain the effect of BBR on AS and metabolic diseases. In this review, we elaborate on the research progress of BBR and its mechanisms of action in the treatment of AS and metabolic diseases from the perspective of gut microbiota, to reveal the potential contribution of gut microbiota to the multifunctional biological effects of BBR.
Collapse
Affiliation(s)
- Shengjie Yang
- Guang’an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Li
- Guang’an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongliang Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujuan Li
- Guang’an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang’an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Huang DN, Wu FF, Zhang AH, Sun H, Wang XJ. Efficacy of berberine in treatment of rheumatoid arthritis: From multiple targets to therapeutic potential. Pharmacol Res 2021; 169:105667. [PMID: 33989762 DOI: 10.1016/j.phrs.2021.105667] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis is a systemic autoimmune disorder involved in persistent synovial inflammation. Berberine is a nature-derived alkaloid compound with multiple pharmacological activities in different pathologies, including RA. Recent experimental studies have clarified several determinant cellular and molecular targets of BBR in RA, and provided novel evidence supporting the promising therapeutic potential of BBR to combat RA. In this review, we recapitulate the therapeutic potential of BBR and its mechanism of action in ameliorating RA, and discuss the modulation of gut microbiota by BBR during RA. Collectively, BBR might be a promising lead drug with multi-functional activities for the therapeutic strategy of RA.
Collapse
Affiliation(s)
- Dan-Na Huang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China
| | - Fang-Fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Xi-Jun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China.
| |
Collapse
|
19
|
Nie X, Chen Z, Pang L, Wang L, Jiang H, Chen Y, Zhang Z, Fu C, Ren B, Zhang J. Oral Nano Drug Delivery Systems for the Treatment of Type 2 Diabetes Mellitus: An Available Administration Strategy for Antidiabetic Phytocompounds. Int J Nanomedicine 2020; 15:10215-10240. [PMID: 33364755 PMCID: PMC7751584 DOI: 10.2147/ijn.s285134] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
In view of the worldwide serious health threat of type 2 diabetes mellitus (T2DM), natural sources of chemotherapies have been corroborated as the promising alternatives, with the excellent antidiabetic activities, bio-safety, and more cost-effective properties. However, their clinical application is somewhat limited, because of the poor solubility, instability in the gastrointestinal tract (GIT), low bioavailability, and so on. Nowadays, to develop nanoscaled systems has become a prominent strategy to improve the drug delivery of phytochemicals. In this review, we primarily summarized the intervention mechanisms of phytocompounds against T2DM and presented the recent advances in various nanosystems of antidiabetic phytocompounds. Selected nanosystems were grouped depending on their classification and structures, including polymeric NPs, lipid-based nanosystems, vesicular systems, inorganic nanocarriers, and so on. Based on this review, the state-of-the-art nanosystems for phytocompounds in T2DM treatment have been presented, suggesting the preponderance and potential of nanotechnologies.
Collapse
Affiliation(s)
- Xin Nie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999087, People’s Republic of China
| | - Lan Pang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Huajuan Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Yi Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Zhen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Bo Ren
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| |
Collapse
|