1
|
Pang H, Badehnoosh B. Synergistic strength: unleashing exercise and polyphenols against breast cancer. Cancer Cell Int 2025; 25:144. [PMID: 40234950 PMCID: PMC11998149 DOI: 10.1186/s12935-025-03767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
Breast cancer remains a major global health challenge, necessitating innovative preventive and therapeutic strategies. Emerging evidence such as clinical trials suggests that the combination of exercise and polyphenol intake exerts synergistic effects in mitigating breast cancer progression by modulating key molecular pathways. Exercise enhances immune function, reduces inflammation, and regulates cellular metabolism, while polyphenols, natural compounds found in various plant-based foods, exhibit antioxidant, anti-inflammatory, and anti-carcinogenic properties. Together, these interventions influence apoptosis, oxidative stress, and ferroptosis which play crucial roles in breast cancer pathophysiology. This review explores the molecular mechanisms underlying the combined impact of exercise and polyphenols on breast cancer prevention and treatment. Understanding the interplay between exercise and polyphenols at the molecular level could pave the way for novel, non-invasive therapeutic strategies. Future research should focus on optimizing exercise regimens and dietary interventions to maximize their anti-cancer benefits. By bridging molecular insights with clinical applications, this review aims to provide a foundation for incorporating lifestyle-based interventions into breast cancer management. Our findings collectively highlight the promising potential of combining curcumin supplementation with exercise as a multifaceted approach to breast cancer treatment. The synergistic effects observed in various studies suggest that integrating lifestyle modifications with dietary interventions may enhance therapeutic efficacy and mitigate cancer progression. Further clinical investigations are warranted to validate these results and explore their applicability in human subjects. The evidence supports a holistic strategy for breast cancer management that could improve patient outcomes and quality of life during treatment.
Collapse
Affiliation(s)
- Haifan Pang
- Department of Physical Education, China University of Political Science and Law, Beijing, 102249, China.
| | - Bita Badehnoosh
- Department of Gynecology and Obstetrics, Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
2
|
Li A, Li Y, Jia Y, He Y, Yuan M, Hao Z, He Y, Fu Y, Zhang J, Gao D, Zhang X, Jiang X, Tu W. Natural MOF-Like Photocatalytic Nanozymes Alleviate Tumor Pressure for Enhanced Nanodrug Penetration. Adv Healthc Mater 2025; 14:e2400596. [PMID: 38932657 DOI: 10.1002/adhm.202400596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/02/2024] [Indexed: 06/28/2024]
Abstract
In oncological nanomedicine, overcoming the dual-phase high interstitial pressure in the tumor microenvironment is pivotal for enhancing the penetration and efficacy of nanotherapeutics. The elevated tumor interstitial solid pressure (TISP) is largely attributed to the overaccumulation of collagen in the extracellular matrix, while the increased tumor interstitial fluid pressure (TIFP) stems from the accumulation of fluid due to the aberrant vascular architecture. In this context, metal-organic frameworks (MOFs) with catalytic efficiency have shown potential in degrading tumor interstitial components, thereby reducing interstitial pressure. However, the potential biotoxicity of the organic components of MOFs limits their clinical translation. To circumvent this, a MOF-like photocatalytic nanozyme, RPC@M, using naturally derived cobalt phytate (CoPA) and resveratrol (Res) is developed. This nanozyme not only facilitates the decomposition of water in the tumor interstitium under photoactivation to reduce TIFP, but also generates an abundance of reactive oxygen species through its peroxidase-like activity to exert cytotoxic effects on tumor cells. Moreover, Res contributes to the reduction of collagen deposition, thereby lowering TISP. The concurrent diminution of both TISP and TIFP by RPC@M leads to enhanced tumor penetration and potent antitumor activity, presenting an innovative approach in constructing tumor therapeutic nanozymes from natural products.
Collapse
Affiliation(s)
- Anshuo Li
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, China
| | - Yifei Li
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Yanmin Jia
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, China
| | - Yuchu He
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Meng Yuan
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Zining Hao
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Yaqian He
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Yihan Fu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Jinhui Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Dawei Gao
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Xuwu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, China
| | - Wenkang Tu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| |
Collapse
|
3
|
Sung YY, Yuk HJ, Kim SH, Kim DS. Effects of Earthworm ( Pheretima communisima) extract on atopic dermatitis: An in vitro and in vivo study. Heliyon 2025; 11:e41140. [PMID: 39758409 PMCID: PMC11699427 DOI: 10.1016/j.heliyon.2024.e41140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025] Open
Abstract
Earthworm (Pheretima communisima) is used as a traditional medicine for the management of allergic airway inflammation. Atopic dermatitis (AD) is a persistent, recurrent disorder marked by allergic inflammation and skin barrier dysfunction. However, the pharmaceutical effects of earthworms on AD have not been defined. Our study examined the anti-allergic and anti-inflammatory actions of earthworm ethanolic extract (EWE) on allergic skin inflammation in a Dermatophagoides farinae mite antigen-induced AD mice model, TNF-α/IFN-γ-treated human keratinocytes, and compound 48/80-treated mouse mast cells. Oral administration of EWE in AD mouse reduced inflammatory cell accumulation, epidermal hyperplasia, and dermatitis severity in AD skin lesions and thymic stromal lymphopoietin (TSLP) and immunoglobulin (Ig) E concentrations in serum. EWE administration in AD mice also reduced secretion of Interleukin (IL)-4, IL-13, IL-5, and IFN-γ in cultures of isolated splenic cells. Immunohistofluorescence staining of skin lesions from AD mice revealed that EWE induced expression of claudin-1, filaggrin, and SIRT1. In HaCaT keratinocytes cotreated with IFN-γ and TNF-α, EWE inhibited secretion of the chemokine Regulated on Activation, Normal T Cell Expressed and Secreted (RANTES) in a dose-dependent manner. In addition, EWE inhibited histamine release in activated MC/9 mast cells. These results show that EWE might be therapeutics for the management of AD.
Collapse
Affiliation(s)
- Yoon-Young Sung
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, 34054, South Korea
| | - Heung-Joo Yuk
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, 34054, South Korea
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, 62 Daehak-ro, Dong-gu, Daejeon, 34520, South Korea
| | - Dong-Seon Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, 34054, South Korea
| |
Collapse
|
4
|
Heger V, Benesova B, Majekova M, Rezbarikova P, Hunyadi A, Horakova L, Viskupicova J. Polyphenolic Compounds Activate SERCA1a and Attenuate Methylglyoxal- and Palmitate-Induced Impairment in Pancreatic INS-1E Beta Cells. Cells 2024; 13:1860. [PMID: 39594609 PMCID: PMC11593225 DOI: 10.3390/cells13221860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) is an important regulatory protein responsible for maintaining calcium homeostasis within cells. Impairment of SERCA associated with activity/expression decrease has been implicated in multiple chronic conditions, including cardiovascular diseases, diabetes, cancer, neurodegenerative diseases, and skeletal muscle pathologies. Natural polyphenols have been recognized to interact with several target proteins involving SERCA. To date, only a limited number of polyphenolic compounds or their derivatives have been described either to increase SERCA activity/expression directly or to affect Ca2+ signaling pathways. In this study, we tested polyphenols for their ability to activate SERCA1a in the absence or presence of methylglyoxal or palmitate and to impact insulin release in pancreatic beta cells. The protective effects of these compounds against methylglyoxal- or palmitate-induced injury were evaluated. Results indicate that 6-gingerol, resveratrol, and ellagic acid activate SERCA1a and protect against activity decrease induced by methylglyoxal and palmitate. Molecular docking analysis revealed the binding of these polyphenols to Glu439 in the SERCA1a P-domain, suggesting a critical role in the stimulation of enzyme activity. Ellagic acid was found to directly stimulate the activity of SERCA1a, marking the first instance of such an observation.
Collapse
Affiliation(s)
- Vladimir Heger
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine of the Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (V.H.); (B.B.); (M.M.); (P.R.); (L.H.)
| | - Barbora Benesova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine of the Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (V.H.); (B.B.); (M.M.); (P.R.); (L.H.)
- Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia
| | - Magdalena Majekova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine of the Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (V.H.); (B.B.); (M.M.); (P.R.); (L.H.)
| | - Petronela Rezbarikova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine of the Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (V.H.); (B.B.); (M.M.); (P.R.); (L.H.)
| | - Attila Hunyadi
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary;
| | - Lubica Horakova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine of the Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (V.H.); (B.B.); (M.M.); (P.R.); (L.H.)
| | - Jana Viskupicova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine of the Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (V.H.); (B.B.); (M.M.); (P.R.); (L.H.)
| |
Collapse
|
5
|
Kianmehr S, Vahabirad M, Seghatoleslam A, Sadeghi E, Kiani R, Ghasemi H. Prognostic Value of TGF-β Expression in Bladder Cancer: A Systematic Review and Meta-analysis. UROLOGY RESEARCH & PRACTICE 2024; 50:148-153. [PMID: 39495544 PMCID: PMC11562745 DOI: 10.5152/tud.2024.24024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/03/2024] [Indexed: 11/05/2024]
Abstract
Objective Transforming growth factor beta (TGF-β) is a member of the growth factor superfamily that clinical studies address its association with bladder cancer invasion, progression, and metastasis. The present systematic review and meta-analysis aimed to explore the prognostic significance of TGF-β expression in bladder cancer patients. Materials and Methods The major international databases, including PubMed, Web of Science, Embase, and Scopus, were searched for full-text literature citations. The hazard ratio (HR) with a 95% CI as the effect size was applied as the appropriate summarized statistic. We used a random-effects model using the DerSimonian and Laird method to estimate the pooled effect size. To assess the heterogeneity among trials, the I-square (I 2 ) statistic and Cochran's Q test were used. Forest and funnel plots were drawn to respectively demonstrate the findings and detect any existing publication bias. Results This meta-analysis included 3 studies that met the criteria and included 535 patients. The combined HR for the selected studies was 2.250 (95% CI=(1.411, 3.586), P< .001) and no significant heterogeneity was detected between trials (I 2=58.63, P=.089). Furthermore, no severe asymmetry was seen within the funnel plot, indicating a lack of potential publication bias. Conclusion Our findings suggest that TGF-β expression can remarkably predict a worse prognosis in patients with bladder cancer. The results of the present meta-analysis may be validated through further updated reviews and additional relevant investigations in future studies.
Collapse
Affiliation(s)
- Shima Kianmehr
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences School of Medicine, Hamadan, Iran
| | - Mohammad Vahabirad
- Department of Clinical Biochemistry, Hamadan University of Medical Sciences School of Medicine, Hamadan, Iran
| | - Atefeh Seghatoleslam
- Department of Biochemistry, Shiraz University of Medical Sciences School of Medicine, Shiraz, Iran
| | - Erfan Sadeghi
- Department of Biostatistics, Shiraz University of Medical Sciences School of Medicine, Shiraz, Iran
| | - Roozbeh Kiani
- Department of Biochemistry, Shiraz University of Medical Sciences School of Medicine, Shiraz, Iran
| | - Hadi Ghasemi
- Department of Biochemistry, Shiraz University of Medical Sciences School of Medicine, Shiraz, Iran
| |
Collapse
|
6
|
Shen Y, Yuan Y, Dong W. The Mechanism of Hyperoxia-Induced Neonatal Renal Injury and the Possible Protective Effect of Resveratrol. Am J Perinatol 2024; 41:1126-1133. [PMID: 35381611 DOI: 10.1055/a-1817-5357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
With recent advances in neonatal intensive care, preterm infants are surviving into adulthood. Nonetheless, epidemiological data on the health status of these preterm infants have begun to reveal a worrying theme; prematurity and the supplemental oxygen therapy these infants receive after birth appear to be risk factors for kidney disease in adulthood, affecting their quality of life. As the incidence of chronic kidney disease and the survival time of preterm infants both increase, the management of the hyperoxia-induced renal disease is becoming increasingly relevant to neonatologists. The mechanism of this increased risk is currently unknown, but prematurity itself and hyperoxia exposure after birth may predispose to disease by altering the normal trajectory of kidney maturation. This article reviews altered renal reactivity due to hyperoxia, the possible mechanisms of renal injury due to hyperoxia, and the role of resveratrol in renal injury. KEY POINTS: · Premature infants commonly receive supplementary oxygen.. · Hyperoxia can cause kidney damage via signal pathways.. · We should reduce the occurrence of late sequelae..
Collapse
Affiliation(s)
- Yunchuan Shen
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Yuan
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
7
|
Chaurembo AI, Xing N, Chanda F, Li Y, Zhang HJ, Fu LD, Huang JY, Xu YJ, Deng WH, Cui HD, Tong XY, Shu C, Lin HB, Lin KX. Mitofilin in cardiovascular diseases: Insights into the pathogenesis and potential pharmacological interventions. Pharmacol Res 2024; 203:107164. [PMID: 38569981 DOI: 10.1016/j.phrs.2024.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
The impact of mitochondrial dysfunction on the pathogenesis of cardiovascular disease is increasing. However, the precise underlying mechanism remains unclear. Mitochondria produce cellular energy through oxidative phosphorylation while regulating calcium homeostasis, cellular respiration, and the production of biosynthetic chemicals. Nevertheless, problems related to cardiac energy metabolism, defective mitochondrial proteins, mitophagy, and structural changes in mitochondrial membranes can cause cardiovascular diseases via mitochondrial dysfunction. Mitofilin is a critical inner mitochondrial membrane protein that maintains cristae structure and facilitates protein transport while linking the inner mitochondrial membrane, outer mitochondrial membrane, and mitochondrial DNA transcription. Researchers believe that mitofilin may be a therapeutic target for treating cardiovascular diseases, particularly cardiac mitochondrial dysfunctions. In this review, we highlight current findings regarding the role of mitofilin in the pathogenesis of cardiovascular diseases and potential therapeutic compounds targeting mitofilin.
Collapse
Affiliation(s)
- Abdallah Iddy Chaurembo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China.
| | - Francis Chanda
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui-Juan Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Li-Dan Fu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian-Yuan Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Hui Deng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao-Dong Cui
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Guizhou Medical University, Guiyang, Guizhou, China
| | - Xin-Yue Tong
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chi Shu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Food Science College, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Kai-Xuan Lin
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Alhusaini AM, Alghibiwi HK, Sarawi WS, Alsaab JS, Alshehri SM, Alqahtani QH, Alshanwani AR, Aljassas EA, Alsultan EN, Hasan IH. Resveratrol-Based Liposomes Improve Cardiac Remodeling Induced by Isoproterenol Partially by Modulating MEF2, Cytochrome C and S100A1 Expression. Dose Response 2024; 22:15593258241247980. [PMID: 38645382 PMCID: PMC11027597 DOI: 10.1177/15593258241247980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/28/2024] [Indexed: 04/23/2024] Open
Abstract
Isoproterenol (ISO), a chemically synthesized catecholamine, belongs to β-adrenoceptor agonist used to treat bradycardia. The β-adrenergic agonist is an essential regulator of myocardial metabolism and contractility; however, excessive exposure to ISO can initiate oxidative stress and inflammation. This study aims to investigate the molecular mechanisms underlying ISO-induced cardiac remodeling, the protective efficacy of resveratrol (RSVR), and its liposomal formulation (L-RSVR) against such cardiac change. Wistar albino rats were evenly divided into 4 groups. Control group, ISO group received ISO (50 mg/kg, s.c.) twice a week for 2 weeks, and RSVR- and L-RSVR-treated groups in which rats received either RSVR or L-RSVR (20 mg/kg/day, p.o.) along with ISO for 2 weeks. ISO caused a significant elevation of the expression levels of BAX and MEF2 mRNA, S100A1 and cytochrome C proteins, as well as DNA fragmentation in cardiac tissue compared to the control group. Treatment with either RSVR or L-RSVR for 14 days significantly ameliorated the damage induced by ISO, as evidenced by the improvement of all measured parameters. The present study shows that L-RSVR provides better cardio-protection against ISO-induced cardiac injury in rats, most likely through modulation of cardiac S100A1 protein expression and inhibition of inflammation and apoptosis.
Collapse
Affiliation(s)
- Ahlam M. Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanan K. Alghibiwi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wedad S. Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Juman S. Alsaab
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Samiyah M. Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Qamraa H. Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Aliah R. Alshanwani
- Department of Physiology, College of Medicine and King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Ebtesam A. Aljassas
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ebtesam N. Alsultan
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Iman H. Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Manawy SM, Faruk EM, Hindawy RF, Hassan MM, Farrag DMG, Bashar MAE, Fouad H, Bagabir RA, Hassan DAA, Zaazaa AM, Hablas MGA, Kamal KM. Modulation of the Sirtuin-1 signaling pathway in doxorubicin-induced nephrotoxicity (synergistic amelioration by resveratrol and pirfenidone). Tissue Cell 2024; 87:102330. [PMID: 38412579 DOI: 10.1016/j.tice.2024.102330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024]
Abstract
The current study was conducted to determine the precise mechanisms of Sirtuin-1 (Sirt-1), TGF- β (Transforming Growth Factor-β), and long non-coding RNA Metastasis Associated Lung Adenocarcinoma Transcript 1 (LncRNA MALAT-1) in signaling pathways in doxorubicin (DOX)-induced nephrotoxicity. The potential therapeutic effect of Resveratrol and Pirfenidone in DOX toxicity was also assessed. Thirty-six male adult rats were evenly distributed into four groups: Group 1: control rats. Group 2: DOX exposed rats' group, each animal received 7.5 mg/kg DOX as a single intravenous dose, Group 3: DOX exposed group subjected to oral resveratrol (20 mg/kg/daily for two weeks), Group 4: DOX exposed group subjected to oral Pirfenidone (200 mg/kg once daily for 10 days). At the planned time, animals were sacrificed. Renal tissue was collected to assess matrix metalloproteinase-9 (MMP9), inflammatory and apoptotic markers: tumor necrosis factor-alpha (TNF- β, caspase-3, cyclo-oxygenase-2 (COX-2), and oxidative stress markers: nitric oxide (NO), Glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD). Sirtuin-1 (Sirt-1), TGF-β, and LncRNA MALAT-1 were quantitatively assessed by real-time RT-PCR in the whole blood. Results showed that the DOX group exhibited a significant increase in oxidative stress markers, and inflammatory, and apoptotic markers in the renal tissue. Histologically, the renal tubule lining cells exhibited vacuolar alterations in the cytoplasm, glomerular atrophy, and vascular congestion. Furthermore, renal degeneration was evident, as confirmed by the heightened immuno-expression of MMP9. Exposure to DOX resulted in a significant decrease in Sirtuin-1 (Sirt-1) with a significant increase in the TGFβ, and LncRNA MALAT-1 gene expression. However, pre-treatment with either resveratrol/or Pirefenidone ameliorated the histological renal alterations, regulated the pathways of Sirt-1, TGFβ, and LncRNA MALAT-1, and decreased all oxidative stress, inflammatory and apoptotic markers. In conclusion, DOX exposure leads to renal toxicity by inducing renal degeneration, oxidative stress, and apoptosis. Administration of either resveratrol or Pirfenidone counteracted these changes and protected the kidney against DOX-induced renal damage.
Collapse
Affiliation(s)
- Samia Mahmoud Manawy
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha, Egypt.
| | - Eman Mohamed Faruk
- Anatomy Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt.
| | - Rabab Fawzy Hindawy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt.
| | - Mahmoud M Hassan
- Department of Physiology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Diaa M G Farrag
- Marine Biology Branch, Zoology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| | - Mansour A E Bashar
- Marine Biology Branch, Zoology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| | - Hanan Fouad
- Basic Medical Sciences, Faculty of Medicine, Galala University, Galala City, POB 43711, ATTAKA, Suez Governorate, Egypt; Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo POB 12613, Egypt.
| | - Rania Abubaker Bagabir
- College of Medicine, Hematology and Immunology Department, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Ahmed Mohammed Zaazaa
- Students at Faculty of Medicine, Benha National University, Benha Colleges in Cairo, Egypt
| | | | - K Mostafa Kamal
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
10
|
Özdemir S, Aydın Ş, Laçin BB, Arslan H. Identification and characterization of long non-coding RNA (lncRNA) in cypermethrin and chlorpyrifos exposed zebrafish (Danio rerio) brain. CHEMOSPHERE 2023; 344:140324. [PMID: 37778644 DOI: 10.1016/j.chemosphere.2023.140324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
Pesticides, such as cypermethrin (CYP) and chlorpyrifos (CPF), are widely used around the world and are known to cause toxicological effects in the brains of fish and other non-target organisms. Long non-coding RNAs (LncRNAs) are a new class of non-coding RNAs that are highly expressed in the brain and play crucial roles in brain function by regulating gene expression. Many studies have investigated the toxic effects of CYP and CPF on the brain. However, no study has been conducted on the relationship between LncRNAs and the toxicity caused by these chemicals. Therefore, this study aimed to determine changes in the lncRNA expression profile in the brains of fish exposed to CYP and CPF. Out of a total of 482 lncRNAs that were differentially expressed between control and CPF groups, 53 were found to be up-regulated, and 429 were down-regulated. Similarly, among the 200 lncRNAs differentially expressed between the control and CYP groups, 71 were up-regulated, and 129 were down-regulated. Additionally, 268 differentially expressed lncRNAs were identified between CYP and CPF groups, with 240 being up-regulated and the rest being down-regulated. In addition, LncRNAs expressed from fish brains exposed to CYP and CPF were found to regulate multiple signaling pathways, including MAPK, FoxO, PPAR, TGF-β, and Wnt signaling pathways.
Collapse
Affiliation(s)
- Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey; German Center for Neurodegenerative Diseases, DZNE, Bonn, Germany.
| | - Şeyma Aydın
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Burak Batuhan Laçin
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Harun Arslan
- Atatürk University, Faculty of Fisheries, Department of Basic Science, Erzurum, Turkey
| |
Collapse
|
11
|
Haynes AP, Desta S, Ahmad T, Neikirk K, Hinton A, Bloodworth N, Kirabo A. The Antioxidative Effects of Flavones in Hypertensive Disease. Biomedicines 2023; 11:2877. [PMID: 38001878 PMCID: PMC10669108 DOI: 10.3390/biomedicines11112877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/26/2023] Open
Abstract
Hypertension is the leading remediable risk factor for cardiovascular morbidity and mortality in the United States. Excess dietary salt consumption, which is a catalyst of hypertension, initiates an inflammatory cascade via activation of antigen-presenting cells (APCs). This pro-inflammatory response is driven primarily by sodium ions (Na+) transporting into APCs by the epithelial sodium channel (ENaC) and subsequent NADPH oxidase activation, leading to high levels of oxidative stress. Oxidative stress, a well-known catalyst for hypertension-related illness development, disturbs redox homeostasis, which ultimately promotes lipid peroxidation, isolevuglandin production and an inflammatory response. Natural medicinal compounds derived from organic materials that are characterized by their anti-inflammatory, anti-oxidative, and anti-mutagenic properties have recently gained traction amongst the pharmacology community due to their therapeutic effects. Flavonoids, a natural phenolic compound, have these therapeutic benefits and can potentially serve as anti-hypertensives. Flavones are a type of flavonoid that have increased anti-inflammatory effects that may allow them to act as therapeutic agents for hypertension, including diosmetin, which is able to induce significant arterial vasodilation in several different animal models. This review will focus on the activity of flavones to illuminate potential preventative and potential therapeutic mechanisms against hypertension.
Collapse
Affiliation(s)
- Alexandria Porcia Haynes
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN 37212, USA; (A.P.H.); (S.D.); (T.A.)
| | - Selam Desta
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN 37212, USA; (A.P.H.); (S.D.); (T.A.)
- Department of Biology, College of Arts and Sciences, Howard University, Washington, DC 20059, USA
| | - Taseer Ahmad
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN 37212, USA; (A.P.H.); (S.D.); (T.A.)
- Department of Pharmacology, College of Pharmacy, University of Sargodha, University Road, Sargodha 40100, Punjab, Pakistan
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA; (K.N.); (A.H.)
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA; (K.N.); (A.H.)
| | - Nathaniel Bloodworth
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN 37212, USA; (A.P.H.); (S.D.); (T.A.)
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, P415C Medical Research Building IV, Nashville, TN 37212, USA; (A.P.H.); (S.D.); (T.A.)
| |
Collapse
|
12
|
Song B, Wang W, Tang X, Goh RMWJ, Thuya WL, Ho PCL, Chen L, Wang L. Inhibitory Potential of Resveratrol in Cancer Metastasis: From Biology to Therapy. Cancers (Basel) 2023; 15:2758. [PMID: 37345095 DOI: 10.3390/cancers15102758] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023] Open
Abstract
Cancer metastasis is a significant challenge in cancer treatment, and most existing drugs are designed to inhibit tumor growth but are often ineffective in treating metastatic cancer, which is the leading cause of cancer-related deaths. Resveratrol, a polyphenol found in grapes, berries, and peanuts, has shown potential in preclinical studies as an anticancer agent to suppress metastasis. However, despite positive results in preclinical studies, little progress has been made in clinical trials. To develop resveratrol as an effective anticancer agent, it is crucial to understand its cellular processes and signaling pathways in tumor metastasis. This review article evaluates the current state and future development strategies of resveratrol to enhance its potency against cancer metastasis within its therapeutic dose. In addition, we critically evaluate the animal models used in preclinical studies for cancer metastasis and discuss novel techniques to accelerate the translation of resveratrol from bench to bedside. The appropriate selection of animal models is vital in determining whether resveratrol can be further developed as an antimetastatic drug in cancer therapy.
Collapse
Affiliation(s)
- Baohong Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuemei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Robby Miguel Wen-Jing Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Win Lwin Thuya
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Paul Chi Lui Ho
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Lu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- National University Cancer Institute, National University of Singapore, Singapore 119074, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
13
|
Jiménez MC, Prieto K, Lasso P, Gutiérrez M, Rodriguez-Pardo V, Fiorentino S, Barreto A. Plant extract from Caesalpinia spinosa inhibits cancer-associated fibroblast-like cells generation and function in a tumor microenvironment model. Heliyon 2023; 9:e14148. [PMID: 36923867 PMCID: PMC10009686 DOI: 10.1016/j.heliyon.2023.e14148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Interactions in the tumor microenvironment (TME) between tumor cells and stromal cells such as cancer-associated fibroblasts (CAF) favor increased survival, progression, and transformation of cancer cells by activating mechanisms of invasion and metastasis. The design of new therapies to modulate or eliminate the CAF phenotype or functionality has been the subject of recent research including natural product-based therapies. We have previously described the generation of a standardized extract rich in polyphenols obtained from the Caesalpinia spinosa plant (P2Et), which present antitumor activities in breast cancer and melanoma models through activities that modulate the metabolism of tumor cells or induce the development of the immune response. In this work, a model of CAF generation was initially developed from the exposure of 3T3 fibroblasts to the cytokine TGFβ1. CAF-like cells generated in this way exhibited changes in the expression of Caveolin-1 and α-SMA, and alterations in glucose metabolism and redox status, typical of CAFs isolated from tumor tissues. Then, P2Et was shown to counteract in vitro-induced CAF-like cell generation, preventing caveolin-1 loss and attenuating changes in glucose uptake and redox profile. This protective effect of P2Et translates into a decrease in the functional ability of CAFs to support colony formation and migration of 4T1 murine breast cancer tumor cells. In addition to the functional interference, the P2Et extract also decreased the expression of genes associated with the epithelial-mesenchymal transition (EMT) and functional activities related to the modulation of the cancer stem cells (CSC) population. This work is an in vitro approach to evaluate natural extracts' effect on the interaction between CAF and tumor cells in the tumor microenvironment; thus, these results open the chance to design a more profound and mechanistic analysis to explore the molecular mechanisms of P2Et multimolecular activity and extent this analysis to an in vivo perspective. In summary, we present here a standardized polymolecular natural extract that has the potential to act in the TME by interfering with CAF generation and functionality.
Collapse
Affiliation(s)
- Maria Camila Jiménez
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| | - Karol Prieto
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| | - Melisa Gutiérrez
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| | - Viviana Rodriguez-Pardo
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Colombia
| |
Collapse
|
14
|
Luteolin inhibits the TGF-β signaling pathway to overcome bortezomib resistance in multiple myeloma. Cancer Lett 2023; 554:216019. [PMID: 36442773 DOI: 10.1016/j.canlet.2022.216019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Multiple myeloma (MM) is an incurable condition and the second most common hematological malignancy. Over the past few years, there has been progress in the treatment of MM, but most patients still relapse. Multiple myeloma stem-like cells (MMSCs) are believed to be the main reason for drug resistance and eventual relapse. Currently, there are not enough therapeutic agents that have been identified for eradication of MMSCs, and thus, identification of the same may alleviate the issue of relapse in patients. In the present study, we showed that luteolin (LUT), a natural compound obtained from different plants, such as vegetables, medicinal herbs, and fruits, effectively inhibits the proliferation of MM cells and overcomes bortezomib (BTZ) resistance in them in vitro and in vivo, mainly by decreasing the proportion of ALDH1+ cells. Furthermore, RNA sequencing after LUT treatment of MM cell lines and an MM xenograft mouse model revealed that the effects of the compound are mediated through inhibition of transforming growth factor-β signaling. Similarly, we found that LUT also significantly reduced the proportion of ALDH1+ cells in primary CD138+ plasma cells. In addition, LUT could overcome the BTZ treatment-induced increase in the proportion of ALDH1+ cells, and the combination of LUT and BTZ had a synergistic effect against myeloma cells. Collectively, our findings suggested that LUT is a promising agent that manifests MMSCs to overcome BTZ resistance, alone or in combination with BTZ, and thus, is a potential therapeutic drug for the treatment of MM.
Collapse
|
15
|
Zhao L, Xu J, Li S, Li B, Jia M, Pang B, Cui H. Resveratrol alleviates salivary gland dysfunction induced by ovariectomy in rats. Biochem Biophys Res Commun 2022; 630:112-117. [PMID: 36155056 DOI: 10.1016/j.bbrc.2022.09.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022]
Abstract
Resveratrol (Res), found abundant in many medicinal plants, exerts multiple biological functions in the body, including anti-inflammatory, antioxidant, and anti-aging properties. Xerostomia is a major symptom of salivary gland dysfunction in menopausal women, which significantly compromises the quality of life. Here, we investigated the effect of Res on estrogen deficiency-induced salivary gland dysfunction in rats. We found that Res administration could reduce body weight and water consumption, and increase salivary fluid secretion and blood flow of the submandibular gland. Furthermore, Res therapy alleviated histological lesions, increased AQP5 expression, and inhibited cell apoptosis in submandibular gland tissue. Meanwhile, the action of antioxidants was restored and the levels of inflammatory cytokines were attenuated by Res supplementation. Collectively, Res effectively improved estrogen deficiency-induced hyposalivation, which may provide a novel, safe, and practical approach to protect the salivary glands of estrogen-deficient females against xerostomia.
Collapse
Affiliation(s)
- Lixian Zhao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, PR China; Sijing Hospital of Songjiang District, Shanghai, 201601, PR China
| | - Juan Xu
- Sijing Hospital of Songjiang District, Shanghai, 201601, PR China
| | - Song Li
- Affiliated Hospital of Hebei University, Baoding, 071100, PR China
| | - Boyue Li
- Affiliated Hospital of Hebei University, Baoding, 071100, PR China
| | - Muyun Jia
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, PR China
| | - Baoxing Pang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, PR China
| | - Hao Cui
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, PR China; Sijing Hospital of Songjiang District, Shanghai, 201601, PR China.
| |
Collapse
|
16
|
Current Opportunities for Targeting Dysregulated Neurodevelopmental Signaling Pathways in Glioblastoma. Cells 2022; 11:cells11162530. [PMID: 36010607 PMCID: PMC9406959 DOI: 10.3390/cells11162530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most common and highly lethal type of brain tumor, with poor survival despite advances in understanding its complexity. After current standard therapeutic treatment, including tumor resection, radiotherapy and concomitant chemotherapy with temozolomide, the median overall survival of patients with this type of tumor is less than 15 months. Thus, there is an urgent need for new insights into GBM molecular characteristics and progress in targeted therapy in order to improve clinical outcomes. The literature data revealed that a number of different signaling pathways are dysregulated in GBM. In this review, we intended to summarize and discuss current literature data and therapeutic modalities focused on targeting dysregulated signaling pathways in GBM. A better understanding of opportunities for targeting signaling pathways that influences malignant behavior of GBM cells might open the way for the development of novel GBM-targeted therapies.
Collapse
|
17
|
Sadrkhanloo M, Entezari M, Orouei S, Ghollasi M, Fathi N, Rezaei S, Hejazi ES, Kakavand A, Saebfar H, Hashemi M, Goharrizi MASB, Salimimoghadam S, Rashidi M, Taheriazam A, Samarghandian S. STAT3-EMT axis in tumors: Modulation of cancer metastasis, stemness and therapy response. Pharmacol Res 2022; 182:106311. [PMID: 35716914 DOI: 10.1016/j.phrs.2022.106311] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 02/07/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) mechanism is responsible for metastasis of tumor cells and their spread to various organs and tissues of body, providing undesirable prognosis. In addition to migration, EMT increases stemness and mediates therapy resistance. Hence, pathways involved in EMT regulation should be highlighted. STAT3 is an oncogenic pathway that can elevate growth rate and migratory ability of cancer cells and induce drug resistance. The inhibition of STAT3 signaling impairs cancer progression and promotes chemotherapy-mediated cell death. Present review focuses on STAT3 and EMT interaction in modulating cancer migration. First of all, STAT3 is an upstream mediator of EMT and is able to induce EMT-mediated metastasis in brain tumors, thoracic cancers and gastrointestinal cancers. Therefore, STAT3 inhibition significantly suppresses cancer metastasis and improves prognosis of patients. EMT regulators such as ZEB1/2 proteins, TGF-β, Twist, Snail and Slug are affected by STAT3 signaling to stimulate cancer migration and invasion. Different molecular pathways such as miRNAs, lncRNAs and circRNAs modulate STAT3/EMT axis. Furthermore, we discuss how STAT3 and EMT interaction affects therapy response of cancer cells. Finally, we demonstrate targeting STAT3/EMT axis by anti-tumor agents and clinical application of this axis for improving patient prognosis.
Collapse
Affiliation(s)
- Mehrdokht Sadrkhanloo
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nikoo Fathi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
18
|
Luo X, Wu S, Jia H, Si X, Song Z, Zhai Z, Bai J, Li J, Yang Y, Wu Z. Resveratrol alleviates enterotoxigenic Escherichia coli K88-induced damage by regulating SIRT-1 signaling in intestinal porcine epithelial cells. Food Funct 2022; 13:7346-7360. [PMID: 35730460 DOI: 10.1039/d1fo03854k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study found that resveratrol pretreatment attenuated porcine intestinal epithelial cell damage caused by enterotoxigenic Escherichia coli (ETEC) K88 in vitro and the protective effects of resveratrol were associated with SIRT-1 signaling. ETEC K88 is a main intestinal pathogen for post-weaning diarrhea (PWD) in piglets. With the strict ban on antibiotics in animal feed, people are seeking effective antibiotic substitutes to protect the intestinal system against harmful pathogenic bacteria. This study was conducted to evaluate the effects of resveratrol, a natural plant polyphenol, on ETEC K88-induced cellular damage in porcine enterocytes and underlying mechanisms. Intestinal porcine epithelial cell line 1 (IPEC-1) cells, pretreated with or without resveratrol (30 μM, 4 h), were challenged with ETEC K88 (MOI = 1 : 10) for 3 h. The results showed that ETEC K88 infection induced severe damage and dysfunction in IPEC-1 cells, as evidenced by a reduced cell viability, decreased tight junctions, mitochondrial dysfunction, and autophagy. It is noteworthy that IPEC-1 cells pre-treated with resveratrol improved their capacity for resistance to most of these abnormal phenotypes caused by ETEC K88 infection. Furthermore, we found that the activation of SIRT-1 signaling was associated with the benefits of resveratrol, as demonstrated by EX-527, an inhibitor of SIRT-1, which reversed most of the protective effects of resveratrol. In conclusion, these results indicated that resveratrol could protect intestinal epithelial cells against ETEC K88 infection by activating SIRT-1 signaling. These findings provide new insights into the role of resveratrol in maintaining intestinal physiological functions.
Collapse
Affiliation(s)
- Xin Luo
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Shizhe Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Hai Jia
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Xuemeng Si
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Zhuan Song
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Zhian Zhai
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Jun Bai
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Jun Li
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
19
|
Su M, Zhao W, Xu S, Weng J. Resveratrol in Treating Diabetes and Its Cardiovascular Complications: A Review of Its Mechanisms of Action. Antioxidants (Basel) 2022; 11:antiox11061085. [PMID: 35739982 PMCID: PMC9219679 DOI: 10.3390/antiox11061085] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent chronic diseases worldwide. High morbidity and mortality caused by DM are closely linked to its complications in multiple organs/tissues, including cardiovascular complications, diabetic nephropathy, and diabetic neuropathy. Resveratrol is a plant-derived polyphenolic compound with pleiotropic protective effects, ranging from antioxidant and anti-inflammatory to hypoglycemic effects. Recent studies strongly suggest that the consumption of resveratrol offers protection against diabetes and its cardiovascular complications. The protective effects of resveratrol involve the regulation of multiple signaling pathways, including inhibition of oxidative stress and inflammation, enhancement of insulin sensitivity, induction of autophagy, regulation of lipid metabolism, promotion of GLUT4 expression, and translocation, and activation of SIRT1/AMPK signaling axis. The cardiovascular protective effects of resveratrol have been recently reviewed in the literature, but the role of resveratrol in preventing diabetes mellitus and its cardiovascular complications has not been systematically reviewed. Therefore, in this review, we summarize the pharmacological effects and mechanisms of action of resveratrol based on in vitro and in vivo studies, highlighting the therapeutic potential of resveratrol in the prevention and treatment of diabetes and its cardiovascular complications.
Collapse
|
20
|
Francisco CM, Fischer LW, Vendramini V, de Oliva SU, Paccola CC, Miraglia SM. Resveratrol reverses male reproductive damage in rats exposed to nicotine during the intrauterine phase and breastfeeding. Andrology 2022; 10:951-972. [PMID: 35472028 DOI: 10.1111/andr.13183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Nicotine leads to reproductive changes culminating in male infertility and subfertility. Resveratrol, a polyphenol, is a biological modulator. Sirtuin 1 (SIRT1) protein can positively act on male reproduction, and its expression can be affected by nicotine and modulated by resveratrol. OBJECTIVES The capability of resveratrol to reverse the reproductive damage in adult male offspring, which was nicotine-exposed during the intrauterine phase and breastfeeding, was investigated. MATERIALS AND METHODS Four groups were established with male offspring born from nicotine-exposed and non-exposed rat dams during pregnancy and lactation. Forty-eight male Wistar rats were distributed into four groups: sham control (SC), resveratrol (R), nicotine (N), and nicotine + resveratrol (NR). Rat dams of the N and NR offspring were exposed to nicotine (2 mg/kg/day) during pregnancy and lactation using a subcutaneously implanted minipump. The offspring of the R and NR groups received resveratrol (300 mg/kg of body weight, gavage) for 63 days from puberty. At 114 days of age, the male rats were euthanized. RESULTS Nicotine did not alter the body weight, biometry of reproductive organs, or quantitative sperm parameters of adult offspring but caused an evident worsening of all sperm qualitative parameters studied. Daily treatment with resveratrol from puberty up to adulthood improved all qualitative sperm parameters significantly, leading some of them close to the control values. Resveratrol also improved the morphological integrity and expression of SIRT1 in the seminiferous epithelium of nicotine-exposed offspring. CONCLUSION AND DISCUSSION Resveratrol reversed the male reproductive damage caused by nicotine. Nicotine crosses the blood-placental membrane and is present in the breast milk of mothers who smoke. Resveratrol restored the altered reproductive parameters in the male adult offspring that were nicotine-exposed during intrauterine life and breastfeeding. The epigenetic modulating action of resveratrol can be involved in this nicotine damage reversion. Resveratrol may be a promising candidate to be investigated regarding the adjuvant strategies in the treatment of male infertility.
Collapse
Affiliation(s)
| | | | - Vanessa Vendramini
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
| | - Samara Urban de Oliva
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
| | - Camila Cicconi Paccola
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
| | - Sandra Maria Miraglia
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Li H, Guan Y, Han C, Zhang Y, Chen Y, Jiang L, Zhang P, Chen X, Wei W, Ma Y. Dominant negative TGF-β receptor type II in T lymphocytes promotes anti-tumor immunity by modulating T cell subsets and enhancing CTL responses. Biomed Pharmacother 2022; 148:112754. [PMID: 35228061 DOI: 10.1016/j.biopha.2022.112754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is a multifunctional regulatory cytokine that maintains tolerance in the immune system by regulating the proliferation, differentiation and survival of lymphocytes. TGF-β blockade therapy for cancer has achieved some results but shows limited efficacy and side effects because these drugs are not selective and act on various types of cells throughout the body. We demonstrate here that dominant negative TGF-β receptor type II specifically targeting T cells decreases tumor load in tumor-bearing mice. In addition, the dominant negative TGF-β receptor type II promotes the proliferation and differentiation of T cells and increases the expression of T-bet, which in turn promotes the secretion of granzyme A, granzyme B, perforin and IFN-γ secreted by T cells, and enhances the cytotoxicity and anti-tumor effects of T cells. Moreover, we also found that dominant negative TGF-β receptor type II reduces the proportion of regulatory T cells (Tregs) in tumor tissue and spleen of tumor-bearing mice. Co-culture experiments with T cells and tumor cells revealed that dominant negative TGF-β receptor type II inhibited tumor cell proliferation and increased apoptosis. Our results indicate that specifically inhibiting TGF-β receptor type II in T cells increases anti-tumor immunity and has a strong therapeutic potential.
Collapse
Affiliation(s)
- Hao Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Yanling Guan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Chenchen Han
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Yu Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Yizhao Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Liping Jiang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Pingping Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Xiu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China.
| | - Yang Ma
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China.
| |
Collapse
|
22
|
Mikuła-Pietrasik J, Rutecki S, Książek K. The functional multipotency of transforming growth factor β signaling at the intersection of senescence and cancer. Cell Mol Life Sci 2022; 79:196. [PMID: 35305149 PMCID: PMC11073081 DOI: 10.1007/s00018-022-04236-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
The transforming growth factor β (TGF-β) family of cytokines comprises a group of proteins, their receptors, and effector molecules that, in a coordinated manner, modulate a plethora of physiological and pathophysiological processes. TGF-β1 is the best known and plausibly most active representative of this group. It acts as an immunosuppressant, contributes to extracellular matrix remodeling, and stimulates tissue fibrosis, differentiation, angiogenesis, and epithelial-mesenchymal transition. In recent years, this cytokine has been established as a vital regulator of organismal aging and cellular senescence. Finally, the role of TGF-β1 in cancer progression is no longer in question. Because this protein is involved in so many, often overlapping phenomena, the question arises whether it can be considered a molecular bridge linking some of these phenomena together and governing their reciprocal interactions. In this study, we reviewed the literature from the perspective of the role of various TGF-β family members as regulators of a complex mutual interplay between senescence and cancer. These aspects are then considered in a broader context of remaining TGF-β-related functions and coexisting processes. The main narrative axis in this work is centered around the interaction between the senescence of normal peritoneal cells and ovarian cancer cells. The discussion also includes examples of TGF-β activity at the interface of other normal and cancer cell types.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland
| | - Szymon Rutecki
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland.
| |
Collapse
|
23
|
Ashrafizadeh M, Kumar AP, Aref AR, Zarrabi A, Mostafavi E. Exosomes as Promising Nanostructures in Diabetes Mellitus: From Insulin Sensitivity to Ameliorating Diabetic Complications. Int J Nanomedicine 2022; 17:1229-1253. [PMID: 35340823 PMCID: PMC8943613 DOI: 10.2147/ijn.s350250] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus (DM) is among the chronic metabolic disorders that its incidence rate has shown an increase in developed and wealthy countries due to lifestyle and obesity. The treatment of DM has always been of interest, and significant effort has been made in this field. Exosomes belong to extracellular vesicles with nanosized features (30-150 nm) that are involved in cell-to-cell communication and preserving homeostasis. The function of exosomes is different based on their cargo, and they may contain lipids, proteins, and nucleic acids. The present review focuses on the application of exosomes in the treatment of DM; both glucose and lipid levels are significantly affected by exosomes, and these nanostructures enhance lipid metabolism and decrease its deposition. Furthermore, exosomes promote glucose metabolism and affect the level of glycolytic enzymes and glucose transporters in DM. Type I DM results from the destruction of β cells in the pancreas, and exosomes can be employed to ameliorate apoptosis and endoplasmic reticulum (ER) stress in these cells. The exosomes have dual functions in mediating insulin resistance/sensitivity, and M1 macrophage-derived exosomes inhibit insulin secretion. The exosomes may contain miRNAs, and by transferring among cells, they can regulate various molecular pathways such as AMPK, PI3K/Akt, and β-catenin to affect DM progression. Noteworthy, exosomes are present in different body fluids such as blood circulation, and they can be employed as biomarkers for the diagnosis of diabetic patients. Future studies should focus on engineering exosomes derived from sources such as mesenchymal stem cells to treat DM as a novel strategy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956, Istanbul, Turkey
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Translational Sciences, Xsphera Biosciences Inc., Boston, MA, 02210, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
24
|
Zhang Y, Mu Y, Ding H, Du B, Zhou M, Li Q, Gong S, Zhang F, Geng D, Wang Y. 1α,25-Dihydroxyvitamin D3 Promotes Angiogenesis After Cerebral Ischemia Injury in Rats by Upregulating the TGF-β/Smad2/3 Signaling Pathway. Front Cardiovasc Med 2022; 9:769717. [PMID: 35369317 PMCID: PMC8966232 DOI: 10.3389/fcvm.2022.769717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Stroke is a disease with high morbidity, disability and mortality, which seriously endangers the life span and quality of life of people worldwide. Angiogenesis and neuroprotection are the key to the functional recovery of penumbra function after acute cerebral infarction. In this study, we used the middle cerebral artery occlusion (MCAO) model to investigate the effects of 1α,25-dihydroxyvitamin D3 (1,25-D3) on transforming growth factor-β (TGF-β)/Smad2/3 signaling pathway. Cerebral infarct volume was measured by TTC staining. A laser speckle flow imaging system was used to measure cerebral blood flow (CBF) around the ischemic cortex of the infarction, followed by platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) and isolectin-B4 (IB4) immunofluorescence. The expression of vitamin D receptor (VDR), TGF-β, Smad2/3, p-Smad2, p-Smad3, and vascular endothelial growth factor (VEGF) was analyzed by western blot and RT-qPCR. Results showed that compared with the sham group, the cerebral infarction volume was significantly increased while the CBF was reduced remarkably in the MCAO group. 1,25-D3 reduced cerebral infarction volume, increased the recovery of CBF and expressions of VDR, TGF-β, p-Smad2, p-Smad3, and VEGF, significantly increased IB4+ tip cells and CD31+ vascular length in the peri-infarct area compared with the DMSO group. The VDR antagonist pyridoxal-5-phosphate (P5P) partially reversed the neuroprotective effects of 1,25-D3 described above. In summary, 1,25-D3 plays a neuroprotective role in stroke by activating VDR and promoting the activation of TGF-β, which in turn up-regulates the TGF-β/Smad2/3 signaling pathway, increases the release of VEGF and thus promotes angiogenesis, suggesting that this signaling pathway may be an effective target for ischemic stroke treatment. 1,25-D3 is considered to be a neuroprotective agent and is expected to be an effective drug for the treatment of ischemic stroke and related diseases.
Collapse
Affiliation(s)
- Yajie Zhang
- Department of Neurology, Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yingfeng Mu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hongmei Ding
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Bo Du
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mingyue Zhou
- Department of Neurology, Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qingqing Li
- Department of Neurology, Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shitong Gong
- Department of Neurology, Xuzhou Medical University, Xuzhou, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fuchi Zhang
- Department of Neurology, The Third Hospital of Huai'an, Huai'an, China
| | - Deqin Geng
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Deqin Geng
| | - Yanqiang Wang
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, Weifang, China
- *Correspondence: Yanqiang Wang
| |
Collapse
|
25
|
Chen Y, Sun D, Shang D, Jiang Z, Miao P, Gao J. miR-223-3p alleviates TGF-β-induced epithelial-mesenchymal transition and extracellular matrix deposition by targeting SP3 in endometrial epithelial cells. Open Med (Wars) 2022; 17:518-526. [PMID: 35350836 PMCID: PMC8919841 DOI: 10.1515/med-2022-0424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/26/2021] [Accepted: 12/15/2021] [Indexed: 01/06/2023] Open
Abstract
Intrauterine adhesion (IUA) is the clinical manifestation of endometrial fibrosis. The dysregulation of microRNAs (miRNAs) has been confirmed to implicate in a diversity of human diseases, including IUA. Nevertheless, the specific function of miR-223-3p in IUA remains to be clarified. Reverse transcription quantitative polymerase chain reaction analysis displayed the downregulation of miR-223-3p in IUA tissues and endometrial epithelial cells (EECs). Results from wound healing assay, Transwell assay and western blotting showed that TGF-β facilitated the migration and invasion of EECs and induced epithelial-mesenchymal transition (EMT) process as well as extracellular matrix (ECM) deposition. Overexpression of miR-223-3p in EECs was shown to suppress the effects induced by TGF-β. Bioinformatics analysis and luciferase reporter assay revealed the binding relation between miR-223-3p and SP3. SP3 was highly expressed in IUA and its expression was inversely correlated with miR-223-3p expression in IUA tissue samples. Additionally, upregulation of SP3 reversed the influence of miR-223-3p on the phenotypes of EECs. In conclusion, miR-223-3p alleviates TGF-β-induced cell migration, invasion, EMT process and ECM deposition in EECs by targeting SP3.
Collapse
Affiliation(s)
- Yanling Chen
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| | - Dongyan Sun
- Department of Gynecology, Maternity and Child Health Care Hospital of Hubei Province, 745 Wuluo Road, Wuchang District, Wuhan 430000, Hubei, China
| | - Di Shang
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| | - Zhihe Jiang
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| | - Pan Miao
- Yangtze University Health Science Center, Jingzhou 430199, Hubei, China
| | - Jian Gao
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| |
Collapse
|
26
|
Luo K, Chen Y, Wang F. Shrimp Plasma MANF Works as an Invertebrate Anti-Inflammatory Factor via a Conserved Receptor Tyrosine Phosphatase. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1214-1223. [PMID: 35149533 DOI: 10.4049/jimmunol.2100595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
For a long time, how anti-inflammatory factors evolved was largely unknown. In this study, we chose a marine invertebrate, Litopenaeus vannamei, as a model and identified that shrimp mesencephalic astrocyte-derived neurotrophic factor (MANF) was an LPS-induced plasma protein, which exerted its anti-inflammatory roles on shrimp hemocytes by suppressing ERK phosphorylation and Dorsal expression. In addition, we demonstrated that shrimp MANF could be associated with a receptor protein tyrosine phosphatase (RPTP) to mediate negative regulation of ERK activation and Dorsal expression. More interestingly, shrimp RPTP-S overexpression in 293T cells could switch shrimp and human MANF-mediated ERK pathway activation to inhibition. In general, our results indicate that this conserved RPTP is the key component for extracellular MANF-mediated ERK pathway inhibition, which gives a possible explanation about why this neurotropic factor could both protect neuron cells from apoptosis and inhibit immune cell M1 activation in various species.
Collapse
Affiliation(s)
- Kaiwen Luo
- Department of Biology, College of Science, Shantou University, Shantou, China
| | - Yaohui Chen
- Department of Biology, College of Science, Shantou University, Shantou, China
| | - Fan Wang
- Department of Biology, College of Science, Shantou University, Shantou, China;
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China; and
- Shantou University-University Malaysia Terengganu Joint Shellfish Research Laboratory, Shantou University, Shantou, China
| |
Collapse
|
27
|
García-Caballero M, Torres-Vargas JA, Marrero AD, Martínez-Poveda B, Medina MÁ, Quesada AR. Angioprevention of Urologic Cancers by Plant-Derived Foods. Pharmaceutics 2022; 14:pharmaceutics14020256. [PMID: 35213989 PMCID: PMC8875200 DOI: 10.3390/pharmaceutics14020256] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
The number of cancer cases worldwide keeps growing unstoppably, despite the undeniable advances achieved by basic research and clinical practice. Urologic tumors, including some as prevalent as prostate, bladder or kidney tumors, are no exceptions to this rule. Moreover, the fact that many of these tumors are detected in early stages lengthens the duration of their treatment, with a significant increase in health care costs. In this scenario, prevention offers the most cost-effective long-term strategy for the global control of these diseases. Although specialized diets are not the only way to decrease the chances to develop cancer, epidemiological evidence support the role of certain plant-derived foods in the prevention of urologic cancer. In many cases, these plants are rich in antiangiogenic phytochemicals, which could be responsible for their protective or angiopreventive properties. Angiogenesis inhibition may contribute to slow down the progression of the tumor at very different stages and, for this reason, angiopreventive strategies could be implemented at different levels of chemoprevention, depending on the targeted population. In this review, epidemiological evidence supporting the role of certain plant-derived foods in urologic cancer prevention are presented, with particular emphasis on their content in bioactive phytochemicals that could be used in the angioprevention of cancer.
Collapse
Affiliation(s)
- Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Andalucía Tech, E-29071 Malaga, Spain; (M.G.-C.); (J.A.T.-V.); (A.D.M.); (B.M.-P.); (M.Á.M.)
- IBIMA (Biomedical Research Institute of Malaga), E-29071 Malaga, Spain
| | - José Antonio Torres-Vargas
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Andalucía Tech, E-29071 Malaga, Spain; (M.G.-C.); (J.A.T.-V.); (A.D.M.); (B.M.-P.); (M.Á.M.)
- IBIMA (Biomedical Research Institute of Malaga), E-29071 Malaga, Spain
| | - Ana Dácil Marrero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Andalucía Tech, E-29071 Malaga, Spain; (M.G.-C.); (J.A.T.-V.); (A.D.M.); (B.M.-P.); (M.Á.M.)
- IBIMA (Biomedical Research Institute of Malaga), E-29071 Malaga, Spain
| | - Beatriz Martínez-Poveda
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Andalucía Tech, E-29071 Malaga, Spain; (M.G.-C.); (J.A.T.-V.); (A.D.M.); (B.M.-P.); (M.Á.M.)
- IBIMA (Biomedical Research Institute of Malaga), E-29071 Malaga, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), E-28019 Madrid, Spain
| | - Miguel Ángel Medina
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Andalucía Tech, E-29071 Malaga, Spain; (M.G.-C.); (J.A.T.-V.); (A.D.M.); (B.M.-P.); (M.Á.M.)
- IBIMA (Biomedical Research Institute of Malaga), E-29071 Malaga, Spain
- CIBER de Enfermedades Raras (CIBERER), E-29071 Malaga, Spain
| | - Ana R. Quesada
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Andalucía Tech, E-29071 Malaga, Spain; (M.G.-C.); (J.A.T.-V.); (A.D.M.); (B.M.-P.); (M.Á.M.)
- IBIMA (Biomedical Research Institute of Malaga), E-29071 Malaga, Spain
- CIBER de Enfermedades Raras (CIBERER), E-29071 Malaga, Spain
- Correspondence:
| |
Collapse
|
28
|
Ashrafizadeh M, Zarrabi A, Mostafavi E, Aref AR, Sethi G, Wang L, Tergaonkar V. Non-coding RNA-based regulation of inflammation. Semin Immunol 2022; 59:101606. [PMID: 35691882 DOI: 10.1016/j.smim.2022.101606] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/01/2022] [Accepted: 05/25/2022] [Indexed: 01/15/2023]
Abstract
Inflammation is a multifactorial process and various biological mechanisms and pathways participate in its development. The presence of inflammation is involved in pathogenesis of different diseases such as diabetes mellitus, cardiovascular diseases and even, cancer. Non-coding RNAs (ncRNAs) comprise large part of transcribed genome and their critical function in physiological and pathological conditions has been confirmed. The present review focuses on miRNAs, lncRNAs and circRNAs as ncRNAs and their potential functions in inflammation regulation and resolution. Pro-inflammatory and anti-inflammatory factors are regulated by miRNAs via binding to 3'-UTR or indirectly via affecting other pathways such as SIRT1 and NF-κB. LncRNAs display a similar function and they can also affect miRNAs via sponging in regulating levels of cytokines. CircRNAs mainly affect miRNAs and reduce their expression in regulating cytokine levels. Notably, exosomal ncRNAs have shown capacity in inflammation resolution. In addition to pre-clinical studies, clinical trials have examined role of ncRNAs in inflammation-mediated disease pathogenesis and cytokine regulation. The therapeutic targeting of ncRNAs using drugs and nucleic acids have been analyzed to reduce inflammation in disease therapy. Therefore, ncRNAs can serve as diagnostic, prognostic and therapeutic targets in inflammation-related diseases in pre-clinical and clinical backgrounds.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey.
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
29
|
Ding S, Jiang H, Fang J, Liu G. Regulatory Effect of Resveratrol on Inflammation Induced by Lipopolysaccharides via Reprograming Intestinal Microbes and Ameliorating Serum Metabolism Profiles. Front Immunol 2021; 12:777159. [PMID: 34868045 PMCID: PMC8634337 DOI: 10.3389/fimmu.2021.777159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
The purpose of this study was to explore the regulatory effect of resveratrol (RES) on lipopolysaccharide (LPS)-induced inflammation and its influence on intestinal microorganisms and serum atlas in murine models during the development of inflammation to explore a novel method for the regulation of inflammation. Mice were randomly assigned to three groups: control (CON), LPS, and RES–LPS. The results showed that RES mitigated the inflammatory damage to the intes-tines and liver induced by LPS. Compared with the LPS group, RES treatment decreased the levels of TNF-α, IL-6, IFN-γ, myeloperoxidase, and alanine aminotransferase in the liver. Serum metabolic profile monitoring showed that, compared with the CON group, LPS decreased the levels of five metabolites, including cycloartomunin and glycerol triundecanoate, and increased the levels of eight metabolites, including N-linoleoyl taurine and PE(O-16:0/20:5(5Z), 8Z, 11Z, 14Z, 17Z). Conversely, RES treatment increased the levels of eight metabolites, including pantothenic acid, homovanillic acid, and S-(formylmethyl)glutathione, and reduced seven metabolites, including lysoPE(20:4(8Z,11Z,14Z,17Z)/0:0) and 13-cis-retinoic acid, etc., in comparison with the LPS group. Moreover, RES treatment alleviated the negative effects of LPS on intestinal microbes by reducing, for instance, the relative abundance of Bacteroidetes and Alistipes, and increasing the relative abundance of Lactobacillus. These results suggest that RES has great potential for preventing in-flammation.
Collapse
Affiliation(s)
- Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, China
| |
Collapse
|
30
|
Floris S, Fais A, Medda R, Pintus F, Piras A, Kumar A, Kuś PM, Westermark GT, Era B. Washingtonia filifera seed extracts inhibit the islet amyloid polypeptide fibrils formations and α-amylase and α-glucosidase activity. J Enzyme Inhib Med Chem 2021; 36:517-524. [PMID: 33494628 PMCID: PMC7850368 DOI: 10.1080/14756366.2021.1874945] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/27/2020] [Accepted: 01/07/2021] [Indexed: 01/13/2023] Open
Abstract
Washingtonia filifera seeds have revealed to possess antioxidant properties, butyrylcholinesterase and xanthine oxidase inhibition activities. The literature has indicated a relationship between Alzheimer's disease (AD) and type-2 diabetes (T2D). Keeping this in mind, we have now evaluated the inhibitory properties of W. filifera seed extracts on α-amylase, α-glucosidase enzyme activity and the Islet Amyloid Polypeptide (IAPP) fibrils formation. Three extracts from seeds of W. filifera were evaluated for their enzyme inhibitory effect and IC50 values were calculated for all the extracts. The inhibition mode was investigated by Lineweaver-Burk plot analysis and the inhibition of IAPP aggregate formation was monitored. W. filifera methanol seed extract appears as the most potent inhibitor of α-amylase, α-glucosidase, and for the IAPP fibril formation. Current findings indicate new potential of this extract that could be used for the identification or development of novel potential agents for T2D and AD.
Collapse
Affiliation(s)
- Sonia Floris
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Antonella Fais
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Rosaria Medda
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Francesca Pintus
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Alessandra Piras
- Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Italy
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Piotr Marek Kuś
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Wrocław, Poland
| | | | - Benedetta Era
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
31
|
Pre-Clinical and Clinical Applications of Small Interfering RNAs (siRNA) and Co-Delivery Systems for Pancreatic Cancer Therapy. Cells 2021; 10:cells10123348. [PMID: 34943856 PMCID: PMC8699513 DOI: 10.3390/cells10123348] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer (PC) is one of the leading causes of death and is the fourth most malignant tumor in men. The epigenetic and genetic alterations appear to be responsible for development of PC. Small interfering RNA (siRNA) is a powerful genetic tool that can bind to its target and reduce expression level of a specific gene. The various critical genes involved in PC progression can be effectively targeted using diverse siRNAs. Moreover, siRNAs can enhance efficacy of chemotherapy and radiotherapy in inhibiting PC progression. However, siRNAs suffer from different off target effects and their degradation by enzymes in serum can diminish their potential in gene silencing. Loading siRNAs on nanoparticles can effectively protect them against degradation and can inhibit off target actions by facilitating targeted delivery. This can lead to enhanced efficacy of siRNAs in PC therapy. Moreover, different kinds of nanoparticles such as polymeric nanoparticles, lipid nanoparticles and metal nanostructures have been applied for optimal delivery of siRNAs that are discussed in this article. This review also reveals that how naked siRNAs and their delivery systems can be exploited in treatment of PC and as siRNAs are currently being applied in clinical trials, significant progress can be made by translating the current findings into the clinical settings.
Collapse
|
32
|
Efficacy of resveratrol in male urogenital tract dysfunctions: an evaluation of pre-clinical data. Nutr Res Rev 2021; 36:86-97. [PMID: 34776039 DOI: 10.1017/s0954422421000354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Resveratrol is a polyphenol found naturally in fruits and plants. Recently, studies in humans and animal models have suggested beneficial properties of this polyphenol, such as improvements to metabolic and lipid profiles, along with antioxidant, anti-inflammatory and anti-proliferative effects. In the urogenital tract (UGT), resveratrol has also been tested clinically and experimentally as a therapeutic drug in several diseases; however, the translational efficacy of resveratrol, especially in UGT, is still a matter of debate. In the present review, we address the pre-clinical efficacy of resveratrol in UGT-related dysfunctions, focusing on lower urinary tract symptoms, non-cancerous prostatic disease (benign prostatic hyperplasia and prostatitis) and erectile dysfunction. In vitro studies indicate that resveratrol reduces inflammatory markers and oxidative stress, and improves endothelial function in UGT organs and cells isolated from humans and animals. Despite displaying low oral bioavailability, in vivo administration of resveratrol largely improves erectile dysfunction, benign prostatic hyperplasia, prostatitis and voiding impairments, as evidenced in different animal models. Resveratrol also acts as a microbiota modulator, which may explain some of its beneficial effects in vivo. In contrast to the large amount of pre-clinical data, there are insufficient clinical trials to establish resveratrol treatment efficacy in human UGT-related diseases. In summary, we provide an overview of the in vivo and in vitro efficacy of resveratrol in animal and human UGT dysfunctions, which may support future clinical trials.
Collapse
|
33
|
Targeting Cancer Stem Cells by Dietary Agents: An Important Therapeutic Strategy against Human Malignancies. Int J Mol Sci 2021; 22:ijms222111669. [PMID: 34769099 PMCID: PMC8584029 DOI: 10.3390/ijms222111669] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
As a multifactorial disease, treatment of cancer depends on understanding unique mechanisms involved in its progression. The cancer stem cells (CSCs) are responsible for tumor stemness and by enhancing colony formation, proliferation as well as metastasis, and these cells can also mediate resistance to therapy. Furthermore, the presence of CSCs leads to cancer recurrence and therefore their complete eradication can have immense therapeutic benefits. The present review focuses on targeting CSCs by natural products in cancer therapy. The growth and colony formation capacities of CSCs have been reported can be attenuated by the dietary agents. These compounds can induce apoptosis in CSCs and reduce tumor migration and invasion via EMT inhibition. A variety of molecular pathways including STAT3, Wnt/β-catenin, Sonic Hedgehog, Gli1 and NF-κB undergo down-regulation by dietary agents in suppressing CSC features. Upon exposure to natural agents, a significant decrease occurs in levels of CSC markers including CD44, CD133, ALDH1, Oct4 and Nanog to impair cancer stemness. Furthermore, CSC suppression by dietary agents can enhance sensitivity of tumors to chemotherapy and radiotherapy. In addition to in vitro studies, as well as experiments on the different preclinical models have shown capacity of natural products in suppressing cancer stemness. Furthermore, use of nanostructures for improving therapeutic impact of dietary agents is recommended to rapidly translate preclinical findings for clinical use.
Collapse
|
34
|
Oral delivery of a Lactococcus lactis expressing extracellular TGFβR2 alleviates hepatic fibrosis. Appl Microbiol Biotechnol 2021; 105:6007-6018. [PMID: 34390354 DOI: 10.1007/s00253-021-11485-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 01/18/2023]
Abstract
Liver fibrosis is caused by the accumulation of extracellular matrix proteins on the surface of hepatocytes and results from chronic liver injury. TGFβ1 is one of the most important promoters of hepatic fibrosis, which accelerates the transformation of hepatic stellate cells to myofibroblasts and collagen expression. It is well-known that TGFβ1 binds to TGFβR2 to mediate its downstream signal cascades to regulate target gene transcription. Therefore, the TGFβR2 blocker might be a prominent drug candidate. We constructed TGFβR2 extracellular domain into living biotherapeutics Lactococcus lactis to reduce hepatic fibrosis in CCl4 treated mice in the present study. We found that the culture supernatant of the recombinant bacteria can inhibit the TGFβ1-induced collagen synthesis in the hepatic stellate cells at the cellular level. In addition, results of in vivo study showed that the recombinant bacteria significantly reduced the degree of liver fibrosis in CCl4-treated mice. Furthermore, flow cytometry results indicated that the recombinant bacteria treatment significantly reduced the CD11b+ Kupffer cells compared with the empty vector bacteria group. Consistently, fibrosis-related gene and protein expression were significantly reduced upon recombinant bacteria treatment. Finally, the subchronic toxicity test results showed that this bacteria strain did not have any significant side effects. In conclusion, our recombinant Lactococcus lactis shows tremendous therapeutic potential in liver fibrosis. KEY POINTS: • The supernatant of L. lactis expressing TGFβR2 inhibits the activation of myofibroblast. • The oral recombinant strain reduced the degree of liver fibrosis and inflammation in mice. • The recombinant strain was safe in subchronic toxicity test in mice.
Collapse
|
35
|
Mirzaei S, Gholami MH, Zabolian A, Saleki H, Farahani MV, Hamzehlou S, Far FB, Sharifzadeh SO, Samarghandian S, Khan H, Aref AR, Ashrafizadeh M, Zarrabi A, Sethi G. Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacol Res 2021; 171:105759. [PMID: 34245864 DOI: 10.1016/j.phrs.2021.105759] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/18/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
As a phenolic acid compound, caffeic acid (CA) can be isolated from different sources such as tea, wine and coffee. Caffeic acid phenethyl ester (CAPE) is naturally occurring derivative of CA isolated from propolis. This medicinal plant is well-known due to its significant therapeutic impact including its effectiveness as hepatoprotective, neuroprotective and anti-diabetic agent. Among them, anti-tumor activity of CA has attracted much attention, and this potential has been confirmed both in vitro and in vivo. CA can induce apoptosis in cancer cells via enhancing ROS levels and impairing mitochondrial function. Molecular pathways such as PI3K/Akt and AMPK with role in cancer progression, are affected by CA and its derivatives in cancer therapy. CA is advantageous in reducing aggressive behavior of tumors via suppressing metastasis by inhibiting epithelial-to-mesenchymal transition mechanism. Noteworthy, CA and CAPE can promote response of cancer cells to chemotherapy, and sensitize them to chemotherapy-mediated cell death. In order to improve capacity of CA and CAPE in cancer suppression, it has been co-administered with other anti-tumor compounds such as gallic acid and p-coumaric acid. Due to its poor bioavailability, nanocarriers have been developed for enhancing its ability in cancer suppression. These issues have been discussed in the present review with a focus on molecular pathways to pave the way for rapid translation of CA for clinical use.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | | | - Fatemeh Bakhtiari Far
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc. 6 Tide Street, Boston, MA, 02210, USA
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
36
|
Samec M, Liskova A, Koklesova L, Zhai K, Varghese E, Samuel SM, Šudomová M, Lucansky V, Kassayova M, Pec M, Biringer K, Brockmueller A, Kajo K, Hassan STS, Shakibaei M, Golubnitschaja O, Büsselberg D, Kubatka P. Metabolic Anti-Cancer Effects of Melatonin: Clinically Relevant Prospects. Cancers (Basel) 2021; 13:3018. [PMID: 34208645 PMCID: PMC8234897 DOI: 10.3390/cancers13123018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic reprogramming characterized by alterations in nutrient uptake and critical molecular pathways associated with cancer cell metabolism represents a fundamental process of malignant transformation. Melatonin (N-acetyl-5-methoxytryptamine) is a hormone secreted by the pineal gland. Melatonin primarily regulates circadian rhythms but also exerts anti-inflammatory, anti-depressant, antioxidant and anti-tumor activities. Concerning cancer metabolism, melatonin displays significant anticancer effects via the regulation of key components of aerobic glycolysis, gluconeogenesis, the pentose phosphate pathway (PPP) and lipid metabolism. Melatonin treatment affects glucose transporter (GLUT) expression, glucose-6-phosphate dehydrogenase (G6PDH) activity, lactate production and other metabolic contributors. Moreover, melatonin modulates critical players in cancer development, such as HIF-1 and p53. Taken together, melatonin has notable anti-cancer effects at malignancy initiation, progression and metastasing. Further investigations of melatonin impacts relevant for cancer metabolism are expected to create innovative approaches supportive for the effective prevention and targeted therapy of cancers.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (K.B.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (K.B.)
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (K.B.)
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar; (K.Z.); (E.V.); (S.M.S.)
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar; (K.Z.); (E.V.); (S.M.S.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar; (K.Z.); (E.V.); (S.M.S.)
| | - Miroslava Šudomová
- Museum of Literature in Moravia, Klašter 1, 66461 Rajhrad, Czech Republic;
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 036 01 Martin, Slovakia;
| | - Monika Kassayova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafarik University, 04001 Košice, Slovakia;
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (K.B.)
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (A.B.); (M.S.)
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovakia;
- Biomedical Research Centre, Slovak Academy of Sciences, 81439 Bratislava, Slovakia
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (A.B.); (M.S.)
| | - Olga Golubnitschaja
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1160 Brussels, Belgium;
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar; (K.Z.); (E.V.); (S.M.S.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1160 Brussels, Belgium;
| |
Collapse
|
37
|
Zolfaghari MA, Motavalli R, Soltani-Zangbar MS, Parhizkar F, Danaii S, Aghebati-Maleki L, Noori M, Dolati S, Ahmadi M, Samadi Kafil H, Jadidi-Niaragh F, Ahmadian Heris J, Mahmoodpoor A, Hejazi MS, Yousefi M. A new approach to the preeclampsia puzzle; MicroRNA-326 in CD4 + lymphocytes might be as a potential suspect. J Reprod Immunol 2021; 145:103317. [PMID: 33813342 DOI: 10.1016/j.jri.2021.103317] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 02/09/2023]
Abstract
BACKGROUND Alongside many complications in understanding the etiology of Preeclampsia (PE), several determinants, such as the imbalanced proportion of anti-angiogenic/proangiogenic T-cell subsets, especially CD4+ (Th17/Treg), as well as alterations in the expression profile of related cytokines, miRNAs, and transcription factors might have been implicated in PE pathogenesis. MATERIAL AND METHOD After sample collection and preparation, CD4+ cells were isolated from PE and non-PE pregnant woman and were cultured. Furthermore, analysis such as flow cytometry, real-time PCR, western blotting, and ELISA were performed to assess determinants related to PE manifestation, including sFlt-1, sEng, STAT-3, RORγt, SMAD-7, Foxp3, IL-17, IL-22, Ets-1, and miRNA-326. RESULTS Our results showed that the miRNA-326 expression level increased in CD4+ Cells and Th17 in PE patients which downregulated Ets-1 expression that acts as a negative control for Th17 development. Furthermore, we showed that the number and expression level of Th17 s and transcription factor RORγt escalated, respectively. While Treg and its related transcription factor (Foxp3) demonstrated a decrease. Flow cytometry analysis illustrated that the Th17/Treg ratio increased in PE. Additionally, we demonstrated that expression and concentration levels of cytokines (IL-17 and IL22) and anti-angiogenic molecules (sEng and sFlt-1) soared in isolated CD4+ cells from PE patients, which could be correlated with PE pathogenicity. CONCLUSION In conclusion, we comprehensively evaluated immunological factors and molecules involved in PE manifestation. Interestingly, the CD4+ T-cell subset could be an extra source of antiangiogenic factors for the maintenance of this hypertension disorder.
Collapse
Affiliation(s)
- Mohammad Ali Zolfaghari
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roza Motavalli
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Forough Parhizkar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Center, Eastern Azerbaijan Branch of ACECR, Tabriz, Iran
| | | | - Mohammad Noori
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
Pharmacological Studies on Traditional Plant-Based Remedies. Biomedicines 2021; 9:biomedicines9030315. [PMID: 33808651 PMCID: PMC8003496 DOI: 10.3390/biomedicines9030315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022] Open
Abstract
For years, plant-based remedies have been used as a traditional practice to treat and prevent a broad range of diseases [...].
Collapse
|