1
|
Nakanishi T, Iida S, Ichishi M, Kondo M, Nishimura M, Ichikawa A, Matsushima Y, Iwakura Y, Watanabe M, Yamanaka K. Amelioration of Systemic Amyloidosis by Blocking IL-17A and Not by IL-17F, and Arteriosclerosis by Blocking Both IL-17A and IL-17F in an Inflammatory Skin Mouse Model. Int J Mol Sci 2024; 25:11617. [PMID: 39519167 PMCID: PMC11546614 DOI: 10.3390/ijms252111617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
There are comorbidities and complications in atopic dermatitis and psoriasis that often occur after the appearance of skin inflammation. Statistically, data show that patients with psoriasis and atopic dermatitis have a shorter life expectancy than patients without psoriatic dermatitis, due to the occurrence of arteriosclerosis, myocardial infarction, and cerebral infarction. Many types of skin inflammation are treated with various antibody preparations, and marked improvement in patients' quality of life can be achieved. The next theme is to understand the pathogenesis of arteriosclerosis, myocardial infarction, stroke, and other complications associated with dermatitis and to find treatments and drugs to reduce their occurrence. The skin, a crucial immune organ, generates large amounts of inflammatory cytokines in response to various stimuli, leading to systemic inflammation and potential damage to internal organs. The link between inflammatory skin conditions like psoriasis and atopic dermatitis with serious health complications such as vascular disorders and systemic amyloidosis has been increasingly recognized. In psoriasis, biological treatments targeting Interleukin (IL)-17A, a key cytokine, have shown promise in reducing cardiovascular risks. Recent developments include treatments that target both IL-17A and IL-17F in the psoriasis field, though each cytokine's impact on internal organ damage is still under debate. Among visceral complications secondary to dermatitis, systemic amyloidosis and atherosclerosis have been reported to be controlled by suppressing IL-17 in the early stages of dermatitis. Still, it remains unclear whether suppressing IL-17 prevents organ damage in the late stages of persistent severe dermatitis. A study using a long-lasting dermatitis mouse model that overexpressed human caspase-1 in keratinocytes (Kcasp1Tg) investigated the effects of deleting IL-17A and IL-17F on visceral complications. Cross-mating Kcasp1Tg with IL-17A-, IL-17F-, and IL-17AF-deficient mice assessed the skin and visceral organs histologically, and RT-PCR analysis of aortic sclerosis markers was performed. Despite less improvement in dermatitis, deletion of IL-17A in Kcasp1Tg mice showed promising results in reducing multiple organ amyloidosis. On the other hand, the effect was observed in both IL-17A and IL-17F deleted mice for aortic sclerosis. The inhibition of IL-17A and IL-17F was suggested to reduce the risk of developing comorbidities in internal organs. IL-17A and IL-17F were found to act similarly or produce very different results, depending on the organ.
Collapse
Affiliation(s)
- Takehisa Nakanishi
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Japan; (T.N.); (S.I.); (M.K.); (M.N.); (A.I.); (Y.M.)
| | - Shohei Iida
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Japan; (T.N.); (S.I.); (M.K.); (M.N.); (A.I.); (Y.M.)
| | - Masako Ichishi
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Japan; (M.I.); (M.W.)
| | - Makoto Kondo
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Japan; (T.N.); (S.I.); (M.K.); (M.N.); (A.I.); (Y.M.)
| | - Mai Nishimura
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Japan; (T.N.); (S.I.); (M.K.); (M.N.); (A.I.); (Y.M.)
| | - Ayaka Ichikawa
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Japan; (T.N.); (S.I.); (M.K.); (M.N.); (A.I.); (Y.M.)
| | - Yoshiaki Matsushima
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Japan; (T.N.); (S.I.); (M.K.); (M.N.); (A.I.); (Y.M.)
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-8510, Japan;
| | - Masatoshi Watanabe
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Japan; (M.I.); (M.W.)
| | - Keiichi Yamanaka
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Japan; (T.N.); (S.I.); (M.K.); (M.N.); (A.I.); (Y.M.)
| |
Collapse
|
2
|
Jokar J, Abdulabbas HT, Alipanah H, Ghasemian A, Ai J, Rahimian N, Mohammadisoleimani E, Najafipour S. Tissue engineering studies in male infertility disorder. HUM FERTIL 2023; 26:1617-1635. [PMID: 37791451 DOI: 10.1080/14647273.2023.2251678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/06/2023] [Indexed: 10/05/2023]
Abstract
Infertility is an important issue among couples worldwide which is caused by a variety of complex diseases. Male infertility is a problem in 7% of all men. In vitro spermatogenesis (IVS) is the experimental approach that has been developed for mimicking seminiferous tubules-like functional structures in vitro. Currently, various researchers are interested in finding and developing a microenvironmental condition or a bioartificial testis applied for fertility restoration via gamete production in vitro. The tissue engineering (TE) has developed new approaches to treat male fertility preservation through development of functional male germ cells. This makes TE a possible future strategy for restoration of male fertility. Although 3D culture systems supply the perception of the effect of cellular interactions in the process of spermatogenesis, formation of a native gradient of autocrine/paracrine factors in 3D culture systems have not been considered. These results collectively suggest that maintaining the microenvironment of testicular cells even in the form of a 3D-culture system is crucial in achieving spermatogenesis ex vivo. It is also possible to engineer the testicular structures using biomaterials to provide a supporting scaffold for somatic and stem cells. The insemination of these cells with GFs is possible for temporally and spatially adjusted release to mimic the microenvironment of the in situ seminiferous epithelium. This review focuses on recent studies and advances in the application of TE strategies to cell-tissue culture on synthetic or natural scaffolds supplemented with growth factors.
Collapse
Affiliation(s)
- Javad Jokar
- Department of Tissue Engineering, Faculty of Medicine, Fasa University of Medical Science, Fasa, Iran
| | | | - Hiva Alipanah
- Department of Physiology, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Rahimian
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Mohammadisoleimani
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sohrab Najafipour
- Department of Microbiology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
3
|
Iida S, Shoji H, Kawakita F, Nakanishi T, Matsushima Y, Kondo M, Habe K, Suzuki H, Miyakawa T, Yamanaka K. Inflammatory Skin Disease Causes Anxiety Symptoms Leading to an Irreversible Course. Int J Mol Sci 2023; 24:ijms24065942. [PMID: 36983014 PMCID: PMC10058663 DOI: 10.3390/ijms24065942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/05/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Intense itching significantly reduces the quality of life, and atopic dermatitis is associated with psychiatric conditions, such as anxiety and depression. Psoriasis, another inflammatory skin disease, is often complicated by psychiatric symptoms, including depression; however, the pathogenesis of these mediating factors is poorly understood. This study used a spontaneous dermatitis mouse model (KCASP1Tg) and evaluated the psychiatric symptoms. We also used Janus kinase (JAK) inhibitors to manage the behaviors. Gene expression analysis and RT-PCR of the cerebral cortex of KCASP1Tg and wild-type (WT) mice were performed to examine differences in mRNA expression. KCASP1Tg mice had lower activity, higher anxiety-like behavior, and abnormal behavior. The mRNA expression of S100a8 and Lipocalin 2 (Lcn2) in the brain regions was higher in KCASP1Tg mice. Furthermore, IL-1β stimulation increased Lcn2 mRNA expression in astrocyte cultures. KCASP1Tg mice had predominantly elevated plasma Lcn2 compared to WT mice, which improved with JAK inhibition, but behavioral abnormalities in KCASP1Tg mice did not improve, despite JAK inhibition. In summary, our data revealed that Lcn2 is closely associated with anxiety symptoms, but the anxiety and depression symptoms caused by chronic skin inflammation may be irreversible. This study demonstrated that active control of skin inflammation is essential for preventing anxiety.
Collapse
Affiliation(s)
- Shohei Iida
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake 470-1192, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Takehisa Nakanishi
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Yoshiaki Matsushima
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Makoto Kondo
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Koji Habe
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake 470-1192, Japan
| | - Keiichi Yamanaka
- Department of Dermatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Japan
| |
Collapse
|
8
|
Li C, Ye Z, Zhang AJX, Chan JFW, Song W, Liu F, Chen Y, Kwan MYW, Lee ACY, Zhao Y, Wong BHY, Yip CCY, Cai JP, Lung DC, Sridhar S, Jin D, Chu H, To KKW, Yuen KY. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection by Intranasal or Intratesticular Route Induces Testicular Damage. Clin Infect Dis 2022; 75:e974-e990. [PMID: 35178548 PMCID: PMC8903466 DOI: 10.1093/cid/ciac142] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The role of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the pathogenesis of testicular damage is uncertain. METHODS We investigated the virological, pathological, and immunological changes in testes of hamsters challenged by wild-type SARS-CoV-2 and its variants with intranasal or direct testicular inoculation using influenza virus A(H1N1)pdm09 as control. RESULTS Besides self-limiting respiratory tract infection, intranasal SARS-CoV-2 challenge caused acute decrease in sperm count, serum testosterone and inhibin B at 4-7 days after infection; and chronic reduction in testicular size and weight, and serum sex hormone at 42-120 days after infection. Acute histopathological damage with worsening degree of testicular inflammation, hemorrhage, necrosis, degeneration of seminiferous tubules, and disruption of orderly spermatogenesis were seen with increasing virus inoculum. Degeneration and death of Sertoli and Leydig cells were found. Although viral loads and SARS-CoV-2 nucleocapsid protein expression were markedly lower in testicular than in lung tissues, direct intratesticular injection of SARS-CoV-2 demonstrated nucleocapsid expressing interstitial cells and epididymal epithelial cells, While intranasal or intratesticular challenge by A(H1N1)pdm09 control showed no testicular infection or damage. From 7 to 120 days after infection, degeneration and apoptosis of seminiferous tubules, immune complex deposition, and depletion of spermatogenic cell and spermatozoa persisted. Intranasal challenge with Omicron and Delta variants could also induce similar testicular changes. This testicular damage can be prevented by vaccination. CONCLUSIONS SARS-CoV-2 can cause acute testicular damage with subsequent chronic asymmetric testicular atrophy and associated hormonal changes despite a self-limiting pneumonia in hamsters. Awareness of possible hypogonadism and subfertility is important in managing convalescent coronavirus disease 2019 in men.
Collapse
Affiliation(s)
- Can Li
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Zhanhong Ye
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Anna Jin-Xia Zhang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China,Academician Workstation of Hainan Province, and Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China; and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China,Guangzhou Laboratory, Guangdong Province, China
| | - Wenchen Song
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Feifei Liu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yanxia Chen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Mike Yat-Wah Kwan
- Department of Paediatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Andrew Chak-Yiu Lee
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Yan Zhao
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Bosco Ho-Yin Wong
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Cyril Chik-Yan Yip
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - David Christopher Lung
- Department of Pathology, Queen Elizabeth Hospital / Hong Kong Children’s Hospital, Hong Kong Special Administrative Region, China
| | - Siddharth Sridhar
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Dongyan Jin
- Guangzhou Laboratory, Guangdong Province, China,School of Biomedical Sciences, The University of Hong Kong. Hong Kong Special Administrative Region, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China,Academician Workstation of Hainan Province, and Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China; and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China,Guangzhou Laboratory, Guangdong Province, China,Correspondence: K.-Y. Yuen, State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; and Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China ()
| |
Collapse
|