1
|
Lorenc P, Dams-Kozlowska H, Guzniczak N, Florczak-Substyk A. Application of nanoparticles to target tumor blood vessels as a promising cancer treatment strategy. Biomed Pharmacother 2025; 186:118038. [PMID: 40215646 DOI: 10.1016/j.biopha.2025.118038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025] Open
Abstract
Cancer remains one of the leading causes of death worldwide and poses a significant challenge to effective treatment due to its complexity. Angiogenesis, the formation of new blood vessels, is a critical process in tumor growth and metastasis. The VEGF/VEGFR pathway plays a crucial role in regulating angiogenesis. Many anti-angiogenesis agents, including monoclonal antibodies and tyrosine kinase inhibitors, have been investigated for the treatment of various cancers. However, they face significant limitations such as limited bioavailability and drug resistance. Nanoparticles have emerged as a promising tool for effective drug delivery while minimizing systemic side effects. This review explores the application of nanoparticles dedicated to angiogenesis-targeted cancer therapy, particularly targeting the VEGF/VEGFR pathway. We describe drug delivery systems based on inorganic, lipid, and polymeric nanoparticles. Moreover, special attention is given to functionalized nanoparticles, which can precisely target numerous proteins that are significantly overexpressed on the surfaces of endothelial cells, tumors, or other cells in the tumor microenvironment. We summarize a series of nanoparticles designed for selective targeting of tumor vasculature, emphasizing the challenges faced by anti-angiogenic cancer therapies.
Collapse
Affiliation(s)
- Patryk Lorenc
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61-866, Poland; Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St, Poznan 60-812, Poland
| | - Hanna Dams-Kozlowska
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61-866, Poland
| | - Natalia Guzniczak
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland
| | - Anna Florczak-Substyk
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61-866, Poland.
| |
Collapse
|
2
|
Han X, Zhang X, Kang L, Feng S, Li Y, Zhao G. Peptide-modified nanoparticles for doxorubicin delivery: Strategies to overcome chemoresistance and perspectives on carbohydrate polymers. Int J Biol Macromol 2025; 299:140143. [PMID: 39855525 DOI: 10.1016/j.ijbiomac.2025.140143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Chemotherapy serves as the primary treatment for cancers, facing challenges due to the emergence of drug resistance. Combination therapy has been developed to combat cancer drug resistance, yet it still suffers from lack of specific targeting of cancer cells and poor accumulation at the tumor site. Consequently, targeted administration of chemotherapy medications has been employed in cancer treatment. Doxorubicin (DOX) is one of the most frequently used chemotherapeutics, functioning by inhibiting topoisomerase activity. Enhancing the anti-cancer effects of DOX and overcoming drug resistance can be accomplished via delivery by nanoparticles. This review will focus on the development of peptide-DOX conjugates, the functionalization of nanoparticles with peptides, the co-delivery of DOX and peptides, as well as the theranostic use of peptide-modified nanoparticles in cancer treatment. The peptide-DOX conjugates have been designed to enhance the targeted delivery to cancer cells by interacting with receptors that are overexpressed on tumor surfaces. Moreover, nanoparticles can be modified with peptides to improve their uptake in tumor cells via endocytosis. Nanoparticles have the ability to co-deliver DOX along with therapeutic peptides for enhanced cancer treatment. Finally, nanoparticles modified with peptides can offer theranostic capabilities by facilitating both imaging and the delivery of DOX (chemotherapy).
Collapse
Affiliation(s)
- Xu Han
- Department of Traditional Chinese medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xue Zhang
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, China
| | - Longdan Kang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Shuai Feng
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China.
| | - Yinyan Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China.
| | - Ge Zhao
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Little MJ, Mason JM, Mehrban N. Evolution of branched peptides as novel biomaterials. J Mater Chem B 2025; 13:2226-2241. [PMID: 39835399 PMCID: PMC11747965 DOI: 10.1039/d4tb01897d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Branched peptide-based materials draw inspiration from dendritic structures to emulate the complex architecture of native tissues, aiming to enhance the performance of biomaterials in medical applications. These innovative materials benefit from several key features: they exhibit slower degradation rates, greater stiffness, and the ability to self-assemble. These properties are crucial for maintaining the structural integrity and functionality of the materials over time. By integrating bioactive peptides and natural polymers within their branched frameworks, these materials offer modularity and tunability and can accommodate a range of mechanical properties, degradation rates, and biological functions making them suitable for biomedical applications, including drug delivery systems, wound healing scaffolds, and tissue engineering constructs. In drug delivery, these materials can be engineered to release therapeutic agents in a controlled manner, enhancing the efficacy and safety of treatments. In wound healing, they provide a supportive environment which promotes rapid and efficient tissue repair. The combination of biomimetic design and functional adaptability makes branched peptide-based materials a promising candidate for the development of next-generation biomaterials, paving the way for significant advancements in healthcare.
Collapse
Affiliation(s)
| | - Jody M Mason
- University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Nazia Mehrban
- University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
4
|
Liang W, Zhou C, Liu X, Xie Q, Xia L, Liu L, Bao W, Lin H, Xiong X, Zhang H, Zheng Z, Zhao J. Current status of nano-embedded growth factors and stem cells delivery to bone for targeted repair and regeneration. J Orthop Translat 2025; 50:257-273. [PMID: 39902262 PMCID: PMC11788687 DOI: 10.1016/j.jot.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/01/2024] [Accepted: 12/09/2024] [Indexed: 02/05/2025] Open
Abstract
Bone-related diseases like osteoarthritis and osteoporosis impact millions globally, affecting quality of life. Osteoporosis considerably enhances the probability of bone fractures of the wrist, hip, and spine. Enhancement and acceleration of functional bone development can be achieved through the sustained delivery of growth factors (GFs) and cells in biomaterial carriers. The delivery of bioactive compounds in a targeted, spatiotemporal way that most closely resembles the natural defect repair process can be achieved by designing the carrier system with established release kinetics. Furthermore, the carrier can serve as a substrate that mimics the extracellular matrix, facilitating osteoprogenitor cell infiltration and growth for integrative tissue healing. In this report, we explore the significance of GFs within the realm of bone and cartilage tissue engineering, encompassing their encapsulation and delivery methodologies, the kinetics of release, and their amalgamation with biomaterials and stem cells (SCs) to facilitate the mending of bone fractures. Moreover, the significance of GFs in evaluating the microenvironment of bone tissue through reciprocal signaling with cells and biomaterial scaffolds is emphasized which will serve as the foundation for prospective advances in bone and cartilage tissue engineering as well as therapeutic equipment. Nanoparticles are being used in regenerative medicine to promote bone regeneration and repair by delivering osteoinductive growth factors like BMP-2, VEGF, TGF-β. These nanocarriers allow controlled release, minimizing adverse effects and ensuring growth factors are concentrated at the injury site. They are also mixed with mesenchymal stem cells (MSCs) to improve their engraftment, differentiation, and survival. This approach is a key step in developing multi-model systems that more efficiently facilitate bone regeneration. Researchers are exploring smart nanoparticles with immunomodulatory qualities to improve bonre regeneration and reduce inflammation in injury site. Despite promising preclinical results, challenges include cost management, regulatory approval, and long term safety. However, incorporating stem cell transport and growth factors in nanoparticles could revolutionize bone regeneration and offer more personalized therapies for complex bone disorders and accidents. The translational potential of this article Stem cell transport and growth factors encapsulated in nanoparticles are becoming revolutionary methods for bone regeneration and repair. By encouraging stem cells to develop into osteoblasts, osteoinductive GFs like BMP-2, VEGF, and TGF-β can be delivered under control due to nanomaterials like nanoparticles, nanofibers, and nanotubes. By ensuring sustained release, these nanocarriers lessen adverse effects and enhance therapeutic results. In order to prove their survival and development, MCSs, which are essential for bone regeneration, are mixed with nanoparticles, frequently using scaffolds that resemble the ECM of bone. Furthermore, by adjusting to the injured environment and lowering inflammation, immunomodulatory nanostructures and stimuli-responsive nanomaterials can further maximize. While there are still shotcomings to overcome, including managing expenses, negotiating regulatory processes, and guaranteeing long-term safety, this method promises to outperform traditional bone grafting by providing quicker, more individualized, and more efficient treatments. Nano-embedded growth factors and stem cell technologies have the potential to revolutionize orthopedic therapy and significantly enhance patient outcomes with further research.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, 316000, China
| | - Xiankun Liu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Qiong Xie
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Linying Xia
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Lu Liu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Wenwen Bao
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Hongming Lin
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Xiaochun Xiong
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Hao Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Zeping Zheng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| |
Collapse
|
5
|
Neaz S, Alam MM, Imran AB. Advancements in cyclodextrin-based controlled drug delivery: Insights into pharmacokinetic and pharmacodynamic profiles. Heliyon 2024; 10:e39917. [PMID: 39553547 PMCID: PMC11567044 DOI: 10.1016/j.heliyon.2024.e39917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
This article discusses and summarizes some fascinating outcomes and applications of cyclodextrins (CDs) and their derivatives in drug delivery. These applications include the administration of protein, peptide medications, and gene delivery. Several innovative drug delivery systems, including NPs, microspheres, microcapsules, and liposomes, are designed with the help of CD, which is highlighted in this article. The use of these compounds as excipients in medicine formulation is reviewed, in addition to their well-known effects on drug solubility and dissolution, as well as their bioavailability, safety, and stability. Furthermore, the article focuses on many factors that influence the development of inclusion complexes, as having this information is necessary to manage these diverse materials effectively. An overview of the commercial availability, regulatory status, and patent status of CDs for pharmaceutical formulation is also presented. Due to the fact that CDs can discover new uses in drug delivery consistently, it is predicted that they will solve a wide range of issues related to the distribution of a variety of unique medications through various delivery channels.
Collapse
Affiliation(s)
- Sharif Neaz
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Md Mahbub Alam
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| |
Collapse
|
6
|
Chen X, Zhao Z, Laster KV, Liu K, Dong Z. Advancements in therapeutic peptides: Shaping the future of cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189197. [PMID: 39413854 DOI: 10.1016/j.bbcan.2024.189197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
In the evolving landscape of cancer treatment, therapeutic peptides are assuming to play an increasingly vital role. Although the number of peptide drugs available for clinical cancer treatment is currently limited, extensive preclinical research is underway, presenting a promising trajectory for the future. The collaborative efforts of natural anti-cancer peptides (ACPs) and synthetic ACPs, propelled by advancements in molecular biology and peptide chemistry, are steering remarkable progress in this domain. We explores the intricate mechanisms underlying the anti-cancer effects of these peptides. The exploration of innovative strategies, including cancer immunotherapy and advanced drug delivery systems, is likely to contribute to the increasing presenceuse of peptide drugs in clinical cancer care. Furthermore, we delve into the potential implications and challenges associated with this anticipated shift, emphasizing the need for continued research and development to unlock the full therapeutic potential of peptide drugs in cancer treatment.
Collapse
Affiliation(s)
- Xiaojie Chen
- School of Basic Medical Sciences, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China
| | - Zhiwei Zhao
- School of Basic Medical Sciences, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | | | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China; Research Center of Basic Medicine Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China; Research Center of Basic Medicine Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Agwa MM, Elmotasem H, El-Lakany SA. Small molecules and peptide ligands directed nano-therapeutics for precise oncological phototherapy: Emphasis towards enhancing chemotherapeutic active tumor targeting efficacy. J Drug Deliv Sci Technol 2024; 101:106313. [DOI: 10.1016/j.jddst.2024.106313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Liguori A, Zhao J, Di Gesù R, De Marco R, Gualandi C, Calonghi N, Pollicino A, Gentilucci L, Focarete ML. Peptide direct growth on poly(acrylic acid)/poly(vinyl alcohol) electrospun fibers coated with branched poly(ethylenimine): A solid-phase approach for scaffolds biofunctionalization. Colloids Surf B Biointerfaces 2024; 241:114052. [PMID: 38917667 DOI: 10.1016/j.colsurfb.2024.114052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Due to their resemblance to the fibrillar structure of the extracellular matrix, electrospun nanofibrous meshes are currently used as porous and mechanically stable scaffolds for cell culture. In this study, we propose an innovative methodology for growing peptide sequences directly onto the surface of electrospun nanofibers. To achieve this, electrospun fibers were produced from a poly(acrylic acid)/poly(vinyl alcohol) blend that was thermally crosslinked and subjected to a covalent coating of branched poly(ethylenimine). The exposed amino functionalities on the fiber surface were then used for the direct solid-phase synthesis of the RGD peptide sequence. In contrast to established strategies, mainly involving the grafting of pre-synthesized peptides onto the polymer chains before electrospinning or onto the nanofibers surface, this method allows for the concurrent synthesis and anchoring of peptides to the substrate, with potential applications in combinatorial chemistry. The incorporation of this integrin-binding motive significantly enhanced the nanofibers' ability to capture human cervical carcinoma (HeLa) cells, selected as a proof of concept to assess the functionalities of the developed material.
Collapse
Affiliation(s)
- Anna Liguori
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna 40126, Italy
| | - Junwei Zhao
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna 40126, Italy
| | - Roberto Di Gesù
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna 40126, Italy; Ri.MED Foundation, Bandiera st. 11, Palermo 90133, Italy
| | - Rossella De Marco
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna 40126, Italy
| | - Chiara Gualandi
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna 40126, Italy; Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento, 2, Bologna 40136, Italy
| | - Natalia Calonghi
- Department of Pharmacy and Biotechnology, University of Bologna, via Irnerio 48, Bologna 40126, Italy
| | - Antonino Pollicino
- Department of Civil Engineering and Architecture, University of Catania, via S. Sofia 64, Catania 95125, Italy
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna 40126, Italy; Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, Ozzano Emilia Bologna 40064, Italy.
| | - Maria Letizia Focarete
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna 40126, Italy; Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, Ozzano Emilia Bologna 40064, Italy.
| |
Collapse
|
9
|
Sufiyan M, Kushwaha P, Ahmad M, Mandal P, Vishwakarma KK. Scaffold-Mediated Drug Delivery for Enhanced Wound Healing: A Review. AAPS PharmSciTech 2024; 25:137. [PMID: 38877197 DOI: 10.1208/s12249-024-02855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
Wound healing is a complex physiological process involving coordinated cellular and molecular events aimed at restoring tissue integrity. Acute wounds typically progress through the sequential phases of hemostasis, inflammation, proliferation, and remodeling, while chronic wounds, such as venous leg ulcers and diabetic foot ulcers, often exhibit prolonged inflammation and impaired healing. Traditional wound dressings, while widely used, have limitations such poor moisture retention and biocompatibility. To address these challenges and improve patient outcomes, scaffold-mediated delivery systems have emerged as innovative approaches. They offer advantages in creating a conducive environment for wound healing by facilitating controlled and localized drug delivery. The manuscript explores scaffold-mediated delivery systems for wound healing applications, detailing the use of natural and synthetic polymers in scaffold fabrication. Additionally, various fabrication techniques are discussed for their potential in creating scaffolds with controlled drug release kinetics. Through a synthesis of experimental findings and current literature, this manuscript elucidates the promising potential of scaffold-mediated drug delivery in improving therapeutic outcomes and advancing wound care practices.
Collapse
Affiliation(s)
- Mohd Sufiyan
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| | - Poonam Kushwaha
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India.
| | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| | - Purba Mandal
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| | | |
Collapse
|
10
|
Guo X, Zhang Y, Li Q, Shi F, HuangFu Y, Li J, Lao X. The influence of a modified p53 C-terminal peptide by using a tumor-targeting sequence on cellular apoptosis and tumor treatment. Apoptosis 2024; 29:865-881. [PMID: 38145442 DOI: 10.1007/s10495-023-01926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 12/26/2023]
Abstract
The restoration of the function of p53 in tumors is a therapeutic strategy for the highly frequent mutation of the TP53 tumor suppressor gene. P460 is a wild-type peptide derived from the p53 C-terminus and has been proven to be capable of restoring the tumor suppressor function of p53. The poor accumulation of drugs in tumors is a serious hindrance to tumor treatment. For enhancing the activity of P460, the tumor-targeting sequence Arg-Gly-Asp-Arg (RGDR, C-end rule peptide) was introduced into the C-terminus of P460 to generate the new peptide P462. P462 presented better activity than P460 in inhibiting the proliferation of cancer cells and increasing the number of tumor cells undergoing apoptosis. Cell adhesion analysis and tumor imaging results revealed that P462 showed more specific and extensive binding with tumor cells and greater accumulation in tumors than the wild-type peptide. Importantly, treatment with P462 was more efficacious than that with P460 in vivo and was associated with considerably improved tumor-homing activity. This study highlights the importance of the roles of the tumor-homing sequence RGDR in the enhancement in cell attachment and tumor accumulation. The results of this work indicate that P462 could be a novel drug candidate for tumor treatment.
Collapse
Affiliation(s)
- Xiaoye Guo
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China
| | - Yiming Zhang
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China
| | - Qian Li
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China
| | - Fangxin Shi
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China
| | - Yifan HuangFu
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China
| | - Jing Li
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China.
| | - Xingzhen Lao
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China.
| |
Collapse
|
11
|
Chen J, Liu Z, Wang Z, Zhang X, Zhang Y, Zhan Z, Gong X, Xu T. One-step biofabrication of liquid core-GelMa shell microbeads for in situ hollow cell ball self-assembly. Regen Biomater 2024; 11:rbae021. [PMID: 38525324 PMCID: PMC10960924 DOI: 10.1093/rb/rbae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/14/2024] [Accepted: 02/09/2024] [Indexed: 03/26/2024] Open
Abstract
There are many instances of hollow-structure morphogenesis in the development of tissues. Thus, the fabrication of hollow structures in a simple, high-throughput and homogeneous manner with proper natural biomaterial combination is valuable for developmental studies and tissue engineering, while it is a significant challenge in biofabrication field. We present a novel method for the fabrication of a hollow cell module using a coaxial co-flow capillary microfluidic device. Sacrificial gelatin laden with cells in the inner layer and GelMa in the outer layer are used via a coaxial co-flow capillary microfluidic device to produce homogenous micro-beads. The overall and core sizes of core-shell microbeads were well controlled. When using human vein vascular endothelial cells to demonstrate how cells line the inner surface of core-shell beads, as the core liquifies, a hollow cell ball with asymmetric features is fabricated. After release from the GelMa shell, individual cell balls are obtained and deformed cell balls can self-recover. This platform paves way for complex hollow tissue modeling in vitro, and further modulation of matrix stiffness, curvature and biochemical composition to mimic in vivo microenvironments.
Collapse
Affiliation(s)
- Jianwei Chen
- Bio-intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen 518057, People’s Republic of China
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People’s Republic of China
| | - Zeyang Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Nanshan District, People’s Republic of China
| | - Zixian Wang
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People’s Republic of China
| | - Xiuxiu Zhang
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People’s Republic of China
| | - Yi Zhang
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People’s Republic of China
| | - Zhen Zhan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Nanshan District, People’s Republic of China
| | - Xiaohua Gong
- School of Optometry and Vision Science Program, University of California, Berkeley, CA 94720, USA
| | - Tao Xu
- Bio-intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen 518057, People’s Republic of China
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People’s Republic of China
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People’s Republic of China
| |
Collapse
|
12
|
He T, Giacomini D, Tolomelli A, Baiula M, Gentilucci L. Conjecturing about Small-Molecule Agonists and Antagonists of α4β1 Integrin: From Mechanistic Insight to Potential Therapeutic Applications. Biomedicines 2024; 12:316. [PMID: 38397918 PMCID: PMC10887150 DOI: 10.3390/biomedicines12020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Integrins are heterodimeric cell-surface receptors that regulate cell-cell adhesion and cellular functions through bidirectional signaling. On the other hand, anomalous trafficking of integrins is also implicated in severe pathologies as cancer, thrombosis, inflammation, allergies, and multiple sclerosis. For this reason, they are attractive candidates as drug targets. However, despite promising preclinical data, several anti-integrin drugs failed in late-stage clinical trials for chronic indications, with paradoxical side effects. One possible reason is that, at low concentration, ligands proposed as antagonists may also act as partial agonists. Hence, the comprehension of the specific structural features for ligands' agonism or antagonism is currently of the utmost interest. For α4β1 integrin, the situation is particularly obscure because neither the crystallographic nor the cryo-EM structures are known. In addition, very few potent and selective agonists are available for investigating the mechanism at the basis of the receptor activation. In this account, we discuss the physiological role of α4β1 integrin and the related pathologies, and review the few agonists. Finally, we speculate on plausible models to explain agonism vs. antagonism by comparison with RGD-binding integrins and by analysis of computational simulations performed with homology or hybrid receptor structures.
Collapse
Affiliation(s)
- Tingting He
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Gobetti 83, Ue4, 40129 Bologna, Italy; (T.H.); (D.G.); (A.T.)
| | - Daria Giacomini
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Gobetti 83, Ue4, 40129 Bologna, Italy; (T.H.); (D.G.); (A.T.)
| | - Alessandra Tolomelli
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Gobetti 83, Ue4, 40129 Bologna, Italy; (T.H.); (D.G.); (A.T.)
| | - Monica Baiula
- Department of Pharmacology and Biotechnology (FABIT), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy;
| | - Luca Gentilucci
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Gobetti 83, Ue4, 40129 Bologna, Italy; (T.H.); (D.G.); (A.T.)
- Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy
| |
Collapse
|
13
|
Ciobanasu C, Pernier J, Le Clainche C. Integrin Facilitates the Internalization of TAT Peptide Conjugated to RGD Motif in Model Lipid Membranes. Chembiochem 2024; 25:e202300642. [PMID: 37947251 DOI: 10.1002/cbic.202300642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
In recent years, targeted drug delivery has attracted a great interest for enhanced therapeutic efficiency, with diminished side effects, especially in cancer therapy. Cell penetrating peptides (CPPs) like HIV1-TAT peptides, appear to be the perfect vectors for translocating drugs or other cargoes across the plasma membrane, but their application is limited mostly due to insufficient specificity for intended targets. Although these molecules were successfully used, the mechanism by which the peptides enter the cell interior still needs to be clarified. The tripeptide motif RGD (arginine-glycine-aspartate), found in extracellular matrix proteins has high affinity for integrin receptors overexpressed in cancer and it is involved in different phases of disease progression, including proliferation, invasion and migration. Discovery of new peptides with high binding affinity for disease receptors and permeability of plasma membranes is desirable for both, development of targeted drug delivery systems and early detection and diagnosis. To complement the TAT peptide with specific targeting ability, we conjugated it with an integrin-binding RGD motif. Although the idea of RGD-CPPs conjugates is not entirely new,[1] here we describe the permeability abilities and specificity of integrin receptors of RGD-TAT peptides in model membranes. Our findings reveal that this novel RGD sequence based on TAT peptide maintains its ability to permeate lipid membranes and exhibits specificity for integrin receptors embedded in giant unilamellar vesicles. This promising outcome suggests that the RGD-TAT peptide has significant potential for applications in the field of targeted drug delivery systems.
Collapse
Affiliation(s)
- Corina Ciobanasu
- Department of Exact and Natural Sciences Institute of Interdisciplinary Research, Alexandru I. Cuza University, Bulevardul Carol I, Nr. 11, 700506, Iasi, Romania
| | - Julien Pernier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
- Tumor Cell Dynamics Unit Inserm U1279 Gustave Roussy Institute, Université Paris-Saclay, Villejuif, 94800, France
| | - Christophe Le Clainche
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| |
Collapse
|
14
|
Rochet LNC, Bahou C, Wojciechowski JP, Koutsopetras I, Britton P, Spears RJ, Thanasi IA, Shao B, Zhong L, Bučar DK, Aliev AE, Porter MJ, Stevens MM, Baker JR, Chudasama V. Use of pyridazinediones for tuneable and reversible covalent cysteine modification applied to peptides, proteins and hydrogels. Chem Sci 2023; 14:13743-13754. [PMID: 38075666 PMCID: PMC10699563 DOI: 10.1039/d3sc04976k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/27/2023] [Indexed: 05/02/2024] Open
Abstract
Reversible cysteine modification has been found to be a useful tool for a plethora of applications such as selective enzymatic inhibition, activity-based protein profiling and/or cargo release from a protein or a material. However, only a limited number of reagents display reliable dynamic/reversible thiol modification and, in most cases, many of these reagents suffer from issues of stability, a lack of modularity and/or poor rate tunability. In this work, we demonstrate the potential of pyridazinediones as novel reversible and tuneable covalent cysteine modifiers. We show that the electrophilicity of pyridazinediones correlates to the rates of the Michael addition and retro-Michael deconjugation reactions, demonstrating that pyridazinediones provide an enticing platform for readily tuneable and reversible thiol addition/release. We explore the regioselectivity of the novel reaction and unveil the reason for the fundamental increased reactivity of aryl bearing pyridazinediones by using DFT calculations and corroborating findings with SCXRD. We also applied this fundamental discovery to making more rapid disulfide rebridging agents in related work. We finally provide the groundwork for potential applications in various areas with exemplification using readily functionalised "clickable" pyridazinediones on clinically relevant cysteine and disulfide conjugated proteins, as well as on a hydrogel material.
Collapse
Affiliation(s)
- Léa N C Rochet
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Calise Bahou
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Jonathan P Wojciechowski
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London London SW7 2AZ UK
| | - Ilias Koutsopetras
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg 74 Route du Rhin 67400 Illkirch-Graffenstaden France
| | - Phyllida Britton
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Richard J Spears
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Ioanna A Thanasi
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Baihao Shao
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London London SW7 2AZ UK
| | - Lisha Zhong
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London London SW7 2AZ UK
| | - Dejan-Krešimir Bučar
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Abil E Aliev
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Michael J Porter
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London London SW7 2AZ UK
| | - James R Baker
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Vijay Chudasama
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
15
|
Novoseletskaya ES, Evdokimov PV, Efimenko AY. Extracellular matrix-induced signaling pathways in mesenchymal stem/stromal cells. Cell Commun Signal 2023; 21:244. [PMID: 37726815 PMCID: PMC10507829 DOI: 10.1186/s12964-023-01252-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
The extracellular matrix (ECM) is a crucial component of the stem cell microenvironment, or stem-cell niches, and contributes to the regulation of cell behavior and fate. Accumulating evidence indicates that different types of stem cells possess a large variety of molecules responsible for interactions with the ECM, mediating specific epigenetic rearrangements and corresponding changes in transcriptome profile. Signals from the ECM are crucial at all stages of ontogenesis, including embryonic and postnatal development, as well as tissue renewal and repair. The ECM could regulate stem cell transition from a quiescent state to readiness to perceive the signals of differentiation induction (competence) and the transition between different stages of differentiation (commitment). Currently, to unveil the complex networks of cellular signaling from the ECM, multiple approaches including screening methods, the analysis of the cell matrixome, and the creation of predictive networks of protein-protein interactions based on experimental data are used. In this review, we consider the existing evidence regarded the contribution of ECM-induced intracellular signaling pathways into the regulation of stem cell differentiation focusing on mesenchymal stem/stromal cells (MSCs) as well-studied type of postnatal stem cells totally depended on signals from ECM. Furthermore, we propose a system biology-based approach for the prediction of ECM-mediated signal transduction pathways in target cells. Video Abstract.
Collapse
Affiliation(s)
- Ekaterina Sergeevna Novoseletskaya
- Faculty of Biology, Dayun New Town, Shenzhen MSU-BIT University, 1 International University Park Road, Dayun New Town, Longgang District, Shenzhen, Guangdong Province, P. R. China.
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosov Ave., 27/10, 119991, Moscow, Russia.
| | - Pavel Vladimirovich Evdokimov
- Materials Science Department, Lomonosov Moscow State University, Leninskie Gory, 1, Building 73, 119991, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, 1-3, Moscow, Russia
| | - Anastasia Yurievna Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosov Ave., 27/10, 119991, Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosov Ave., 27/1, 119991, Moscow, Russia
| |
Collapse
|
16
|
Gerencer M, McGuffin LJ. Are the integrin binding motifs within SARS CoV-2 spike protein and MHC class II alleles playing the key role in COVID-19? Front Immunol 2023; 14:1177691. [PMID: 37492575 PMCID: PMC10364474 DOI: 10.3389/fimmu.2023.1177691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/22/2023] [Indexed: 07/27/2023] Open
Abstract
The previous studies on the RGD motif (aa403-405) within the SARS CoV-2 spike (S) protein receptor binding domain (RBD) suggest that the RGD motif binding integrin(s) may play an important role in infection of the host cells. We also discussed the possible role of two other integrin binding motifs that are present in S protein: LDI (aa585-587) and ECD (661-663), the motifs used by some other viruses in the course of infection. The MultiFOLD models for protein structure analysis have shown that the ECD motif is clearly accessible in the S protein, whereas the RGD and LDI motifs are partially accessible. Furthermore, the amino acids that are present in Epstein-Barr virus protein (EBV) gp42 playing very important role in binding to the HLA-DRB1 molecule and in the subsequent immune response evasion, are also present in the S protein heptad repeat-2. Our MultiFOLD model analyses have shown that these amino acids are clearly accessible on the surface in each S protein chain as monomers and in the homotrimer complex and bind to HLA-DRB1 β chain. Therefore, they may have the identical role in SARS CoV-2 immune evasion as in EBV infection. The prediction analyses of the MHC class II binding peptides within the S protein have shown that the RGD motif is present in the core 9-mer peptide IRGDEVRQI within the two HLA-DRB1*03:01 and HLA-DRB3*01.01 strong binding 15-mer peptides suggesting that RGD motif may be the potential immune epitope. Accordingly, infected HLA-DRB1*03:01 or HLA-DRB3*01.01 positive individuals may develop high affinity anti-RGD motif antibodies that react with the RGD motif in the host proteins, like fibrinogen, thrombin or von Willebrand factor, affecting haemostasis or participating in autoimmune disorders.
Collapse
Affiliation(s)
| | - Liam J. McGuffin
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
17
|
Ibarra J, Encinas-Basurto D, Almada M, Juárez J, Valdez MA, Barbosa S, Taboada P. Gold Half-Shell-Coated Paclitaxel-Loaded PLGA Nanoparticles for the Targeted Chemo-Photothermal Treatment of Cancer. MICROMACHINES 2023; 14:1390. [PMID: 37512701 PMCID: PMC10384528 DOI: 10.3390/mi14071390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Conventional cancer therapies suffer from nonspecificity, drug resistance, and a poor bioavailability, which trigger severe side effects. To overcome these disadvantages, in this study, we designed and evaluated the in vitro potential of paclitaxel-loaded, PLGA-gold, half-shell nanoparticles (PTX-PLGA/Au-HS NPs) conjugated with cyclo(Arg-Gly-Asp-Phe-Lys) (cyRGDfk) as a targeted chemo-photothermal therapy system in HeLa and MDA-MB-231 cancer cells. A TEM analysis confirmed the successful gold half-shell structure formation. High-performance liquid chromatography showed an encapsulation efficiency of the paclitaxel inside nanoparticles of more than 90%. In the release study, an initial burst release of about 20% in the first 24 h was observed, followed by a sustained drug release for a period as long as 10 days, reaching values of about 92% and 49% for NPs with and without near infrared laser irradiation. In in vitro cell internalization studies, targeted nanoparticles showed a higher accumulation than nontargeted nanoparticles, possibly through a specific interaction of the cyRGDfk with their homologous receptors, the ανβ3 y ανβ5 integrins on the cell surface. Compared with chemotherapy or photothermal treatment alone, the combined treatment demonstrated a synergistic effect, reducing the cell viability to 23% for the HeLa cells and 31% for the MDA-MB-231 cells. Thus, our results indicate that these multifuncional nanoparticles can be considered to be a promising targeted chemo-photothermal therapy system against cancer.
Collapse
Affiliation(s)
- Jaime Ibarra
- Departamento de Física, Matemáticas e Ingeniería, Universidad de Sonora, Campus Navojoa, Navojoa 85880, Sonora, Mexico
| | - David Encinas-Basurto
- Departamento de Física, Matemáticas e Ingeniería, Universidad de Sonora, Campus Navojoa, Navojoa 85880, Sonora, Mexico
| | - Mario Almada
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Campus Navojoa, Navojoa 85880, Sonora, Mexico
| | - Josué Juárez
- Departamento de Física, Universidad de Sonora, Campus Hermosillo, Hermosillo 83000, Sonora, Mexico
| | - Miguel Angel Valdez
- Departamento de Física, Universidad de Sonora, Campus Hermosillo, Hermosillo 83000, Sonora, Mexico
| | - Silvia Barbosa
- Departamento de Física de Partículas, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, A Coruña, Spain
| | - Pablo Taboada
- Departamento de Física de Partículas, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
18
|
Yaralı Çevik ZB, Karaman O, Topaloğlu N. Synergistic effects of integrin binding peptide (RGD) and photobiomodulation therapies on bone-like microtissues to enhance osteogenic differentiation. BIOMATERIALS ADVANCES 2023; 149:213392. [PMID: 36965403 DOI: 10.1016/j.bioadv.2023.213392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/24/2023] [Accepted: 03/15/2023] [Indexed: 05/02/2023]
Abstract
Bone tissue engineering aims to diversify and enhance the strategies for bone regeneration to overcome bone-related health problems. Bone mimetic peptides such as Gly-Arg-Gly-Asp-Ser (RGD) are useful tools for osteogenic differentiation. Similarly, photobiomodulation (PBM) at 600-800 nm of wavelength range improves bone tissue healing via the production of intracellular reactive oxygen species (ROS), ATP synthesis, and nitric oxide (NO) release. Besides, traditional monolayer cell culture models have limited conditions to exhibit the details of a mechanism such as a peptide or PBM therapy. However, scaffold-free microtissues (SFMs) can mimic a tissue more properly and be an efficient way to understand the mechanism of therapy via cell-cell interaction. Thus, the synergistic effects of RGD peptide (1 mM) and PBM applications (1 J/cm2 energy density at 655 nm of wavelength and 5 J/cm2 energy density at 808 nm of wavelength) were evaluated on SFMs formed with the co-culture of Human Bone Marrow Stem Cells (hBMSC) and Human Umbilical Vein Endothelial Cells (HUVEC) for osteogenic differentiation. Cell viability assays, mechanistic analysis, and the evaluation of osteogenic differentiation markers were performed. Combined therapies of RGD and PBM were more successful to induce osteogenic differentiation than single therapies. Especially, RGD + PBM at 655 nm group exhibited a higher capability of osteogenic differentiation via ROS production, ATP synthesis, and NO release. It can be concluded that the concomitant use of RGD and PBM may enhance bone regeneration and become a promising therapeutic tool to heal bone-related problems in clinics.
Collapse
Affiliation(s)
- Ziyşan Buse Yaralı Çevik
- Biomedical Test Calibration Application and Research Center, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey; Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey.
| | - Ozan Karaman
- Biomedical Test Calibration Application and Research Center, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey; Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey; Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey.
| | - Nermin Topaloğlu
- Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey; Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Çiğli, Izmir 35620, Turkey.
| |
Collapse
|
19
|
Baiula M, Anselmi M, Musiani F, Ghidini A, Carbone J, Caligiana A, Maurizio A, Spampinato S, Gentilucci L. Design, Pharmacological Characterization, and Molecular Docking of Minimalist Peptidomimetic Antagonists of α 4β 1 Integrin. Int J Mol Sci 2023; 24:ijms24119588. [PMID: 37298541 DOI: 10.3390/ijms24119588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Integrin receptors mediate cell-cell interactions via the recognition of cell-adhesion glycoproteins, as well as via the interactions of cells with proteins of the extracellular matrix, and upon activation they transduce signals bi-directionally across the cell membrane. In the case of injury, infection, or inflammation, integrins of β2 and α4 families participate in the recruitment of leukocytes, a multi-step process initiated by the capturing of rolling leukocytes and terminated by their extravasation. In particular, α4β1 integrin is deeply involved in leukocyte firm adhesion preceding extravasation. Besides its well-known role in inflammatory diseases, α4β1 integrin is also involved in cancer, being expressed in various tumors and showing an important role in cancer formation and spreading. Hence, targeting this integrin represents an opportunity for the treatment of inflammatory disorders, some autoimmune diseases, and cancer. In this context, taking inspiration from the recognition motives of α4β1 integrin with its natural ligands FN and VCAM-1, we designed minimalist α/β hybrid peptide ligands, with our approach being associated with a retro strategy. These modifications are expected to improve the compounds' stability and bioavailability. As it turned out, some of the ligands were found to be antagonists, being able to inhibit the adhesion of integrin-expressing cells to plates coated with the natural ligands without inducing any conformational switch and any activation of intracellular signaling pathways. An original model structure of the receptor was generated using protein-protein docking to evaluate the bioactive conformations of the antagonists via molecular docking. Since the experimental structure of α4β1 integrin is still unknown, the simulations might also shed light on the interactions between the receptor and its native protein ligands.
Collapse
Affiliation(s)
- Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Michele Anselmi
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale Fanin 40, 40126 Bologna, Italy
| | - Alessia Ghidini
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Jacopo Carbone
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Alberto Caligiana
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Andrea Maurizio
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Health Sciences & Technologies (HST) CIRI, University of Bologna, 40064 Ozzano Emilia, Italy
| |
Collapse
|
20
|
Camana G, Tavano M, Li M, Castiglione F, Rossi F, Cellesi F. Design of Functional Pluronic-Based Precursors for Tailoring Hydrogel Thermoresponsiveness and Cell-Adhesive Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2749. [PMID: 37049043 PMCID: PMC10095789 DOI: 10.3390/ma16072749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
In this study, functional Pluronic F127 precursors were designed and synthesized for the preparation of thermosensitive hydrogels. Using linear Pluronic thioacetate and Pluronic multi-acrylate precursors, F127-based hydrogels were prepared through thioacetate deprotection-mediated Michael-type addition. The properties of these gels were compared to those obtained through free radical crosslinking of F127 diacrylate. Temperature was found to have a clear influence on gel swelling as a result of F127 thermoresponsiveness. The macromolecular architecture and functionality of the precursors were also optimized and characterized in terms of gelation kinetics and drug diffusion. In vitro tests were conducted on fibroblasts and endothelial cells to assess their response to cellular adhesion with Pluronic gels that were functionalized with an RGD peptide or pretreated with serum proteins to promote cell adhesion. This study provides a method for creating tailored hydrogels suitable for various biomedical applications, such as soft-tissue engineering, cell encapsulation, wound healing, and sustained delivery of therapeutic molecules.
Collapse
Affiliation(s)
- Giulia Camana
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Mirko Tavano
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Min Li
- Renal Research Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
| | - Franca Castiglione
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Filippo Rossi
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Francesco Cellesi
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| |
Collapse
|
21
|
Anselmi M, Baiula M, Spampinato S, Artali R, He T, Gentilucci L. Design and Pharmacological Characterization of α 4β 1 Integrin Cyclopeptide Agonists: Computational Investigation of Ligand Determinants for Agonism versus Antagonism. J Med Chem 2023; 66:5021-5040. [PMID: 36976921 PMCID: PMC10108353 DOI: 10.1021/acs.jmedchem.2c02098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
α4β1 integrin is a cell adhesion receptor deeply involved in the migration and accumulation of leukocytes. Therefore, integrin antagonists that inhibit leukocytes recruitment are currently regarded as a therapeutic opportunity for the treatment of inflammatory disorder, including leukocyte-related autoimmune diseases. Recently, it has been suggested that integrin agonists capable to prevent the release of adherent leukocytes might serve as therapeutic agents as well. However, very few α4β1 integrin agonists have been discovered so far, thus precluding the investigation of their potential therapeutic efficacy. In this perspective, we synthesized cyclopeptides containing the LDV recognition motif found in the native ligand fibronectin. This approach led to the discovery of potent agonists capable to increase the adhesion of α4 integrin-expressing cells. Conformational and quantum mechanics computations predicted distinct ligand-receptor interactions for antagonists or agonists, plausibly referable to receptor inhibition or activation.
Collapse
Affiliation(s)
- Michele Anselmi
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | | | - Tingting He
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy
| |
Collapse
|
22
|
Tvaroška I, Kozmon S, Kóňa J. Molecular Modeling Insights into the Structure and Behavior of Integrins: A Review. Cells 2023; 12:cells12020324. [PMID: 36672259 PMCID: PMC9856412 DOI: 10.3390/cells12020324] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Integrins are heterodimeric glycoproteins crucial to the physiology and pathology of many biological functions. As adhesion molecules, they mediate immune cell trafficking, migration, and immunological synapse formation during inflammation and cancer. The recognition of the vital roles of integrins in various diseases revealed their therapeutic potential. Despite the great effort in the last thirty years, up to now, only seven integrin-based drugs have entered the market. Recent progress in deciphering integrin functions, signaling, and interactions with ligands, along with advancement in rational drug design strategies, provide an opportunity to exploit their therapeutic potential and discover novel agents. This review will discuss the molecular modeling methods used in determining integrins' dynamic properties and in providing information toward understanding their properties and function at the atomic level. Then, we will survey the relevant contributions and the current understanding of integrin structure, activation, the binding of essential ligands, and the role of molecular modeling methods in the rational design of antagonists. We will emphasize the role played by molecular modeling methods in progress in these areas and the designing of integrin antagonists.
Collapse
Affiliation(s)
- Igor Tvaroška
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Correspondence:
| | - Stanislav Kozmon
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| | - Juraj Kóňa
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| |
Collapse
|
23
|
Bargel H, Trossmann VT, Sommer C, Scheibel T. Bioselectivity of silk protein-based materials and their bio-inspired applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:902-921. [PMID: 36127898 PMCID: PMC9475208 DOI: 10.3762/bjnano.13.81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Adhesion to material surfaces is crucial for almost all organisms regarding subsequent biological responses. Mammalian cell attachment to a surrounding biological matrix is essential for maintaining their survival and function concerning tissue formation. Conversely, the adhesion and presence of microbes interferes with important multicellular processes of tissue development. Therefore, tailoring bioselective, biologically active, and multifunctional materials for biomedical applications is a modern focus of biomaterial research. Engineering biomaterials that stimulate and interact with cell receptors to support binding and subsequent physiological responses of multicellular systems attracted much interest in the last years. Further to this, the increasing threat of multidrug resistance of pathogens against antibiotics to human health urgently requires new material concepts for preventing microbial infestation and biofilm formation. Thus, materials exhibiting microbial repellence or antimicrobial behaviour to reduce inflammation, while selectively enhancing regeneration in host tissues are of utmost interest. In this context, protein-based materials are interesting candidates due to their natural origin, biological activity, and structural properties. Silk materials, in particular those made of spider silk proteins and their recombinant counterparts, are characterized by extraordinary properties including excellent biocompatibility, slow biodegradation, low immunogenicity, and non-toxicity, making them ideally suited for tissue engineering and biomedical applications. Furthermore, recombinant production technologies allow for application-specific modification to develop adjustable, bioactive materials. The present review focusses on biological processes and surface interactions involved in the bioselective adhesion of mammalian cells and repellence of microbes on protein-based material surfaces. In addition, it highlights the importance of materials made of recombinant spider silk proteins, focussing on the progress regarding bioselectivity.
Collapse
Affiliation(s)
- Hendrik Bargel
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Vanessa T Trossmann
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Christoph Sommer
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Thomas Scheibel
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
- Bayreuth Center of Material Science and Engineering (BayMat), University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
- Bayreuth Center of Colloids and Interfaces (BZKG), University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
- Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| |
Collapse
|
24
|
Siani P, Frigerio G, Donadoni E, Di Valentin C. Molecular dynamics simulations of cRGD-conjugated PEGylated TiO 2 nanoparticles for targeted photodynamic therapy. J Colloid Interface Sci 2022; 627:126-141. [PMID: 35842963 DOI: 10.1016/j.jcis.2022.07.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/20/2022]
Abstract
The conjugation of high-affinity cRGD-containing peptides is a promising approach in nanomedicine to efficiently reduce off-targeting effects and enhance the cellular uptake by integrin-overexpressing tumor cells. Herein we utilize atomistic molecular dynamics simulations to evaluate key structural-functional parameters of these targeting ligands for an effective binding activity towards αVβ3 integrins. An increasing number of cRGD ligands is conjugated to PEG chains grafted to highly curved TiO2 nanoparticles to unveil the impact of cRGD density on the ligand's presentation, stability, and conformation in an explicit aqueous environment. We find that a low density leads to an optimal spatial presentation of cRGD ligands out of the "stealth" PEGylated layer around the nanosystem, favoring a straight upward orientation and spaced distribution of the targeting ligands in the bulk-water phase. On the contrary, high densities favor over-clustering of cRGD ligands, driven by a concerted mechanism of enhanced ligand-ligand interactions and reduced water accessibility over the ligand's molecular surface. These findings strongly suggest that the ligand density modulation is a key factor in the design of cRGD-targeting nanodevices to maximize their binding efficiency into over-expressed αVβ3 integrin receptors.
Collapse
Affiliation(s)
- Paulo Siani
- Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Giulia Frigerio
- Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Edoardo Donadoni
- Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Cristiana Di Valentin
- Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, via R. Cozzi 55, 20125 Milano, Italy; BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, Italy.
| |
Collapse
|
25
|
Bhattacharjee S. Craft of Co-encapsulation in Nanomedicine: A Struggle To Achieve Synergy through Reciprocity. ACS Pharmacol Transl Sci 2022; 5:278-298. [PMID: 35592431 PMCID: PMC9112416 DOI: 10.1021/acsptsci.2c00033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 12/19/2022]
Abstract
Achieving synergism, often by combination therapy via codelivery of chemotherapeutic agents, remains the mainstay of treating multidrug-resistance cases in cancer and microbial strains. With a typical core-shell architecture and surface functionalization to ensure facilitated targeting of tissues, nanocarriers are emerging as a promising platform toward gaining such synergism. Co-encapsulation of disparate theranostic agents in nanocarriers-from chemotherapeutic molecules to imaging or photothermal modalities-can not only address the issue of protecting the labile drug payload from a hostile biochemical environment but may also ensure optimized drug release as a mainstay of synergistic effect. However, the fate of co-encapsulated molecules, influenced by temporospatial proximity, remains unpredictable and marred with events with deleterious impact on therapeutic efficacy, including molecular rearrangement, aggregation, and denaturation. Thus, more than just an art of confining multiple therapeutics into a 3D nanoscale space, a co-encapsulated nanocarrier, while aiming for synergism, should strive toward achieving a harmonious cohabitation of the encapsulated molecules that, despite proximity and opportunities for interaction, remain innocuous toward each other and ensure molecular integrity. This account will inspect the current progress in co-encapsulation in nanocarriers and distill out the key points toward accomplishing such synergism through reciprocity.
Collapse
Affiliation(s)
- Sourav Bhattacharjee
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
26
|
Hazeri Y, Samie A, Ramezani M, Alibolandi M, Yaghoobi E, Dehghani S, Zolfaghari R, Khatami F, Zavvar T, Nameghi MA, Abnous K, Taghdisi SM. Dual-targeted delivery of doxorubicin by mesoporous silica nanoparticle coated with AS1411 aptamer and RGDK-R peptide to breast cancer in vitro and in vivo. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Zhang Q, Olberg A, Sioud M. Structural Requirements for the Binding of a Peptide to Prohibitins on the Cell Surface of Monocytes/Macrophages. Int J Mol Sci 2022; 23:ijms23084282. [PMID: 35457098 PMCID: PMC9029656 DOI: 10.3390/ijms23084282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 11/16/2022] Open
Abstract
The screening of phage peptide libraries resulted in the identification of a sequence (named NW peptide, NWYLPWLGTNDW) that specifically binds to human monocytes and macrophages. Although the NW peptide can be used for the targeted delivery of therapeutics without knowledge of its receptor(s), the identification of-its binding partners will support future clinical applications-Here, we used the biotinylated NW peptide for cross-linking cell surface receptor(s) on live cells or as bait in pull-down assays with membrane proteins isolated from monocytes or human THP-1 cells differentiated into macrophages. Proteomic analysis of the captured proteins identified cell surface prohibitins (PHB1 and PHB2) and modified albumin as binding partners. Using flow cytometry and pull-down methods, we demonstrated that PHB1 and PHB2 interact directly with the NW peptide. Confocal imaging showed co-localization of the peptide with PHB1 on the surface of monocytes. Single replacement of either tryptophan or leucine with alanine completely inhibited binding, whereas the replacement of asparagine at position 1 or 10 and aspartic acid at position 11 with alanine did not affect the binding of the peptide variants. Neutral amino acid replacement of tryptophan at positions 2, 6, and 12 with tyrosine or phenylalanine also abolished the binding, implying that the indole ring of tryptophan is indispensable for the NW peptide to bind. Overall, the data suggest that membrane-associated prohibitins might be a useful target for the delivery of therapeutics to monocytes/macrophages and that tryptophan and leucine are key residues for peptide binding.
Collapse
Affiliation(s)
- Qindong Zhang
- Division of Cancer Medicine, Department of Cancer Immunology, Oslo University Hospital, University of Oslo, Ullernchausseen 70, 0379 Oslo, Norway; (Q.Z.); (A.O.)
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box. 1068, Blindern, 0316 Oslo, Norway
| | - Anniken Olberg
- Division of Cancer Medicine, Department of Cancer Immunology, Oslo University Hospital, University of Oslo, Ullernchausseen 70, 0379 Oslo, Norway; (Q.Z.); (A.O.)
| | - Mouldy Sioud
- Division of Cancer Medicine, Department of Cancer Immunology, Oslo University Hospital, University of Oslo, Ullernchausseen 70, 0379 Oslo, Norway; (Q.Z.); (A.O.)
- Correspondence:
| |
Collapse
|
28
|
Mohammed SA, Kimura Y, Toku Y, Ju Y. Bioengineered PLEKHA7 nanodelivery regularly induces behavior alteration and growth retardation of acute myeloid leukemia. BIOMATERIALS AND BIOSYSTEMS 2022; 6:100045. [PMID: 36824159 PMCID: PMC9934477 DOI: 10.1016/j.bbiosy.2022.100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most lethal leukemia with an extremely poor prognosis and high relapse rates. In leukemogenesis, adhesion abnormalities can readily guide an imbalance between hematopoietic progenitor cells and bone marrow stromal cells, altering the normal hematopoietic bone marrow microenvironment into leukemic transformation that enhances leukemic proliferation. Here, we have firstly studied the PLEKHA7 expression in leukemic cells to assess their growth capability affected by the restoration of PLEKHA7 in the cells. The efficacy of PLEKHA7-loaded cRGD-mediated PEGylated cationic lipid nanoparticles for efficient PLEKHA7 delivery in leukemic cells as well as the effect of PLEKHA7 on the regulated induction of AML behavior and growth alterations were investigated. PLEKHA7 re-expression diminished colony-forming ability and reinforced the incidence of growth retardation without apoptosis in AML cell lines. PLEKHA7 regulated the restoration of cell surface adhesion and integrity during normal homeostasis. Our findings revealed that PLEKHA7 functions as a behavior and growth modulator in AML. To our knowledge, the role of PLEKHA7 in AML had not been studied previously and our data could be exploited for further mechanistic studies and insights into altering human AML behavior and growth.
Collapse
Affiliation(s)
- Sameh A. Mohammed
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University; Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Yasuhiro Kimura
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University; Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yuhki Toku
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University; Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yang Ju
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University; Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan,Corresponding author at: Department of Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| |
Collapse
|
29
|
van der Koog L, Gandek TB, Nagelkerke A. Liposomes and Extracellular Vesicles as Drug Delivery Systems: A Comparison of Composition, Pharmacokinetics, and Functionalization. Adv Healthc Mater 2022; 11:e2100639. [PMID: 34165909 PMCID: PMC11468589 DOI: 10.1002/adhm.202100639] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/27/2021] [Indexed: 12/11/2022]
Abstract
Over the past decades, lipid-based nanoparticle drug delivery systems (DDS) have caught the attention of researchers worldwide, encouraging the field to rapidly develop improved ways for effective drug delivery. One of the most prominent examples is liposomes, which are spherical shaped artificial vesicles composed of lipid bilayers and able to encapsulate both hydrophilic and hydrophobic materials. At the same time, biological nanoparticles naturally secreted by cells, called extracellular vesicles (EVs), have emerged as promising more complex biocompatible DDS. In this review paper, the differences and similarities in the composition of both vesicles are evaluated, and critical mediators that affect their pharmacokinetics are elucidate. Different strategies that have been assessed to tweak the pharmacokinetics of both liposomes and EVs are explored, detailing the effects on circulation time, targeting capacity, and cytoplasmic delivery of therapeutic cargo. Finally, whether a hybrid system, consisting of a combination of only the critical constituents of both vesicles, could offer the best of both worlds is discussed. Through these topics, novel leads for further research are provided and, more importantly, gain insight in what the liposome field and the EV field can learn from each other.
Collapse
Affiliation(s)
- Luke van der Koog
- Molecular PharmacologyGroningen Research Institute of PharmacyGRIAC Research Institute, University Medical Center GroningenUniversity of GroningenP.O. Box 196, XB10Groningen9700 ADThe Netherlands
| | - Timea B. Gandek
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| | - Anika Nagelkerke
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| |
Collapse
|
30
|
Tuvshindorj U, Trouillet V, Vasilevich A, Koch B, Vermeulen S, Carlier A, Alexander MR, Giselbrecht S, Truckenmüller R, de Boer J. The Galapagos Chip Platform for High-Throughput Screening of Cell Adhesive Chemical Micropatterns. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105704. [PMID: 34985808 DOI: 10.1002/smll.202105704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/04/2021] [Indexed: 06/14/2023]
Abstract
In vivo cells reside in a complex extracellular matrix (ECM) that presents spatially distributed biochemical and -physical cues at the nano- to micrometer scales. Chemical micropatterning is successfully used to generate adhesive islands to control where and how cells attach and restore cues of the ECM in vitro. Although chemical micropatterning has become a powerful tool to study cell-material interactions, only a fraction of the possible micropattern designs was covered so far, leaving many other possible designs still unexplored. Here, a high-throughput screening platform called "Galapagos chip" is developed. It contains a library of 2176 distinct subcellular chemical patterns created using mathematical algorithms and a straightforward UV-induced two-step surface modification. This approach enables the immobilization of ligands in geometrically defined regions onto cell culture substrates. To validate the system, binary RGD/polyethylene glycol patterns are prepared on which human mesenchymal stem cells are cultured, and the authors observe how different patterns affect cell and organelle morphology. As proof of concept, the cells are stained for the mechanosensitive YAP protein, and, using a machine-learning algorithm, it is demonstrated that cell shape and YAP nuclear translocation correlate. It is concluded that the Galapagos chip is a versatile platform to screen geometrical aspects of cell-ECM interaction.
Collapse
Affiliation(s)
- Urandelger Tuvshindorj
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, The Netherlands
- Department of Biomedical Engineering and Institute, for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Vanessa Trouillet
- Institute for Applied Materials and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Aliaksei Vasilevich
- Department of Biomedical Engineering and Institute, for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Britta Koch
- Advanced Materials and Healthcare Technologies Division, The School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Steven Vermeulen
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Aurélie Carlier
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Morgan R Alexander
- Advanced Materials and Healthcare Technologies Division, The School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Stefan Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Roman Truckenmüller
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Jan de Boer
- Department of Biomedical Engineering and Institute, for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
31
|
Pérez LA, Leyton L, Valdivia A. Thy-1 (CD90), Integrins and Syndecan 4 are Key Regulators of Skin Wound Healing. Front Cell Dev Biol 2022; 10:810474. [PMID: 35186924 PMCID: PMC8851320 DOI: 10.3389/fcell.2022.810474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
Acute skin wound healing is a multistage process consisting of a plethora of tightly regulated signaling events in specialized cells. The Thy-1 (CD90) glycoprotein interacts with integrins and the heparan sulfate proteoglycan syndecan 4, generating a trimolecular complex that triggers bi-directional signaling to regulate diverse aspects of the wound healing process. These proteins can act either as ligands or receptors, and they are critical for the successful progression of wound healing. The expression of Thy-1, integrins, and syndecan 4 is controlled during the healing process, and the lack of expression of any of these proteins results in delayed wound healing. Here, we review and discuss the roles and regulatory events along the stages of wound healing that support the relevance of Thy-1, integrins, and syndecan 4 as crucial regulators of skin wound healing.
Collapse
Affiliation(s)
- Leonardo A. Pérez
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
- *Correspondence: Lisette Leyton, ; Alejandra Valdivia,
| | - Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
- *Correspondence: Lisette Leyton, ; Alejandra Valdivia,
| |
Collapse
|
32
|
Surface Functionalization of Poly(l-lactide-co-glycolide) Membranes with RGD-Grafted Poly(2-oxazoline) for Periodontal Tissue Engineering. J Funct Biomater 2022; 13:jfb13010004. [PMID: 35076515 PMCID: PMC8788533 DOI: 10.3390/jfb13010004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
Bone tissue defects resulting from periodontal disease are often treated using guided tissue regeneration (GTR). The barrier membranes utilized here should prevent soft tissue infiltration into the bony defect and simultaneously support bone regeneration. In this study, we designed a degradable poly(l-lactide-co-glycolide) (PLGA) membrane that was surface-modified with cell adhesive arginine-glycine-aspartic acid (RGD) motifs. For a novel method of membrane manufacture, the RGD motifs were coupled with the non-ionic amphiphilic polymer poly(2-oxazoline) (POx). The RGD-containing membranes were then prepared by solvent casting of PLGA, POx coupled with RGD (POx_RGD), and poly(ethylene glycol) (PEG) solution in methylene chloride (DCM), followed by DCM evaporation and PEG leaching. Successful coupling of RGD to POx was confirmed spectroscopically by Raman, Fourier transform infrared in attenuated reflection mode (FTIR-ATR), and X-ray photoelectron (XPS) spectroscopy, while successful immobilization of POx_RGD on the membrane surface was confirmed by XPS and FTIR-ATR. The resulting membranes had an asymmetric microstructure, as shown by scanning electron microscopy (SEM), where the glass-cured surface was more porous and had a higher surface area then the air-cured surface. The higher porosity should support bone tissue regeneration, while the air-cured side is more suited to preventing soft tissue infiltration. The behavior of osteoblast-like cells on PLGA membranes modified with POx_RGD was compared to cell behavior on PLGA foil, non-modified PLGA membranes, or PLGA membranes modified only with POx. For this, MG-63 cells were cultured for 4, 24, and 96 h on the membranes and analyzed by metabolic activity tests, live/dead staining, and fluorescent staining of actin fibers. The results showed bone cell adhesion, proliferation, and viability to be the highest on membranes modified with POx_RGD, making them possible candidates for GTR applications in periodontology and in bone tissue engineering.
Collapse
|
33
|
Ladeira B, Custodio C, Mano J. Core-Shell Microcapsules: Biofabrication and Potential Applications in Tissue Engineering and Regenerative Medicine. Biomater Sci 2022; 10:2122-2153. [DOI: 10.1039/d1bm01974k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The construction of biomaterial scaffolds that accurately recreate the architecture of living tissues in vitro is a major challenge in the field of tissue engineering and regenerative medicine. Core-shell microcapsules...
Collapse
|
34
|
Raghav PK, Mann Z, Ahlawat S, Mohanty S. Mesenchymal stem cell-based nanoparticles and scaffolds in regenerative medicine. Eur J Pharmacol 2021; 918:174657. [PMID: 34871557 DOI: 10.1016/j.ejphar.2021.174657] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/05/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells owing to their regenerative potential and multilineage potency. MSCs have wide-scale applications either in their native cellular form or in conjugation with specific biomaterials as nanocomposites. Majorly, these natural or synthetic biomaterials are being used in the form of metallic and non-metallic nanoparticles (NPs) to encapsulate MSCs within hydrogels like alginate or chitosan or drug cargo loading into MSCs. In contrast, nanofibers of polymer scaffolds such as polycaprolactone (PCL), poly-lactic-co-glycolic acid (PLGA), poly-L-lactic acid (PLLA), silk fibroin, collagen, chitosan, alginate, hyaluronic acid (HA), and cellulose are used to support or grow MSCs directly on it. These MSCs based nanotherapies have application in multiple domains of biomedicine including wound healing, bone and cartilage engineering, cardiac disorders, and neurological disorders. This study focused on current approaches of MSCs-based therapies and has been divided into two major sections. The first section elaborates on MSC-based nano-therapies and their plausible applications including exosome engineering and NPs encapsulation. The following section focuses on the various MSC-based scaffold approaches in tissue engineering. Conclusively, this review mainly focused on MSC-based nanocomposite's current approaches and compared their advantages and limitations for building effective regenerative medicines.
Collapse
Affiliation(s)
- Pawan Kumar Raghav
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Zoya Mann
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Swati Ahlawat
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Sujata Mohanty
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
35
|
Hu X, Zhang Y. Developing biomaterials to mediate the spatial distribution of integrins. BIOPHYSICS REVIEWS 2021; 2:041302. [PMID: 38504718 PMCID: PMC10903404 DOI: 10.1063/5.0055746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/21/2021] [Indexed: 03/21/2024]
Abstract
Innovation in material design to regulate cell behavior and function is one of the primary tasks in materials science. Integrins, a family of cell surface-adhesion receptors that mechanically connect the extracellular matrix (ECM) to the intracellular cytoskeleton, have long served as primary targets for the design of biomaterials because their activity is not only critical to a wide range of cell and tissue functions but also subject to very tight and complex regulations from the outside environment. To review the recent progress of material innovations targeting the spatial distribution of integrins, we first introduce the interaction mechanisms between cells and the ECM by highlighting integrin-based cell adhesions, describing how integrins respond to environmental stimuli, including variations in ligand presentation, mechanical cues, and topographical variations. Then, we overview the current development of soft materials in guiding cell behaviors and functions via spatial regulation of integrins. Finally, we discuss the current limitations of these technologies and the advances that may be achieved in the future. Undoubtedly, synthetic soft materials that mediate the spatial distribution of integrins play an important role in biomaterial innovations for advancing biomedical applications and addressing fundamental biological questions.
Collapse
Affiliation(s)
- Xunwu Hu
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
36
|
Possible Treatment of Myocardial Infarct Based on Tissue Engineering Using a Cellularized Solid Collagen Scaffold Functionalized with Arg-Glyc-Asp (RGD) Peptide. Int J Mol Sci 2021; 22:ijms222212563. [PMID: 34830447 PMCID: PMC8620820 DOI: 10.3390/ijms222212563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/23/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Currently, the clinical impact of cell therapy after a myocardial infarction (MI) is limited by low cell engraftment due to low cell retention, cell death in inflammatory and poor angiogenic infarcted areas, secondary migration. Cells interact with their microenvironment through integrin mechanoreceptors that control their survival/apoptosis/differentiation/migration and proliferation. The association of cells with a three-dimensional material may be a way to improve interactions with their integrins, and thus outcomes, especially if preparations are epicardially applied. In this review, we will focus on the rationale for using collagen as a polymer backbone for tissue engineering of a contractile tissue. Contractilities are reported for natural but not synthetic polymers and for naturals only for: collagen/gelatin/decellularized-tissue/fibrin/Matrigel™ and for different material states: hydrogels/gels/solids. To achieve a thick/long-term contractile tissue and for cell transfer, solid porous compliant scaffolds are superior to hydrogels or gels. Classical methods to produce solid scaffolds: electrospinning/freeze-drying/3D-printing/solvent-casting and methods to reinforce and/or maintain scaffold properties by reticulations are reported. We also highlight the possibility of improving integrin interaction between cells and their associated collagen by its functionalizing with the RGD-peptide. Using a contractile patch that can be applied epicardially may be a way of improving ventricular remodeling and limiting secondary cell migration.
Collapse
|
37
|
Design of α/β-Hybrid Peptide Ligands of α4β1 Integrin Equipped with a Linkable Side Chain for Chemoselective Biofunctionalization of Microstructured Materials. Biomedicines 2021; 9:biomedicines9111737. [PMID: 34829965 PMCID: PMC8615975 DOI: 10.3390/biomedicines9111737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Arg-Gly-Asp (RGD)-binding integrins, e.g., αvβ3, αvβ1, αvβ5 integrins, are currently regarded as privileged targets for the delivery of diagnostic and theranostic agents, especially in cancer treatment. In contrast, scarce attention has been paid so far to the diagnostic opportunities promised by integrins that recognize other peptide motifs. In particular, α4β1 integrin is involved in inflammatory, allergic, and autoimmune diseases, therefore, it represents an interesting therapeutic target. Aiming at obtaining simple, highly stable ligands of α4β1 integrin, we designed hybrid α/β peptidomimetics carrying linkable side chains for the expedient functionalization of biomaterials, nano- and microparticles. We identified the prototypic ligands MPUPA-(R)-isoAsp(NHPr)-Gly-OH (12) and MPUPA-Dap(Ac)-Gly-OH (13) (MPUPA, methylphenylureaphenylacetic acid; Dap, 2,3-diamino propionic acid). Modification of 12 and 13 by introduction of flexible linkers at isoAsp or Dap gave 49 and 50, respectively, which allowed for coating with monolayers (ML) of flat zeolite crystals. The resulting peptide–zeolite MLs were able to capture selectively α4β1 integrin-expressing cells. In perspective, the α4β1 integrin ligands identified in this study can find applications for preparing biofunctionalized surfaces and diagnostic devices to control the progression of α4β1 integrin-correlated diseases.
Collapse
|
38
|
Abstract
Successful periodontal regeneration requires the hierarchical reorganization of multiple tissues including periodontal ligament, cementum, alveolar bone, and gingiva. The limitation of conventional regenerative therapies has been attracting research interest in tissue engineering-based periodontal therapies where progenitor cells, scaffolds, and bioactive molecules are delivered. Scaffolds offer not only structural support but also provide geometrical clue to guide cell fate. Additionally, functionalization improves bioactive properties to the scaffold. Various scaffold designs have been proposed for periodontal regeneration. These include the fabrication of biomimetic periodontal extracellular matrix, multiphasic scaffolds with tissue-specific layers, and personalized 3D printed scaffolds. This review summarizes the basic concept as well as the recent advancement of scaffold designing and fabrication for periodontal regeneration and provides an insight of future clinical translation.
Collapse
Affiliation(s)
- Shuntaro Yamada
- Department of Clinical Dentistry, Faculty of Medicine - Tissue Engineering Group, University of Bergen, Årstadveien 19, 5009 Bergen, Norway
| | - Siddharth Shanbhag
- Department of Clinical Dentistry, Faculty of Medicine - Tissue Engineering Group, University of Bergen, Årstadveien 19, 5009 Bergen, Norway; Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine - Tissue Engineering Group, University of Bergen, Årstadveien 19, 5009 Bergen, Norway.
| |
Collapse
|
39
|
Berillo D, Yeskendir A, Zharkinbekov Z, Raziyeva K, Saparov A. Peptide-Based Drug Delivery Systems. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111209. [PMID: 34833427 PMCID: PMC8617776 DOI: 10.3390/medicina57111209] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Peptide-based drug delivery systems have many advantages when compared to synthetic systems in that they have better biocompatibility, biochemical and biophysical properties, lack of toxicity, controlled molecular weight via solid phase synthesis and purification. Lysosomes, solid lipid nanoparticles, dendrimers, polymeric micelles can be applied by intravenous administration, however they are of artificial nature and thus may induce side effects and possess lack of ability to penetrate the blood-brain barrier. An analysis of nontoxic drug delivery systems and an establishment of prospective trends in the development of drug delivery systems was needed. This review paper summarizes data, mainly from the past 5 years, devoted to the use of peptide-based carriers for delivery of various toxic drugs, mostly anticancer or drugs with limiting bioavailability. Peptide-based drug delivery platforms are utilized as peptide–drug conjugates, injectable biodegradable particles and depots for delivering small molecule pharmaceutical substances (500 Da) and therapeutic proteins. Controlled drug delivery systems that can effectively deliver anticancer and peptide-based drugs leading to accelerated recovery without significant side effects are discussed. Moreover, cell penetrating peptides and their molecular mechanisms as targeting peptides, as well as stimuli responsive (enzyme-responsive and pH-responsive) peptides and peptide-based self-assembly scaffolds are also reviewed.
Collapse
Affiliation(s)
- Dmitriy Berillo
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
- Correspondence: (D.B.); (A.S.)
| | - Adilkhan Yeskendir
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
| | - Zharylkasyn Zharkinbekov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
| | - Kamila Raziyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
- Correspondence: (D.B.); (A.S.)
| |
Collapse
|
40
|
Gaurav I, Wang X, Thakur A, Iyaswamy A, Thakur S, Chen X, Kumar G, Li M, Yang Z. Peptide-Conjugated Nano Delivery Systems for Therapy and Diagnosis of Cancer. Pharmaceutics 2021; 13:1433. [PMID: 34575511 PMCID: PMC8471603 DOI: 10.3390/pharmaceutics13091433] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Peptides are strings of approximately 2-50 amino acids, which have gained huge attention for theranostic applications in cancer research due to their various advantages including better biosafety, customizability, convenient process of synthesis, targeting ability via recognizing biological receptors on cancer cells, and better ability to penetrate cell membranes. The conjugation of peptides to the various nano delivery systems (NDS) has been found to provide an added benefit toward targeted delivery for cancer therapy. Moreover, the simultaneous delivery of peptide-conjugated NDS and nano probes has shown potential for the diagnosis of the malignant progression of cancer. In this review, various barriers hindering the targeting capacity of NDS are addressed, and various approaches for conjugating peptides and NDS have been discussed. Moreover, major peptide-based functionalized NDS targeting cancer-specific receptors have been considered, including the conjugation of peptides with extracellular vesicles, which are biological nanovesicles with promising ability for therapy and the diagnosis of cancer.
Collapse
Affiliation(s)
- Isha Gaurav
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
| | - Xuehan Wang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
| | - Abhimanyu Thakur
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation-CAS Limited, Hong Kong, China;
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Sudha Thakur
- National Institute for Locomotor Disabilities (Divyangjan), Kolkata 700090, India;
| | - Xiaoyu Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
| | - Gaurav Kumar
- School of Basic and Applied Science, Galgotias University, Greater Noida 203201, India;
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu 215500, China
| |
Collapse
|
41
|
Tarvirdipour S, Skowicki M, Schoenenberger CA, Palivan CG. Peptide-Assisted Nucleic Acid Delivery Systems on the Rise. Int J Mol Sci 2021; 22:9092. [PMID: 34445799 PMCID: PMC8396486 DOI: 10.3390/ijms22169092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Concerns associated with nanocarriers' therapeutic efficacy and side effects have led to the development of strategies to advance them into targeted and responsive delivery systems. Owing to their bioactivity and biocompatibility, peptides play a key role in these strategies and, thus, have been extensively studied in nanomedicine. Peptide-based nanocarriers, in particular, have burgeoned with advances in purely peptidic structures and in combinations of peptides, both native and modified, with polymers, lipids, and inorganic nanoparticles. In this review, we summarize advances on peptides promoting gene delivery systems. The efficacy of nucleic acid therapies largely depends on cell internalization and the delivery to subcellular organelles. Hence, the review focuses on nanocarriers where peptides are pivotal in ferrying nucleic acids to their site of action, with a special emphasis on peptides that assist anionic, water-soluble nucleic acids in crossing the membrane barriers they encounter on their way to efficient function. In a second part, we address how peptides advance nanoassembly delivery tools, such that they navigate delivery barriers and release their nucleic acid cargo at specific sites in a controlled fashion.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- Department of Biosystem Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Michal Skowicki
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
42
|
Schussler O, Chachques JC, Alifano M, Lecarpentier Y. Key Roles of RGD-Recognizing Integrins During Cardiac Development, on Cardiac Cells, and After Myocardial Infarction. J Cardiovasc Transl Res 2021; 15:179-203. [PMID: 34342855 DOI: 10.1007/s12265-021-10154-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Cardiac cells interact with the extracellular matrix (ECM) proteins through integrin mechanoreceptors that control many cellular events such as cell survival, apoptosis, differentiation, migration, and proliferation. Integrins play a crucial role in cardiac development as well as in cardiac fibrosis and hypertrophy. Integrins recognize oligopeptides present on ECM proteins and are involved in three main types of interaction, namely with collagen, laminin, and the oligopeptide RGD (Arg-Gly-Asp) present on vitronectin and fibronectin proteins. To date, the specific role of integrins recognizing the RGD has not been addressed. In this review, we examine their role during cardiac development, their role on cardiac cells, and their upregulation during pathological processes such as heart fibrosis and hypertrophy. We also examine their role in regenerative and angiogenic processes after myocardial infarction (MI) in the peri-infarct area. Specific targeting of these integrins may be a way of controlling some of these pathological events and thereby improving medical outcomes.
Collapse
Affiliation(s)
- Olivier Schussler
- Thoracic Surgery Department, Cochin Hospital, APHP Centre, University of Paris, Paris, France.
| | - Juan C Chachques
- Department of Cardiac Surgery Pompidou Hospital, Laboratory of Biosurgical Research, Carpentier Foundation, University Paris Descartes, 75015, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Cochin Hospital, APHP Centre, University of Paris, Paris, France.,INSERM U1138 Team "Cancer, Immune Control, and Escape", Cordeliers Research Center, University of Paris, Paris, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| |
Collapse
|
43
|
Asghar MA, Yousuf RI, Shoaib MH, Asghar MA, Mumtaz N. A Review on Toxicity and Challenges in Transferability of Surface-functionalized Metallic Nanoparticles from Animal Models to Humans. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2020-0047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract The unique size and surface morphology of nanoparticles (NPs) have substantially influenced all aspects of human life, making nanotechnology a novel and promising field for various applications in biomedical sciences. Metallic NPs have gained immense interest over
the last few decades due to their promising optical, electrical, and biological properties. However, the aggregation and the toxic nature of these NPs have restricted their utilization in more optimized applications. The optimum selection of biopolymers and biological macromolecules for surface
functionalization of metallic NPs will significantly improve their biological applicability and biocompatibility. The present mini-review attempts to stress the overview of recent strategies involved in surface functionalization of metallic NPs, their specific biomedical applications, and
comparison of their in vitro, ex vivo, and in vivo toxicities with non-functionalized metallic NPs. In addition, this review also discusses the various challenges for metallic NPs to undergo human clinical trials.
Collapse
Affiliation(s)
- Muhammad Arif Asghar
- Department of Pharmaceutics, Faculty of Pharmacy, Jinnah Sindh Medical University, Karachi 75510, Pakistan
| | - Rabia Ismail Yousuf
- Department of Pharmaceutics and Bioavailability and Bioequivalence Research Facility, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Harris Shoaib
- Department of Pharmaceutics and Bioavailability and Bioequivalence Research Facility, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Asif Asghar
- Food and Feed Safety Laboratory, Food and Marine Resources Research Centre, PCSIR Laboratories Complex, Shahrah-e-Salimuzzaman Siddiqui, Off University Road, Sindh 74200, Pakistan
| | - Nazish Mumtaz
- Department of Pharmaceutics, Faculty of Pharmacy, Benazir Bhutto Shaheed University, Lyari, Karachi 75660, Pakistan
| |
Collapse
|
44
|
Revkova VA, Sidoruk KV, Kalsin VA, Melnikov PA, Konoplyannikov MA, Kotova S, Frolova AA, Rodionov SA, Smorchkov MM, Kovalev AV, Troitskiy AV, Timashev PS, Chekhonin VP, Bogush VG, Baklaushev V. Spidroin Silk Fibers with Bioactive Motifs of Extracellular Proteins for Neural Tissue Engineering. ACS OMEGA 2021; 6:15264-15273. [PMID: 34151105 PMCID: PMC8210451 DOI: 10.1021/acsomega.1c01576] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/12/2021] [Indexed: 05/16/2023]
Abstract
The interaction of neural progenitor cells (NPCs) with the extracellular matrix (ECM) plays an important role in neural tissue regeneration. Understanding which motifs of the ECM proteins are crucial for normal NPC adhesion, proliferation, and differentiation is important in order to create more adequate tissue engineered models of neural tissue and to efficiently study the central nervous system regeneration mechanisms. We have shown earlier that anisotropic matrices prepared from a mixture of recombinant dragline silk proteins, such as spidroin 1 and spidroin 2, by electrospinning are biocompatible with NPCs and provide good proliferation and oriented growth of neurites. This study objective was to find the effects of spidroin-based electrospun materials, modified with peptide motifs of the extracellular matrix proteins (RGD, IKVAV, and VAEIDGIEL) on adhesion, proliferation, and differentiation of directly reprogrammed neural precursor cells (drNPCs). The structural and biomechanical studies have shown that spidroin-based electrospun mats (SBEM), modified with ECM peptides, are characterized by a uniaxial orientation and elastic moduli in the swollen state, comparable to those of the dura mater. It has been found for the first time that drNPCs on SBEM mostly preserve their stemness in the growth medium and even in the differentiation medium with brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor, while addition of the mentioned ECM-peptide motifs may shift the balance toward neuroglial differentiation. We have demonstrated that the RGD motif promotes formation of a lower number of neurons with longer neurites, while the IKVAV motif is characterized by formation of a greater number of NF200-positive neurons with shorter neurites. At the same time, all the studied matrices preserve up to 30% of neuroglial progenitor cells, phenotypically similar to radial glia derived from the subventricular zone. We believe that, by using this approach and modifying spidroin by various ECM-motifs or other substances, one may create an in vitro model for the neuroglial stem cell niche with the potential control of their differentiation.
Collapse
Affiliation(s)
- Veronica A. Revkova
- Federal
Research and Clinical Center of Specialized Medical Care and Medical
Technologies FMBA of Russia, Moscow 115682, Russia
| | | | - Vladimir A. Kalsin
- Federal
Research and Clinical Center of Specialized Medical Care and Medical
Technologies FMBA of Russia, Moscow 115682, Russia
| | - Pavel A. Melnikov
- Serbsky
National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Mikhail A. Konoplyannikov
- Federal
Research and Clinical Center of Specialized Medical Care and Medical
Technologies FMBA of Russia, Moscow 115682, Russia
- Institute
for Regenerative Medicine, Sechenov First
Moscow State Medical University, Moscow 119048, Russia
| | - Svetlana Kotova
- Institute
for Regenerative Medicine, Sechenov First
Moscow State Medical University, Moscow 119048, Russia
- N.
N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Anastasia A. Frolova
- Institute
for Regenerative Medicine, Sechenov First
Moscow State Medical University, Moscow 119048, Russia
| | - Sergey A. Rodionov
- N. N. Priorov
National Medical Research Center of Traumatology and Orthopedics, Moscow 127299, Russia
| | - Mikhail M. Smorchkov
- N. N. Priorov
National Medical Research Center of Traumatology and Orthopedics, Moscow 127299, Russia
| | - Alexey V. Kovalev
- N. N. Priorov
National Medical Research Center of Traumatology and Orthopedics, Moscow 127299, Russia
| | - Alexander V. Troitskiy
- Federal
Research and Clinical Center of Specialized Medical Care and Medical
Technologies FMBA of Russia, Moscow 115682, Russia
| | - Peter S. Timashev
- Institute
for Regenerative Medicine, Sechenov First
Moscow State Medical University, Moscow 119048, Russia
- N.
N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
- Chemistry
Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir P. Chekhonin
- Serbsky
National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | | | - Vladimir
P. Baklaushev
- Federal
Research and Clinical Center of Specialized Medical Care and Medical
Technologies FMBA of Russia, Moscow 115682, Russia
| |
Collapse
|
45
|
Tian T, Cao L, He C, Ye Q, Liang R, You W, Zhang H, Wu J, Ye J, Tannous BA, Gao J. Targeted delivery of neural progenitor cell-derived extracellular vesicles for anti-inflammation after cerebral ischemia. Theranostics 2021; 11:6507-6521. [PMID: 33995671 PMCID: PMC8120222 DOI: 10.7150/thno.56367] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke remains a major cause of death, and anti-inflammatory strategies hold great promise for preventing major brain injury during reperfusion. In the past decade, stem cell-derived extracellular vesicles (EVs) have emerged as novel therapeutic effectors in immune modulation. However, the intravenous delivery of EVs into the ischemic brain remains a challenge due to poor targeting of unmodified EVs, and the costs of large-scale production of stem cell-derived EVs hinder their clinical application. Methods: EVs were isolated from a human neural progenitor cell line, and their anti-inflammatory effects were verified in vitro. To attach targeting ligands onto EVs, we generated a recombinant fusion protein containing the arginine-glycine-aspartic acid (RGD)-4C peptide (ACDCRGDCFC) fused to the phosphatidylserine (PS)-binding domains of lactadherin (C1C2), which readily self-associates onto the EV membrane. Subsequently, in a middle cerebral artery occlusion (MCAO) mouse model, the RGD-C1C2-bound EVs (RGD-EV) were intravenously injected through the tail vein, followed by fluorescence imaging and assessment of proinflammatory cytokines expression and microglia activation. Results: The neural progenitor cell-derived EVs showed intrinsic anti-inflammatory activity. The RGD-EV targeted the lesion region of the ischemic brain after intravenous administration, and resulted in a strong suppression of the inflammatory response. Furthermore, RNA sequencing revealed a set of 7 miRNAs packaged in the EVs inhibited MAPK, an inflammation related pathway. Conclusion: These results point to a rapid and easy strategy to produce targeting EVs and suggest a potential therapeutic agent for ischemic stroke.
Collapse
|
46
|
|
47
|
Cirillo M, Giacomini D. Molecular Delivery of Cytotoxic Agents via Integrin Activation. Cancers (Basel) 2021; 13:299. [PMID: 33467465 PMCID: PMC7830197 DOI: 10.3390/cancers13020299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/16/2022] Open
Abstract
Integrins are cell adhesion receptors overexpressed in tumor cells. A direct inhibition of integrins was investigated, but the best inhibitors performed poorly in clinical trials. A gained attention towards these receptors arouse because they could be target for a selective transport of cytotoxic agents. Several active-targeting systems have been developed to use integrins as a selective cell entrance for some antitumor agents. The aim of this review paper is to report on the most recent results on covalent conjugates between integrin ligands and antitumor drugs. Cytotoxic drugs thus conjugated through specific linker to integrin ligands, mainly RGD peptides, demonstrated that the covalent conjugates were more selective against tumor cells and hopefully with fewer side effects than the free drugs.
Collapse
Affiliation(s)
| | - Daria Giacomini
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum University of Bologna, Via Selmi 2, 40126 Bologna, Italy;
| |
Collapse
|
48
|
Qi J, Rader C. Redirecting cytotoxic T cells with chemically programmed antibodies. Bioorg Med Chem 2020; 28:115834. [PMID: 33166926 DOI: 10.1016/j.bmc.2020.115834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 11/30/2022]
Abstract
T-cell engaging bispecific antibodies (T-biAbs) mediate potent and selective cytotoxicity by combining specificities for target and effector cells in one molecule. Chemically programmed T-biAbs (cp-T-biAbs) are precisely assembled compositions of (i) small molecules that govern cancer cell surface targeting with high affinity and specificity and (ii) antibodies that recruit and activate T cells and equip the small molecule with confined biodistribution and longer circulatory half-life. Conceptually similar to cp-T-biAbs, switchable chimeric antigen receptor T cells (sCAR-Ts) can also be put under the control of small molecules by using a chemically programmed antibody as a bispecific adaptor molecule. As such, cp-T-biAbs and cp-sCAR-Ts can endow small molecules with the power of cancer immunotherapy. We here review the concept of chemically programmed antibodies for recruiting and activating T cells as a promising strategy for broadening the utility of small molecules in cancer therapy.
Collapse
Affiliation(s)
- Junpeng Qi
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA.
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|