1
|
Ashitha KT, Lakshmi S, Anjali S, Krishna A, Prakash V, Anbumani S, Priya S, Somappa SB. Design and discovery of carboxamide-based pyrazole conjugates with multifaceted potential against Triple-Negative Breast cancer MDA-MB-231 cells. Bioorg Med Chem Lett 2024; 113:129960. [PMID: 39265894 DOI: 10.1016/j.bmcl.2024.129960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/31/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
We report the design, synthesis, and validation of carboxamide-based pyrazole and isoxazole conjugates with a multifaceted activity against Breast Cancer Cell Line MDA-MB-231. The study established that amongst the series, N-(3,5-bis(trifluoromethyl)benzyl)-3-(3,4,5-trimethoxyphenyl)-1H-pyrazole-5-carboxamide (5g) exhibits the highest potency in inhibiting Breast Cancer Cell Line MDA-MB-231 with an IC50 value of 15.08 ± 0.04 µM. The MDA-MB-231 cells, upon treatment with compound 5g, exhibited characteristic apoptotic specific activities such as nuclear fragmentation, phosphatidylserine translocation to the outer plasma membrane, release of lactate dehydrogenase (LDH), and upregulation of caspase 3 and caspase 9 activities. Also, the modulation of pro and antiapoptotic proteins in 5g treated MDA-MB-231 cells was revealed by membrane array analysis. More importantly, the combination of paclitaxel and compound 5g has exhibited improved activity by several folds via their synergistic effects.
Collapse
Affiliation(s)
- K T Ashitha
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Lakshmi
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Anjali
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajay Krishna
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ved Prakash
- Ecotoxicology Laboratory, REACT Division, C.R. Krishnamurti (CRK) Campus, CSIR-Indian Institute of Toxicology Research, Lucknow 226 008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, REACT Division, C.R. Krishnamurti (CRK) Campus, CSIR-Indian Institute of Toxicology Research, Lucknow 226 008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Priya
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Sasidhar B Somappa
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Mangaonkar S, Nath S, Chatterji BP. Microtubule dynamics in cancer metastasis: Harnessing the underappreciated potential for therapeutic interventions. Pharmacol Ther 2024; 263:108726. [PMID: 39349106 DOI: 10.1016/j.pharmthera.2024.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/01/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Microtubules, dynamic cytoskeletal structures crucial for cellular processes, have surfaced as promising targets for cancer therapy owing to their pivotal role in cancer progression and metastasis. This review comprehensively explores the multifaceted landscape of microtubule-targeting drugs and their potential to inihibit cancer metastasis. Although the role of Actin cytoskeleton is well known in controlling metastasis, only recently Microtubules are emerging as a potential controller of metastasis. We delve into the processes at the core of antimetastatic impacts of microtubule-targeting agents, both through direct modulation of microtubules and via alternative pathways. Drawing from in vitro and in vivo studies, we analyze the cytotoxic and antimetastatic doses of various compounds, shedding light on their therapeutic potential. Furthermore, we discuss the emerging class of microtubule targeting drugs, and their role in metastasis inhibition, such as microtubules acetylation inhibitory drugs, particularly histone deacetylase inihibitors and antibody-drug conjugates. Histone deacetylase (HDAC) strengthens the microtubule cytoskeleton through acetylation. Recently, HDAC inhibitors have been discovered to have antimetastatic properties. Here, the role of HDAC inhibitors in stopping metastasis is discussed with respect to microtubule cytoskeleton. Surprisingly, novel antibody conjugates of microtubule-targeting agents, which are in clinical trials, were found to be antimetastatic. This review discusses these antibody conjugates in detail. Additionally, we elucidate the intricate crosstalk between microtubules and other cytoskeletal proteins, unveiling novel therapeutic strategies for metastasis suppression. By providing a wide-ranging overview of the complex interplay between microtubules and cancer metastasis, this review contributes to the comprehension of cancer's biological mechanisms and the development of innovative therapeutic interventions to mitigate metastatic progression.
Collapse
Affiliation(s)
- Snehal Mangaonkar
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Sangeeta Nath
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India.
| | - Biswa Prasun Chatterji
- Faculty of Science, Assam Downtown University, Guwahati, India; Global Visiitng Professor, Asian University for Women, Chittagong, Bangladesh.
| |
Collapse
|
3
|
Akshatha CR, Halanaik D, Nachiappa Ganesh R, Kishore N, Ganesan P, Kayal S, Kumar H, Dubashi B. Assessment of novel prognostic biomarkers to predict pathological complete response in patients with non-metastatic triple-negative breast cancer using a window of opportunity design. Ther Adv Med Oncol 2024; 16:17588359241248329. [PMID: 38800567 PMCID: PMC11127577 DOI: 10.1177/17588359241248329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/03/2024] [Indexed: 05/29/2024] Open
Abstract
Background Triple-negative breast cancer (TNBC) includes approximately 20% of all breast cancer and is characterized by its aggressive nature, high recurrence rates, and visceral metastasis. Pathological complete response (pCR) is an established surrogate endpoint for survival. The window of opportunity studies provide valuable information on the disease biology prior to definitive treatment. Objectives To study the association of dynamic change in pathological, imagining, and genomic biomarkers that can prognosticate pCR. The study aims to develop a composite prognostic score. Design Clinical, interventional, and prognostic biomarker study using the novel window of opportunity design. Methods The study aims to enroll 80 treatment-naïve, pathologically confirmed TNBC patients, administering a single dose of paclitaxel and carboplatin during the window period before neoadjuvant chemotherapy (NACT). Tumor tissue will be obtained through a tru-cut biopsy, and positron emission tomography and computed tomography scans will be performed for each patient at two time points aiming to evaluate biomarker alterations. This will be followed by the administration of standard dose-dense NACT containing anthracyclines and taxanes, with the study culminating in surgery to assess pCR. Results The study would develop a composite prognostic risk score derived from the dynamic change in the Ki-67, tumor-infiltrating lymphocytes, Standardized Uptake Value (SUV max), Standardized Uptake Value for lean body mass (SUL max), and gene expression level pre- and post-intervention during the window period prior to the start of definitive treatment. This outcome will aid in categorizing the disease biology into risk categories. Trial registration The current study is approved by the Institutional Ethics Committee [Ethics: Protocol. no. JIP/IEC/2020/019]. This study was registered with ClinicalTrials.gov [CTRI Registration: CTRI/2022/06/043109]. Conclusion The validated biomarker score will help to personalize NACT protocols in patients in TNBC planned for definitive treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Smita Kayal
- Department of Medical Oncology, JIPMER, Puducherry, India
| | | | - Biswajit Dubashi
- Department of Medical Oncology, JIPMER, Dhanvantri Nagar, Puducherry 605006, India
| |
Collapse
|
4
|
Iuzzolino A, Pellegrini FR, Rotili D, Degrassi F, Trisciuoglio D. The α-tubulin acetyltransferase ATAT1: structure, cellular functions, and its emerging role in human diseases. Cell Mol Life Sci 2024; 81:193. [PMID: 38652325 PMCID: PMC11039541 DOI: 10.1007/s00018-024-05227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
The acetylation of α-tubulin on lysine 40 is a well-studied post-translational modification which has been associated with the presence of long-lived stable microtubules that are more resistant to mechanical breakdown. The discovery of α-tubulin acetyltransferase 1 (ATAT1), the enzyme responsible for lysine 40 acetylation on α-tubulin in a wide range of species, including protists, nematodes, and mammals, dates to about a decade ago. However, the role of ATAT1 in different cellular activities and molecular pathways has been only recently disclosed. This review comprehensively summarizes the most recent knowledge on ATAT1 structure and substrate binding and analyses the involvement of ATAT1 in a variety of cellular processes such as cell motility, mitosis, cytoskeletal organization, and intracellular trafficking. Finally, the review highlights ATAT1 emerging roles in human diseases and discusses ATAT1 potential enzymatic and non-enzymatic roles and the current efforts in developing ATAT1 inhibitors.
Collapse
Affiliation(s)
- Angela Iuzzolino
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy
| | - Francesca Romana Pellegrini
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy
| | - Dante Rotili
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Francesca Degrassi
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy.
| | - Daniela Trisciuoglio
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy.
| |
Collapse
|
5
|
Jeong J, Kim OH, Shim J, Keum S, Hwang YE, Song S, Kim JW, Choi JH, Lee HJ, Rhee S. Microtubule acetylation induced by oxidative stress regulates subcellular distribution of lysosomal vesicles for amyloid-beta secretion. J Cell Physiol 2023; 238:2812-2826. [PMID: 37801327 DOI: 10.1002/jcp.31131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023]
Abstract
Excessive production and accumulation of amyloid-beta (Aβ) in the brain are one of the hallmarks of Alzheimer's disease (AD). Although oxidative stress is known to trigger and promote the progression of AD, the molecular relationship between oxidative stress and Aβ production is not yet fully understood. In this study, we demonstrate that microtubule acetylation induced by oxidative stress plays a critical role in Aβ production and secretion by altering the subcellular distribution of Aβ precursor protein (APP)-containing lysosomal vesicles. Under oxidative stress, both H4-APPSwe/Ind and HEK293T-APPSwe/Ind cell lines showed increased microtubule acetylation and Aβ secretion. Knockdown (KD) of alpha-tubulin N-acetyltransferase 1 (ATAT1) by using a lentiviral shRNA not only inhibited the generation of intermediate APP fragments, such as β-CTF and AICD, but also suppressed Aβ secretion. Oxidative stress promoted the dispersion of LAMP1-positive vesicles to the periphery of the cell through microtubule acetylation, leading to the formation of neutralized lysosomal vesicles (NLVs), which was inhibited by ATAT1 KD. Treatment of the cells with the dynein ATPase inhibitor EHNA or downregulation of LIS1, a regulator of dynein-mediated intracellular transport, increased the peripheral localization of NLVs and promoted Aβ secretion, whereas KD of ADP ribosylation factor like GTPase 8B showed the opposite result. ATAT1 KD in the hippocampal region of the 5×FAD AD mouse model also showed significant reductions in Aβ plaque accumulation and memory loss. Taken together, these findings suggest that oxidative stress-induced microtubule acetylation promotes the peripheral localization of lysosomal vesicles to form NLVs, thereby enhancing Aβ secretion.
Collapse
Affiliation(s)
- Jangho Jeong
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ok-Hyeon Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Jaeyeoung Shim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Seula Keum
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ye Eun Hwang
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Seongeun Song
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Jee-Hye Choi
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Ahn S, Kwon A, Oh Y, Rhee S, Song WK. Microtubule Acetylation-Specific Inhibitors Induce Cell Death and Mitotic Arrest via JNK/AP-1 Activation in Triple-Negative Breast Cancer Cells. Mol Cells 2023; 46:387-398. [PMID: 36794420 PMCID: PMC10258459 DOI: 10.14348/molcells.2023.2192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
Microtubule acetylation has been proposed as a marker of highly heterogeneous and aggressive triple-negative breast cancer (TNBC). The novel microtubule acetylation inhibitors GM-90257 and GM-90631 (GM compounds) cause TNBC cancer cell death but the underlying mechanisms are currently unknown. In this study, we demonstrated that GM compounds function as anti-TNBC agents through activation of the JNK/AP-1 pathway. RNA-seq and biochemical analyses of GM compound-treated cells revealed that c-Jun N-terminal kinase (JNK) and members of its downstream signaling pathway are potential targets for GM compounds. Mechanistically, JNK activation by GM compounds induced an increase in c-Jun phosphorylation and c-Fos protein levels, thereby activating the activator protein-1 (AP-1) transcription factor. Notably, direct suppression of JNK with a pharmacological inhibitor alleviated Bcl2 reduction and cell death caused by GM compounds. TNBC cell death and mitotic arrest were induced by GM compounds through AP-1 activation in vitro. These results were reproduced in vivo, validating the significance of microtubule acetylation/JNK/AP-1 axis activation in the anti-cancer activity of GM compounds. Moreover, GM compounds significantly attenuated tumor growth, metastasis, and cancer-related death in mice, demonstrating strong potential as therapeutic agents for TNBC.
Collapse
Affiliation(s)
- Suyeon Ahn
- Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Ahreum Kwon
- Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Youngsoo Oh
- Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Woo Keun Song
- Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
7
|
Allison SJ. Novel Anti-Cancer Agents and Cellular Targets and Their Mechanism(s) of Action. Biomedicines 2022; 10:biomedicines10081767. [PMID: 35892667 PMCID: PMC9332372 DOI: 10.3390/biomedicines10081767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Simon J Allison
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| |
Collapse
|
8
|
You E, Jeong J, Lee J, Keum S, Hwang YE, Choi JH, Rhee S. Casein kinase 2 promotes the TGF-β-induced activation of α-tubulin acetyltransferase 1 in fibroblasts cultured on a soft matrix. BMB Rep 2022. [PMID: 35321783 PMCID: PMC9058472 DOI: 10.5483/bmbrep.2022.55.4.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cell signals for growth factors depend on the mechanical properties of the extracellular matrix (ECM) surrounding the cells. Microtubule acetylation is involved in the transforming growth factor (TGF)-β-induced myofibroblast differentiation in the soft ECM. However, the mechanism of activation of α-tubulin acetyltransferase 1 (α-TAT1), a major α-tubulin acetyltransferase, in the soft ECM is not well defined. Here, we found that casein kinase 2 (CK2) is required for the TGF-β-induced activation of α-TAT1 that promotes microtubule acetylation in the soft matrix. Genetic mutation and pharmacological inhibition of CK2 catalytic activity specifically reduced microtubule acetylation in the cells cultured on a soft matrix rather than those cultured on a stiff matrix. Immunoprecipitation analysis showed that CK2α, a catalytic subunit of CK2, directly bound to the C-terminal domain of α-TAT1, and this interaction was more prominent in the cells cultured on the soft matrix. Moreover, the substitution of alanine with serine, the 236th amino acid located at the C-terminus, which contains the CK2-binding site of α-TAT1, sig-nificantly abrogated the TGF-β-induced microtubule acetylation in the soft matrix, indicating that the successful binding of CK2 and the C-terminus of α-TAT1 led to the phosphorylation of serine at the 236th position of amino acids in α-TAT1 and regulation of its catalytic activity. Taken together, our findings provide novel insights into the molecular mechanisms underlying the TGF-β-induced activation of α-TAT1 in a soft matrix.
Collapse
Affiliation(s)
- Eunae You
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Jangho Jeong
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Jieun Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Seula Keum
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Ye Eun Hwang
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Jee-Hye Choi
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
9
|
Ko P, Choi JH, Song S, Keum S, Jeong J, Hwang YE, Kim JW, Rhee S. Microtubule Acetylation Controls MDA-MB-231 Breast Cancer Cell Invasion through the Modulation of Endoplasmic Reticulum Stress. Int J Mol Sci 2021; 22:ijms22116018. [PMID: 34199510 PMCID: PMC8199658 DOI: 10.3390/ijms22116018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 12/27/2022] Open
Abstract
During aggressive cancer progression, cancer cells adapt to unique microenvironments by withstanding various cellular stresses, including endoplasmic reticulum (ER) stress. However, the mechanism whereby cancer cells overcome the ER stress to survive remains to be elucidated. Herein, we demonstrated that microtubule acetylation in cancer cells grown on a stiff matrix promotes cancer progression by preventing excessive ER stress. Downregulation of microtubule acetylation using shRNA or CRSIPR/Cas9 techniques targeting ATAT1, which encodes α-tubulin N-acetyltransferase (αTAT1), resulted in the upregulation of ER stress markers, changes in ER morphology, and enhanced tunicamycin-induced UPR signaling in cancer cells. A set of genes involved in cancer progression, especially focal adhesion genes, were downregulated in both ATAT1-knockout and tunicamycin-treated cells, whereas ATAT1 overexpression restored the gene expression inhibited by tunicamycin. Finally, the expression of ATAT1 and ER stress marker genes were negatively correlated in various breast cancer types. Taken together, our results suggest that disruption of microtubule acetylation is a potent therapeutic tool for preventing breast cancer progression through the upregulation of ER stress. Moreover, ATAT1 and ER stress marker genes may be useful diagnostic markers in various breast cancer types.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sangmyung Rhee
- Correspondence: ; Tel.: +82-2-820-5818; Fax: +82-2-825-5206
| |
Collapse
|
10
|
Nipate AS, Jadhav CK, Chate AV, Deshmukh TR, Sarkate AP, Gill CH. Synthesis and In Vitro Anticancer Activities of New 1,4‐Disubstituted‐1,2,3‐triazoles Derivatives through Click Approach. ChemistrySelect 2021. [DOI: 10.1002/slct.202101035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Amol S. Nipate
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University Aurangabad 431004 Maharashtra India
- Department of Chemistry Shri Pundlik Maharaj Mahavidyalaya, Nandura Rly, Dist. Buldana 443404 MS India
| | - Chetan K. Jadhav
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University Aurangabad 431004 Maharashtra India
| | - Asha V. Chate
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University Aurangabad 431004 Maharashtra India
| | - Tejshri R. Deshmukh
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University Aurangabad 431004 Maharashtra India
| | - Aniket P. Sarkate
- Department of Chemical Technology Dr Babasaheb Ambedkar Marathwada University Aurangabad 431004 MS India
| | - Charansingh. H. Gill
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University Aurangabad 431004 Maharashtra India
| |
Collapse
|
11
|
Jiang D, Ding S, Mao Z, You L, Ruan Y. Integrated analysis of potential pathways by which aloe-emodin induces the apoptosis of colon cancer cells. Cancer Cell Int 2021; 21:238. [PMID: 33902610 PMCID: PMC8077783 DOI: 10.1186/s12935-021-01942-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/19/2021] [Indexed: 01/22/2023] Open
Abstract
Background Colon cancer is a malignant gastrointestinal tumour with high incidence, mortality and metastasis rates worldwide. Aloe-emodin is a monomer compound derived from hydroxyanthraquinone. Aloe-emodin produces a wide range of antitumour effects and is produced by rhubarb, aloe and other herbs. However, the mechanism by which aloe-emodin influences colon cancer is still unclear. We hope these findings will lead to the development of a new therapeutic strategy for the treatment of colon cancer in the clinic. Methods We identified the overlapping targets of aloe-emodin and colon cancer and performed protein–protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. In addition, we selected apoptosis pathways for experimental verification with cell viability, cell proliferation, caspase-3 activity, DAPI staining, cell cycle and western blotting analyses to evaluate the apoptotic effect of aloe-emodin on colon cancer cells. Results The MTT assay and cell colony formation assay showed that aloe-emodin inhibited cell proliferation. DAPI staining confirmed that aloe-emodin induced apoptosis. Aloe-emodin upregulated the protein level of Bax and decreased the expression of Bcl-2, which activates caspase-3 and caspase-9. Furthermore, the protein expression level of cytochrome C increased in a time-dependent manner in the cytoplasm but decreased in a time-dependent manner in the mitochondria. Conclusion These results indicate that aloe-emodin may induce the apoptosis of human colon cancer cells through mitochondria-related pathways.
Collapse
Affiliation(s)
- Dongxiao Jiang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Shufei Ding
- Shaoxing Hospital Of Traditional Chinese Medicine, Shaoxing, 312000, People's Republic of China
| | - Zhujun Mao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Liyan You
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Yeping Ruan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China.
| |
Collapse
|