1
|
Huo X, Wang Z, Huang N, Zhang J. Glycemic control and prostate antigen levels in individuals with diabetes based on NHANES data. Sci Rep 2025; 15:15828. [PMID: 40328819 PMCID: PMC12055993 DOI: 10.1038/s41598-025-00853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/30/2025] [Indexed: 05/08/2025] Open
Abstract
The relationship between diabetes and prostate-specific antigen (PSA) levels is complex, with potential implications for prostate cancer screening. This study examined the association between glycemic control and total PSA (tPSA) levels in patients with diabetes. We analyzed data from the 2001-2010 NHANES to assess the relationship between glycated hemoglobin (HbA1c) and tPSA in adults with diabetes, categorizing HbA1c as < 7% (good glycemic control) or ≥ 7% (poor glycemic control). Multivariable regression models were used, adjusting for key demographic, clinical, and lifestyle factors, including age, race/ethnicity, marital status, body mass index (BMI), smoking status, alcohol use, hypertension, coronary artery disease (CAD), and insulin use. Adjustments for multiple comparisons were considered using the Bonferroni correction, and missing data were handled using multiple imputation. Participants with poor glycemic control were younger, less likely to be married or partnered, and had higher rates of insulin use but lower hypertension incidence than those with good glycemic control (P < 0.05). The median tPSA level was greater in the good control group (1.10 ng/mL vs. 0.90 ng/mL; P = 0.0014). Multivariate analysis revealed no overall association between HbA1c and tPSA (β = -0.022, P = 0.917). However, significant inverse associations were observed across subgroups, including those aged ≤ 59 years (β = -0.71, P = 0.033), married individuals (β = -0.55, P < 0.001), participants without CAD (β = -0.49, P = 0.015), and insulin users (β = -0.80, P = 0.031). Although no significant overall association was found between glycemic control and tPSA levels, subgroup analyses revealed an inverse relationship between HbA1c and tPSA in younger individuals (≤ 59 years), insulin users, and those without CAD. These findings suggest that glycemic control may have subgroup-specific effects on prostate health in individuals with diabetes.
Collapse
Affiliation(s)
- Xiao Huo
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi Wang
- Huazhong University of Science and Technology, Wuhan, China
| | - Nan Huang
- Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Zhang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Garstka MA, Kedzierski L, Maj T. Diabetes can impact cellular immunity in solid tumors. Trends Immunol 2025; 46:295-309. [PMID: 40133163 DOI: 10.1016/j.it.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Cancer is increasingly prevalent worldwide, often coexisting with type 2 diabetes (T2D). Recent breakthroughs reveal the immune system's pivotal role in eliminating tumors and how the metabolic environment, such as glucose availability, affects antitumor immunity. Diabetes is known to dysregulate both innate and adaptive immune responses, while cancer creates an immunosuppressive microenvironment. We hypothesize that diabetes in cancer subjects may exacerbate this immunosuppression. Here, we examine the current understanding of the interplay between T2D and solid tumors and the associated challenges. Despite inconsistencies in data from mouse models and human tissues, evidence suggests that T2D can impact the antitumor response. Possible mechanisms may involve myeloid cells, inducing local immunosuppression and impairing antigen presentation, and certain lymphoid cell populations, exhibiting exhaustion.
Collapse
Affiliation(s)
- Malgorzata A Garstka
- Department of Endocrinology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710016, China; Core Research Laboratory, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710016, China.
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Tomasz Maj
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
3
|
Abdelrahman Z, Maxwell AP, McKnight AJ. Genetic and Epigenetic Associations with Post-Transplant Diabetes Mellitus. Genes (Basel) 2024; 15:503. [PMID: 38674437 PMCID: PMC11050138 DOI: 10.3390/genes15040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Post-transplant diabetes mellitus (PTDM) is a common complication of solid organ transplantation. PTDM prevalence varies due to different diabetes definitions. Consensus guidelines for the diagnosis of PTDM have been published based on random blood glucose levels, glycated hemoglobin (HbA1c), and oral glucose tolerance test (OGTT). The task of diagnosing PTDM continues to pose challenges, given the potential for diabetes to manifest at different time points after transplantation, thus demanding constant clinical vigilance and repeated testing. Interpreting HbA1c levels can be challenging after renal transplantation. Pre-transplant risk factors for PTDM include obesity, sedentary lifestyle, family history of diabetes, ethnicity (e.g., African-Caribbean or South Asian ancestry), and genetic risk factors. Risk factors for PTDM include immunosuppressive drugs, weight gain, hepatitis C, and cytomegalovirus infection. There is also emerging evidence that genetic and epigenetic variation in the organ transplant recipient may influence the risk of developing PTDM. This review outlines many known risk factors for PTDM and details some of the pathways, genetic variants, and epigenetic features associated with PTDM. Improved understanding of established and emerging risk factors may help identify people at risk of developing PTDM and may reduce the risk of developing PTDM or improve the management of this complication of organ transplantation.
Collapse
Affiliation(s)
- Zeinab Abdelrahman
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK; (Z.A.); (A.P.M.)
| | - Alexander Peter Maxwell
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK; (Z.A.); (A.P.M.)
- Regional Nephrology Unit, Belfast City Hospital, Belfast BT9 7AB, UK
| | - Amy Jayne McKnight
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK; (Z.A.); (A.P.M.)
| |
Collapse
|
4
|
Ene C, Nicolae I, Ene CD. Angiogenic systemic response to the hypoxic microenvironment in prostate tumorigenesis: A pilot study. Exp Ther Med 2023; 26:483. [PMID: 37753291 PMCID: PMC10518656 DOI: 10.3892/etm.2023.12182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/26/2023] [Indexed: 09/28/2023] Open
Abstract
The present paper aimed to investigate the altered angiogenetic mechanisms in hypoxic conditions in patients with prostate tumours, in correlation with common clinicopathologic variables. A case-control study was developed and included 87 patients with prostate tumours [40 diagnosed with benign prostatic hyperplasia (BPH) and 47 diagnosed with prostate cancer (PCa), using prostate transrectal biopsy] and 40 healthy subjects. The following parameters were evaluated in the serum of volunteers: Hypoxia-inducible factor (HIF)-1α, fibroblast growth factor (FGF)-2, vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-2 and -9, thrombospondin (TSP)-1 and soluble VEGF-1 receptor. Experimental data analysis demonstrated increasing amounts of inflammation in patients with PCa (IL-6, 18.1±4.7 ng/ml) and BPH (IL-6, 16.3±5.1 ng/ml) vs. control (IL-6, 4.1±1.2 ng/ml); overregulation of HIF1α in patients with PCa (129.3±21.8 ng/ml) compared with patients with BPH (65.6±18.2 ng/ml) and control (61.3±12.7 ng/ml); angiogenesis abnormalities in patients with PCa (upregulation of FGF-2, VEGF, MMP-2 and -9, suppression of TSP-1 and soluble VEGR-1) and BPH (upregulation FGF-2 and VEGF) compared with the control group. In conclusion, a greater understanding of the biological mechanism, the pathological roles and the clinical significance of various proangiogenic parameters and angiogenic-suppressor proteins seem useful in clinical practice for establishing an early diagnosis of prostate pathology and finding an individualized therapeutic approach.
Collapse
Affiliation(s)
- Cosmin Ene
- Department of Urology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Urology, ‘St. John’ Clinical Hospital of Emergency, 042122 Bucharest, Romania
| | - Ilinca Nicolae
- Research Laboratory, ‘Victor Babes’ Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Corina Daniela Ene
- Department of Nephrology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Nephrology, ‘Carol Davila’ Clinical Hospital of Nephrology, 010731 Bucharest, Romania
| |
Collapse
|
5
|
Bian Q, Li H, Wang X, Liang T, Zhang K. Multiomics Integrated Analysis Identifies SLC24A2 as a Potential Link between Type 2 Diabetes and Cancer. J Diabetes Res 2022; 2022:4629419. [PMID: 35601016 PMCID: PMC9122708 DOI: 10.1155/2022/4629419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/11/2022] [Indexed: 11/24/2022] Open
Abstract
Background So far, type 2 diabetes (T2D) is considered as an independent risk factor for various cancers, but the underlying mechanism remains unclear. Methods. SLC24A2 was first identified as a key gene strongly associated with fasting plasma glucose (FPG). Then, overlapped differentially expressed genes (DEGs) between T2D verse control and SLC24A2-high verse SLC24A2-low were extracted and imported into weighted correlation network analysis. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and gene set enrichment analysis were used for functional enrichment analysis of DEGs. Least absolute shrinkage and selection operator was utilized to build a T2D prediction model. Timer and K-M plotters were employed to find the expression and prognosis of SLC24A2 in pan cancer. Results Interestingly, both DEGs between T2D verse control and SLC24A2-high verse SLC24A2-low enriched in cancer-related pathways. Moreover, a total of 3719 overlapped DEGs were divided into 8 functional modules. Grey module negatively correlated with T2D and FPG and was markedly involved in ribosome biogenesis. Ten SLC24A2-related genes (RRP36, RPF1, GRWD1, FBL, EXOSC5, BCCIP, UTP14A, TWISTNB, TBL3, and SKIV2L) were identified as hub genes, based on which the LASSO model accurately predicts the occurrence of T2D (AUC = 0.841). In addition, SLC24A2 was only expressed in islet β cells and showed abnormal expression in 17 kinds of cancers and significantly correlated with the prognosis of 10 kinds of cancers. Conclusion Taken together, SLC24A2 may link T2D and cancer by influencing the ribosome function of islet β cells and play different prognostic roles in different cancers.
Collapse
Affiliation(s)
- Qin Bian
- Department of Clinical Laboratory, Guangyuan Central Hospital, Guangyuan 628000, China
| | - Haijun Li
- Department of Clinical Laboratory, Guangyuan Central Hospital, Guangyuan 628000, China
| | - Xiaoyi Wang
- Department of Medical Imaging, Guangyuan Central Hospital, Guangyuan 628000, China
| | - Tingting Liang
- Department of Hospital-Acquired Infection Control, Guangyuan Central Hospital, Guangyuan 628000, China
| | - Kai Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| |
Collapse
|
6
|
Tseng CH. The Effect of Metformin on Male Reproductive Function and Prostate: An Updated Review. World J Mens Health 2022; 40:11-29. [PMID: 33831975 PMCID: PMC8761231 DOI: 10.5534/wjmh.210001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/02/2022] Open
Abstract
Metformin is the first-line oral antidiabetic drug that shows multiple pleiotropic effects of anti-inflamation, anti-cancer, anti-aging, anti-microbia, anti-atherosclerosis, and immune modulation. Metformin's effects on men's related health are reviewed here, focusing on reproductive health under subtitles of erectile dysfunction (ED), steroidogenesis and spermatogenesis; and on prostate-related health under subtitles of prostate specific antigen (PSA), prostatitis, benign prostate hyperplasia (BPH), and prostate cancer (PCa). Updated literature suggests a potential role of metformin on arteriogenic ED but controversial and contradictory effects (either protective or harmful) on testicular functions of testosterone synthesis and spermatogenesis. With regards to prostate-related health, metformin use may be associated with lower levels of PSA in humans, but its clinical implications require more research. Although there is a lack of research on metform's effect on prostatitis, it may have potential benefits through its anti-microbial and anti-inflammatory properties. Metformin may reduce the risk of BPH by inhibiting the insulin-like growth factor 1 pathway and some but not all studies suggest a protective role of metformin on the risk of PCa. Many clinical trials are being conducted to investigate the use of metformin as an adjuvant therapy for PCa but results currently available are not conclusive. While some trials suggest a benefit in reducing the metastasis and recurrence of PCa, others do not show any benefit. More research works are warranted to illuminate the potential usefulness of metformin in the promotion of men's health.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Environmental Health and Occupational Medicine of the National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
7
|
Observation of Efficacy of Internet-Based Chronic Disease Management Model Combined with Modified Therapy of Bushenyiliu Decoction in Treating Patients with Type 2 Diabetes Mellitus and Prostate Cancer and Its Effect on Disease Control Rate. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7767186. [PMID: 34539806 PMCID: PMC8448592 DOI: 10.1155/2021/7767186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 12/23/2022]
Abstract
Objective To explore the efficacy of Internet-based chronic disease management model combined with the modified therapy of Bushenyiliu decoction in treating patients with type 2 diabetes mellitus (T2DM) and prostate cancer and its effect on disease control rate (DCR). Methods 120 patients with T2DM and prostate cancer admitted to the Affiliated Hospital of Yangzhou University, Yangzhou First People's Hospital, from February 2019 to February 2020, were retrospectively analyzed and equally divided into the experimental group and the control group according to their admission order. Conventional treatment combined with the modified therapy of Bushenyiliu decoction was performed on all patients for 3 months, and the Internet-based chronic disease management model was adopted for patients in the experimental group additionally, so as to compare their short-term effect, survival time, disease progression, blood glucose indicators, immune function indicators, and type 2 Diabetes Self-Care Scale (2-DSCS) scores. Results Compared with the control group, the experimental group obtained significantly higher DCR and objective remission rate (ORR) (P < 0.05), higher survival time and disease progression (P < 0.001), better blood glucose indicators and immune function indicators (P < 0.001), and higher 2-DSCS scores (P < 0.001) after treatment. Conclusion Combining the Internet-based chronic disease management model with the modified therapy of Bushenyiliu decoction can effectively enhance the self-care ability of patients with T2DM and prostate cancer, improve their blood glucose level, promote their body immunity, and comprehensively optimize the cancer control effect, which should be promoted in practice.
Collapse
|
8
|
Ioannidou E, Moschetta M, Shah S, Parker JS, Ozturk MA, Pappas-Gogos G, Sheriff M, Rassy E, Boussios S. Angiogenesis and Anti-Angiogenic Treatment in Prostate Cancer: Mechanisms of Action and Molecular Targets. Int J Mol Sci 2021; 22:ijms22189926. [PMID: 34576107 PMCID: PMC8472415 DOI: 10.3390/ijms22189926] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PC) is the most common cancer in men and the second leading cause of cancer-related death worldwide. Many therapeutic advances over the last two decades have led to an improvement in the survival of patients with metastatic PC, yet the majority of these patients still succumb to their disease. Antiagiogenic therapies have shown substantial benefits for many types of cancer but only a marginal benefit for PC. Ongoing clinical trials investigate antiangiogenic monotherapies or combination therapies. Despite the important role of angiogenesis in PC, clinical trials in refractory castration-resistant PC (CRPC) have demonstrated increased toxicity with no clinical benefit. A better understanding of the mechanism of angiogenesis may help to understand the failure of trials, possibly leading to the development of new targeted anti-angiogenic therapies in PC. These could include the identification of specific subsets of patients who might benefit from these therapeutic strategies. This paper provides a comprehensive review of the pathways involved in the angiogenesis, the chemotherapeutic agents with antiangiogenic activity, the available studies on anti-angiogenic agents and the potential mechanisms of resistance.
Collapse
Affiliation(s)
- Evangelia Ioannidou
- Department of Paediatrics and Child Health, Chelsea and Westminster Hospital, 369 Fulham Rd., London SW10 9NH, UK;
| | - Michele Moschetta
- CHUV, Lausanne University Hospital, Rue du Bugnon 21, CH-1011 Lausanne, Switzerland;
| | - Sidrah Shah
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent ME7 5NY, UK; (S.S.); (J.S.P.)
| | - Jack Steven Parker
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent ME7 5NY, UK; (S.S.); (J.S.P.)
| | - Mehmet Akif Ozturk
- Department of Medical Oncology, Sisli Memorial Hospital, Kaptan Paşa Mah. Piyale Paşa Bulv., Okmeydanı Cd. 4, Istanbul 34384, Turkey;
| | - George Pappas-Gogos
- Department of Surgery, University Hospital of Ioannina, 45111 Ioannina, Greece;
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent ME7 5NY, UK;
| | - Elie Rassy
- Department of Cancer Medicine, Gustave Roussy Institut, 94805 Villejuif, France;
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent ME7 5NY, UK; (S.S.); (J.S.P.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki, Thermi, 57001 Thessaloniki, Greece
- Correspondence: or
| |
Collapse
|