1
|
von Voss L, Arora T, Assis J, Kuentzel KB, Arfelt KN, Nøhr MK, Grevengoed TJ, Arumugam M, Mandrup-Poulsen T, Rosenkilde MM. Sexual Dimorphism in the Immunometabolic Role of Gpr183 in Mice. J Endocr Soc 2024; 8:bvae188. [PMID: 39545055 PMCID: PMC11561910 DOI: 10.1210/jendso/bvae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Indexed: 11/17/2024] Open
Abstract
Context Excessive eating and intake of a Western diet negatively affect the intestinal immune system, resulting in compromised glucose homeostasis and lower gut bacterial diversity. The G protein-coupled receptor GPR183 regulates immune cell migration and intestinal immune response and has been associated with tuberculosis, type 1 diabetes, and inflammatory bowel diseases. Objective We hypothesized that with these implications, GPR183 has an important immunometabolic role and investigated this using a global Gpr183 knockout mouse model. Methods Wild-type (WT) and Gpr183-deficient (Gpr183-/-) mice were fed a high-fat, high-sucrose diet (HFSD) for 15 weeks. We investigated changes in weight, body composition, fecal immunoglobulin A (IgA) levels, fecal microbiome, and glucose tolerance before and after the diet. Macrophage infiltration into visceral fat was determined by flow cytometry, and hepatic gene expression was measured. Results A sexual dimorphism was discovered, whereby female Gpr183-/- mice showed adverse metabolic outcomes compared to WT counterparts with inferior glucose tolerance, lower fecal IgA levels, and increased macrophage infiltration in visceral fat. In contrast, male Gpr183-/- mice had significantly lower fasting blood glucose after diet than male WT mice. Liver gene expression showed reduced inflammation and macrophage markers in Gpr183-/- livers, regardless of sex, while the pancreatic islet area did not differ between the groups. No conclusive differences were found after microbiome sequencing. Conclusion Gpr183 maintains metabolic homeostasis in female but not in male mice independent of diet. If confirmed in humans, future therapy targeting GPR183 should consider this sexual dimorphism.
Collapse
Affiliation(s)
- Liv von Voss
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Tulika Arora
- Novo Nordisk Foundation Center for Basic Metabolic Research and Medical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Juliana Assis
- Novo Nordisk Foundation Center for Basic Metabolic Research and Medical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Immunotechnology, Lund University, SE 223 63 Lund, Sweden
| | - Katharina B Kuentzel
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Kristine N Arfelt
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Mark K Nøhr
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Trisha J Grevengoed
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research and Medical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Mette M Rosenkilde
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| |
Collapse
|
2
|
Zhang Z, Ji G, Li M. Glucokinase regulatory protein: a balancing act between glucose and lipid metabolism in NAFLD. Front Endocrinol (Lausanne) 2023; 14:1247611. [PMID: 37711901 PMCID: PMC10497960 DOI: 10.3389/fendo.2023.1247611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common liver disease worldwide, affected by both genetics and environment. Type 2 diabetes (T2D) stands as an independent environmental risk factor that precipitates the onset of hepatic steatosis and accelerates its progression to severe stages of liver damage. Furthermore, the coexistence of T2D and NAFLD magnifies the risk of cardiovascular disease synergistically. However, the association between genetic susceptibility and metabolic risk factors in NAFLD remains incompletely understood. The glucokinase regulator gene (GCKR), responsible for encoding the glucokinase regulatory protein (GKRP), acts as a regulator and protector of the glucose-metabolizing enzyme glucokinase (GK) in the liver. Two common variants (rs1260326 and rs780094) within the GCKR gene have been associated with a lower risk for T2D but a higher risk for NAFLD. Recent studies underscore that T2D presence significantly amplifies the effect of the GCKR gene, thereby increasing the risk of NASH and fibrosis in NAFLD patients. In this review, we focus on the critical roles of GKRP in T2D and NAFLD, drawing upon insights from genetic and biological studies. Notably, prior attempts at drug development targeting GK with glucokinase activators (GKAs) have shown potential risks of augmented plasma triglycerides or NAFLD. Conversely, overexpression of GKRP in diabetic rats improved glucose tolerance without causing NAFLD, suggesting the crucial regulatory role of GKRP in maintaining hepatic glucose and lipid metabolism balance. Collectively, this review sheds new light on the complex interaction between genes and environment in NAFLD, focusing on the GCKR gene. By integrating evidence from genetics, biology, and drug development, we reassess the therapeutic potential of targeting GK or GKRP for metabolic disease treatment. Emerging evidence suggests that selectively activating GK or enhancing GK-GKRP binding may represent a holistic strategy for restoring glucose and lipid metabolic balance.
Collapse
Affiliation(s)
| | | | - Meng Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Müller L, Power Guerra N, Schildt A, Lindner T, Stenzel J, Behrangi N, Bergner C, Alberts T, Bühler D, Kurth J, Krause BJ, Janowitz D, Teipel S, Vollmar B, Kuhla A. [ 18F]GE-180-PET and Post Mortem Marker Characteristics of Long-Term High-Fat-Diet-Induced Chronic Neuroinflammation in Mice. Biomolecules 2023; 13:biom13050769. [PMID: 37238638 DOI: 10.3390/biom13050769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/14/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Obesity is characterized by immoderate fat accumulation leading to an elevated risk of neurodegenerative disorders, along with a host of metabolic disturbances. Chronic neuroinflammation is a main factor linking obesity and the propensity for neurodegenerative disorders. To determine the cerebrometabolic effects of diet-induced obesity (DIO) in female mice fed a long-term (24 weeks) high-fat diet (HFD, 60% fat) compared to a group on a control diet (CD, 20% fat), we used in vivo PET imaging with the radiotracer [18F]FDG as a marker for brain glucose metabolism. In addition, we determined the effects of DIO on cerebral neuroinflammation using translocator protein 18 kDa (TSPO)-sensitive PET imaging with [18F]GE-180. Finally, we performed complementary post mortem histological and biochemical analyses of TSPO and further microglial (Iba1, TMEM119) and astroglial (GFAP) markers as well as cerebral expression analyses of cytokines (e.g., Interleukin (IL)-1β). We showed the development of a peripheral DIO phenotype, characterized by increased body weight, visceral fat, free triglycerides and leptin in plasma, as well as increased fasted blood glucose levels. Furthermore, we found obesity-associated hypermetabolic changes in brain glucose metabolism in the HFD group. Our main findings with respect to neuroinflammation were that neither [18F]GE-180 PET nor histological analyses of brain samples seem fit to detect the predicted cerebral inflammation response, despite clear evidence of perturbed brain metabolism along with elevated IL-1β expression. These results could be interpreted as a metabolically activated state in brain-resident immune cells due to a long-term HFD.
Collapse
Affiliation(s)
- Luisa Müller
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
- Department of Psychosomatic Medicine and Psychotherapy, Rostock University Medical Centre, 18147 Rostock, Germany
- Centre for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Centre, 18147 Rostock, Germany
| | - Nicole Power Guerra
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
- Institute of Anatomy, Rostock University Medical Centre, 18057 Rostock, Germany
- Smell & Taste Clinic, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01034 Dresden, Germany
| | - Anna Schildt
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Tobias Lindner
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Jan Stenzel
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Newshan Behrangi
- Institute of Anatomy and Cell Biology, Medical University of Bonn, 53115 Bonn, Germany
| | - Carina Bergner
- Department of Clinic and Polyclinic for Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Teresa Alberts
- Institute of Anatomy and Cell Biology, Medical University of Bonn, 53115 Bonn, Germany
| | - Daniel Bühler
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Jens Kurth
- Department of Clinic and Polyclinic for Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Bernd Joachim Krause
- Department of Clinic and Polyclinic for Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Deborah Janowitz
- Department of Psychiatry, University of Greifswald, 17475 Greifswald, Germany
| | - Stefan Teipel
- Department of Psychosomatic Medicine and Psychotherapy, Rostock University Medical Centre, 18147 Rostock, Germany
- Centre for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Centre, 18147 Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
- Centre for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Centre, 18147 Rostock, Germany
| | - Angela Kuhla
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
- Centre for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Centre, 18147 Rostock, Germany
| |
Collapse
|
4
|
Gusev E, Sarapultsev A. Atherosclerosis and Inflammation: Insights from the Theory of General Pathological Processes. Int J Mol Sci 2023; 24:ijms24097910. [PMID: 37175617 PMCID: PMC10178362 DOI: 10.3390/ijms24097910] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Recent advances have greatly improved our understanding of the molecular mechanisms behind atherosclerosis pathogenesis. However, there is still a need to systematize this data from a general pathology perspective, particularly with regard to atherogenesis patterns in the context of both canonical and non-classical inflammation types. In this review, we analyze various typical phenomena and outcomes of cellular pro-inflammatory stress in atherosclerosis, as well as the role of endothelial dysfunction in local and systemic manifestations of low-grade inflammation. We also present the features of immune mechanisms in the development of productive inflammation in stable and unstable plaques, along with their similarities and differences compared to canonical inflammation. There are numerous factors that act as inducers of the inflammatory process in atherosclerosis, including vascular endothelium aging, metabolic dysfunctions, autoimmune, and in some cases, infectious damage factors. Life-critical complications of atherosclerosis, such as cardiogenic shock and severe strokes, are associated with the development of acute systemic hyperinflammation. Additionally, critical atherosclerotic ischemia of the lower extremities induces paracoagulation and the development of chronic systemic inflammation. Conversely, sepsis, other critical conditions, and severe systemic chronic diseases contribute to atherogenesis. In summary, atherosclerosis can be characterized as an independent form of inflammation, sharing similarities but also having fundamental differences from low-grade inflammation and various variants of canonical inflammation (classic vasculitis).
Collapse
Affiliation(s)
- Evgenii Gusev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080 Chelyabinsk, Russia
| |
Collapse
|
5
|
Huang J, Wang M, Wu Y, Kumar R, Lin S. Serum high-sensitive C-reactive protein is a simple indicator for all-cause among individuals with MAFLD. Front Physiol 2022; 13:1012887. [PMID: 36338499 PMCID: PMC9631492 DOI: 10.3389/fphys.2022.1012887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
High-sensitive C-reactive protein (hs-CRP) is one of the diagnostic components for metabolic (-dysfunction) associated fatty liver disease (MAFLD). This study aimed to explore the relationship between hs-CRP level and 25-year mortality in patients with MAFLD. The study data were from the Third National Health and Nutrition Examination Survey 1988-1994. All participants were followed up until December 2015 and the outcome of each participant was ascertained from National Death Index records. Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% confidence interval (CI) of all-cause mortality, cardiovascular-related mortality, and malignancy-related mortality. A total of 4,145 participants with MAFLD were included in final analysis. The median follow-up period was 22.3 years (interquartile range 16.9-24.2). There were 1,610 (38.8%) all-cause deaths. The leading cause of death was malignant neoplasms (365/1,610, 22.7%), followed by cardiovascular diseases (342/1,610, 21.2%). Of the 4,145 patients with MAFLD, 1,293 (31.2%) had an hs-CRP level greater than 0.5 mg/dl. Those with hs-CRP > 0.5 mg/dl were older, more likely to be female and had greater derangements of metabolic profiles than those with lower hs-CRP. The results of Cox regression analysis showed that hs-CRP ≥ 0.5 mg/dl was an independent risk factor for all-cause mortality (HR = 1.394, 95% CI 1.253-1.551), cardiovascular mortality (HR = 1.497, 95% CI 1.190-1.885) and malignant neoplasms related mortality (HR = 1.290, 95% CI 1.030-1.615) after adjusting for risk factors. This study confirms that hs-CRP is an independent predictive factor of poor prognosis in patients with MAFLD.
Collapse
Affiliation(s)
- Jiaofeng Huang
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Clinical Research Center for Liver and Intestinal Diseases, Fuzhou, Fujian, China
| | - Mingfang Wang
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Clinical Research Center for Liver and Intestinal Diseases, Fuzhou, Fujian, China
| | - Yinlian Wu
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Clinical Research Center for Liver and Intestinal Diseases, Fuzhou, Fujian, China
| | - Rahul Kumar
- Department of Gastroenterology and Hepatology, Duke-NUS Academic Medical Centre, Changi General Hospital, Singapore, Singapore
| | - Su Lin
- Department of Hepatology, Hepatology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Clinical Research Center for Liver and Intestinal Diseases, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Power Guerra N, Leyens K, Müller L, Brauer D, Janowitz D, Schlick S, Pilz K, Grabe HJ, Vollmar B, Kuhla A. The effect of different weight loss strategies to treat non-alcoholic fatty liver disease focusing on fibroblast growth factor 21. Front Nutr 2022; 9:935805. [PMID: 36034917 PMCID: PMC9399780 DOI: 10.3389/fnut.2022.935805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Obesity, often associated with non-alcoholic fatty liver disease (NAFLD), is characterized by an imbalance between energy expenditure and food intake, which is also reflected by desensitization of fibroblast growth factor 21 (FGF21). FGF21 is strongly influenced, among others, by TNFα, which is known to be upregulated in obesity-induced inflammation. Successful long-term treatments of NAFLD might be dietary modification, exercise, or fasting. Materials and methods Whether succeeded NAFLD recovery is linked with improved FGF21 sensitivity and finally reverted FGF21 resistance was the focus of the present study. For this purpose, mice received a high-fat diet (HFD) for 6 months to establish obesity. Afterward, the mice were subjected to three different weight loss interventions, namely, dietary change to low-fat diet (LFD), treadmill training, and/or time-restricted feeding for additional 6 months, whereas one group remained on HFD. Results In addition to the expected decrease in NAFLD activity with dietary change, this was also observed in the HFD group with additional time-restricted feeding. There was also an associated decrease in hepatic TNFα and FGF21 expression and an increase in ß-klotho expression, demonstrated mainly by using principal component analysis. Pearson correlation analysis shows that independent of any intervention, TNFα expression decreased with improved NAFLD recovery. This was accompanied with higher FGF21 sensitivity, as expressed by an increase in β-klotho and FGFR1c expression and concomitantly decreased FGF21 levels. Conclusion In summary, we conclude that successful NAFLD therapy is associated with a reversion of the TNFα-triggered FGF21-resistant state or desensitization.
Collapse
Affiliation(s)
- Nicole Power Guerra
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany.,Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Katharina Leyens
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Luisa Müller
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - David Brauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Deborah Janowitz
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany.,Clinic for Psychiatry and Psychotherapy, HELIOS Hanseklinikum Stralsund, Stralsund, Germany
| | - Samin Schlick
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany.,Clinic for Psychiatry and Psychotherapy, HELIOS Hanseklinikum Stralsund, Stralsund, Germany
| | - Kristin Pilz
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Angela Kuhla
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
7
|
Schipke J, Brandenberger C, Vital M, Mühlfeld C. Starch and Fiber Contents of Purified Control Diets Differentially Affect Hepatic Lipid Homeostasis and Gut Microbiota Composition. Front Nutr 2022; 9:915082. [PMID: 35873446 PMCID: PMC9301012 DOI: 10.3389/fnut.2022.915082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/07/2022] [Indexed: 01/04/2023] Open
Abstract
Background Interpretation of results from diet-induced-obesity (DIO) studies critically depends on control conditions. Grain-based chows are optimized for rodent nutrition but do not match the defined composition of purified diets used for DIO, severely limiting the comparability. Purified control diets are recommended but often contain high starch and only minor fiber amounts. It is unknown whether this composition leads to metabolic alterations compared with chow and whether the addition of refined fibers at the expense of starch affects these changes. Methods In this experiment, 6-week-old C57BL/6N mice were fed (i) a conventional purified control diet (high-starch, low-fiber; Puri-starch), (ii) an alternative, custom-made purified control diet containing pectin and inulin (medium-starch, higher-fiber; Puri-fiber), or (iii) grain-based chow for 30 weeks (N = 8–10). Results Puri-starch feeding resulted in significantly elevated levels of plasma insulin (p = 0.004), cholesterol (p < 0.001), and transaminases (AST p = 0.002, ALT p = 0.001), hepatic de novo lipogenesis and liver steatosis, and an altered gut microbiota composition compared with chow-fed mice. In contrast, Puri-fiber exerted only minor effects on systemic parameters and liver lipid homeostasis, and promoted a distinct gut microbiota composition. Conclusion Carbohydrate-rich purified diets trigger a metabolic status possibly masking pathological effects of nutrients under study, restricting its use as control condition. The addition of refined fibers is suited to create purified, yet physiological control diets for DIO research.
Collapse
Affiliation(s)
- Julia Schipke
- Hannover Medical School, Institute of Functional and Applied Anatomy, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- *Correspondence: Julia Schipke
| | - Christina Brandenberger
- Hannover Medical School, Institute of Functional and Applied Anatomy, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Marius Vital
- Hannover Medical School, Institute for Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Christian Mühlfeld
- Hannover Medical School, Institute of Functional and Applied Anatomy, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
8
|
Panchal SK, John OD, Mathai ML, Brown L. Anthocyanins in Chronic Diseases: The Power of Purple. Nutrients 2022; 14:2161. [PMID: 35631301 PMCID: PMC9142943 DOI: 10.3390/nu14102161] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Anthocyanins are mainly purple-coloured phenolic compounds of plant origin that as secondary metabolites are important in plant survival. Understanding their health benefits in humans requires sourcing these unstable compounds in sufficient quantities at a reasonable cost, which has led to improved methods of extraction. Dark-coloured fruits, cereals and vegetables are current sources of these compounds. The range of potential sustainable sources is much larger and includes non-commercialised native plants from around the world and agri-waste containing anthocyanins. In the last 5 years, there have been significant advances in developing the therapeutic potential of anthocyanins in chronic human diseases. Anthocyanins exert their beneficial effects through improvements in gut microbiota, oxidative stress and inflammation, and modulation of neuropeptides such as insulin-like growth factor-1. Their health benefits in humans include reduced cognitive decline; protection of organs such as the liver, as well as the cardiovascular system, gastrointestinal tract and kidneys; improvements in bone health and obesity; and regulation of glucose and lipid metabolism. This review summarises some of the sources of anthocyanins and their mechanisms and benefits in the treatment of chronic human diseases.
Collapse
Affiliation(s)
- Sunil K. Panchal
- School of Science, Western Sydney University, Penrith, NSW 2753, Australia;
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW 2753, Australia
| | - Oliver D. John
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; or
| | - Michael L. Mathai
- Institute of Health and Sport, College of Health and Biomedicine, Victoria University, Melbourne, VIC 3021, Australia;
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
| | - Lindsay Brown
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
9
|
Krisnamurti DGB, Purwaningsih EH, Tarigan TJE, Nugroho CMH, Soetikno V, Louisa M. Alterations of Liver Functions and Morphology in a Rat Model of Prediabetes After a Short-term Treatment of a High-fat High-glucose and Low-dose Streptozotocin. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: The administration of high-fat and high-glucose in diet followed by a low-dose streptozotocin injection in rats could mimic hyperglycemia, prediabetic, or diabetic conditions in humans. However, whether the rat model may lead to early liver impairment was still unclear.
AIM: This study was aimed to investigate the possible changes in liver functions and morphology in the rat model of prediabetes after a short-term administration of a high-fat and high-glucose diet followed by low-dose streptozotocin injection.
METHODS: Eighteen male Wistar rats were divided into nine rats in the control group and nine in the prediabetic group. To induce prediabetic rats, high-fat high-glucose in daily diets for 3 weeks continued with once to twice low-dose streptozotocin was given. Rats in control groups were fed with a standard diet for 2 months. Afterward, we analyzed glucose control parameters, liver functions, and liver histology of the rats.
RESULTS: High-fat, high-glucose diet combined with a low dose of streptozotocin successfully caused prediabetics in the rats. There was a significant increase in several liver enzymes, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyl transferase (GGT). However, no significant changes were found in the serum lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) levels. The histological changes in the liver confirmed the increase in liver enzymes.
CONCLUSION: Short-term administration of high-fat high-glucose in combination with low-dose streptozotocin triggers alterations in liver functions marker and liver morphology.
Collapse
|
10
|
Effect of Advanced Glycation End-Products and Excessive Calorie Intake on Diet-Induced Chronic Low-Grade Inflammation Biomarkers in Murine Models. Nutrients 2021; 13:nu13093091. [PMID: 34578967 PMCID: PMC8468789 DOI: 10.3390/nu13093091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022] Open
Abstract
Chronic Low-Grade Inflammation (CLGI) is a non-overt inflammatory state characterized by a continuous activation of inflammation mediators associated with metabolic diseases. It has been linked to the overconsumption of Advanced Glycation End-Products (AGEs), and/or macronutrients which lead to an increase in local and systemic pro-inflammatory biomarkers in humans and animal models. This review provides a summary of research into biomarkers of diet-induced CLGI in murine models, with a focus on AGEs and obesogenic diets, and presents the physiological effects described in the literature. Diet-induced CLGI is associated with metabolic endotoxemia, and/or gut microbiota remodeling in rodents. The mechanisms identified so far are centered on pro-inflammatory axes such as the interaction between AGEs and their main receptor AGEs (RAGE) or increased levels of lipopolysaccharide. The use of murine models has helped to elucidate the local and systemic expression of CLGI mediators. These models have enabled significant advances in identification of diet-induced CLGI biomarkers and resultant physiological effects. Some limitations on the translational (murine → humans) use of biomarkers may arise, but murine models have greatly facilitated the testing of specific dietary components. However, there remains a lack of information at the whole-organism level of organization, as well as a lack of consensus on the best biomarker for use in CLGI studies and recommendations as to future research conclude this review.
Collapse
|
11
|
Power Guerra N, Parveen A, Bühler D, Brauer DL, Müller L, Pilz K, Witt M, Glass Ä, Bajorat R, Janowitz D, Wolkenhauer O, Vollmar B, Kuhla A. Fibroblast Growth Factor 21 as a Potential Biomarker for Improved Locomotion and Olfaction Detection Ability after Weight Reduction in Obese Mice. Nutrients 2021; 13:nu13092916. [PMID: 34578793 PMCID: PMC8470262 DOI: 10.3390/nu13092916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity is one of the most challenging diseases of the 21st century and is accompanied by behavioural disorders. Exercise, dietary adjustments, or time-restricted feeding are the only successful long-term treatments to date. Fibroblast growth factor 21 (FGF21) plays a key role in dietary regulation, but FGF21 resistance is prevalent in obesity. The aim of this study was to investigate in obese mice whether weight reduction leads to improved behaviour and whether these behavioural changes are associated with decreased plasma FGF21 levels. After establishing a model for diet-induced obesity, mice were subjected to three different interventions for weight reduction, namely dietary change, treadmill exercise, or time-restricted feeding. In this study, we demonstrated that only the combination of dietary change and treadmill exercise affected all parameters leading to a reduction in weight, fat, and FGF21, as well as less anxious behaviour, higher overall activity, and improved olfactory detection abilities. To investigate the interrelationship between FGF21 and behavioural parameters, feature selection algorithms were applied designating FGF21 and body weight as one of five highly weighted features. In conclusion, we concluded from the complementary methods that FGF21 can be considered as a potential biomarker for improved behaviour in obese mice after weight reduction.
Collapse
Affiliation(s)
- Nicole Power Guerra
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
- Department of Anatomy, Rostock University Medical Centre, Gertrudenstraße 9, 18057 Rostock, Germany;
| | - Alisha Parveen
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
| | - Daniel Bühler
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
| | - David Leon Brauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Ulmenstraße 69, 18057 Rostock, Germany; (D.L.B.); (O.W.)
| | - Luisa Müller
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
- Department of Psychosomatic Medicine and Psychotherapy, Rostock University Medical Centre, Gehlsheimerstraße 20, 18147 Rostock, Germany
- Centre for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Centre, Gehlsheimerstraße 20, 18147 Rostock, Germany
| | - Kristin Pilz
- Department of Psychiatry, University of Greifswald, Ellernholzstraße 1-2, 17489 Greifswald, Germany; (K.P.); (D.J.)
| | - Martin Witt
- Department of Anatomy, Rostock University Medical Centre, Gertrudenstraße 9, 18057 Rostock, Germany;
| | - Änne Glass
- Institute for Biostatistics and Informatics, Rostock University Medical Centre, Ernst-Heydemann-Straße 8, 18057 Rostock, Germany;
| | - Rika Bajorat
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Centre, Schillingallee 35, 18057 Rostock, Germany;
| | - Deborah Janowitz
- Department of Psychiatry, University of Greifswald, Ellernholzstraße 1-2, 17489 Greifswald, Germany; (K.P.); (D.J.)
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Ulmenstraße 69, 18057 Rostock, Germany; (D.L.B.); (O.W.)
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
- Centre for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Centre, Gehlsheimerstraße 20, 18147 Rostock, Germany
| | - Angela Kuhla
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, Schillingallee 69a, 18057 Rostock, Germany; (N.P.G.); (A.P.); (D.B.); (L.M.); (B.V.)
- Centre for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Centre, Gehlsheimerstraße 20, 18147 Rostock, Germany
- Correspondence: ; Tel.: +49-381-494-2503
| |
Collapse
|
12
|
Kozłowska A, Dzierżanowski T. Targeting Inflammation by Anthocyanins as the Novel Therapeutic Potential for Chronic Diseases: An Update. Molecules 2021; 26:4380. [PMID: 34299655 PMCID: PMC8304181 DOI: 10.3390/molecules26144380] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Low-grade chronic inflammation (LGCI) and oxidative stress act as cooperative and synergistic partners in the pathogenesis of a wide variety of diseases. Polyphenols, including anthocyanins, are involved in regulating the inflammatory state and activating the endogenous antioxidant defenses. Anthocyanins' effects on inflammatory markers are promising and may have the potential to exert an anti-inflammatory effect in vitro and in vivo. Therefore, translating these research findings into clinical practice would effectively contribute to the prevention and treatment of chronic disease. The present narrative review summarizes the results of clinical studies from the last 5 years in the context of the anti-inflammatory and anti-oxidative role of anthocyanins in both health and disease. There is evidence to indicate that anthocyanins supplementation in the regulation of pro-inflammatory markers among the healthy and chronic disease population. Although the inconsistencies between the result of randomized control trials (RCTs) and meta-analyses were also observed. Regarding anthocyanins' effects on inflammatory markers, there is a need for long-term clinical trials allowing for the quantifiable progression of inflammation. The present review can help clinicians and other health care professionals understand the importance of anthocyanins use in patients with chronic diseases.
Collapse
Affiliation(s)
| | - Tomasz Dzierżanowski
- Department of Social Medicine and Public Health, Medical University of Warsaw, 02-776 Warsaw, Poland;
| |
Collapse
|
13
|
Takayama S, Katada K, Takagi T, Iida T, Ueda T, Mizushima K, Higashimura Y, Morita M, Okayama T, Kamada K, Uchiyama K, Handa O, Ishikawa T, Yasukawa Z, Okubo T, Itoh Y, Naito Y. Partially hydrolyzed guar gum attenuates non-alcoholic fatty liver disease in mice through the gut-liver axis. World J Gastroenterol 2021; 27:2160-2176. [PMID: 34025071 PMCID: PMC8117741 DOI: 10.3748/wjg.v27.i18.2160] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/12/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The gut-liver axis has attracted much interest in the context of chronic liver disease pathogenesis. Prebiotics such as dietary fibers were shown to attenuate non-alcoholic fatty liver disease (NAFLD) by modulating gut microbiota. Partially hydrolyzed guar gum (PHGG), a water-soluble dietary fiber, has been reported to alleviate the symptoms of various intestinal diseases and metabolic syndromes. However, its effects on NAFLD remain to be fully elucidated. AIM To determine whether treatment with PHGG attenuates NAFLD development in mice through the gut-liver axis. METHODS Seven-week-old male C57BL/6J mice with increased intestinal permeability were fed a control or atherogenic (Ath) diet (a mouse model of NAFLD) for 8 wk, with or without 5% PHGG. Increased intestinal permeability was induced through chronic intermittent administration of low-dose dextran sulfate sodium. Body weight, liver weight, macroscopic findings in the liver, blood biochemistry [aspartate aminotransferase (AST) and alanine aminotransferase (ALT), total cholesterol, triglyceride, free fatty acids, and glucose levels], liver histology, myeloperoxidase activity in liver tissue, mRNA expression in the liver and intestine, serum endotoxin levels in the portal vein, intestinal permeability, and microbiota and short-chain fatty acid (SCFA) profiles in the cecal samples were investigated. RESULTS Mice with increased intestinal permeability subjected to the Ath diet showed significantly increased serum AST and ALT levels, liver fat accumulation, liver inflammatory (tumor necrosis factor-α and monocyte chemotactic protein-1) and fibrogenic (collagen 1a1 and α smooth muscle actin) marker levels, and liver myeloperoxidase activity, which were significantly attenuated by PHGG treatment. Furthermore, the Ath diet combined with increased intestinal permeability resulted in elevated portal endotoxin levels and activated toll-like receptor (TLR) 4 and TLR9 expression, confirming that intestinal permeability was significantly elevated, as observed by evaluating the lumen-to-blood clearance of fluorescein isothiocyanate-conjugated dextran. PHGG treatment did not affect fatty acid metabolism in the liver. However, it decreased lipopolysaccharide signaling through the gut-liver axis. In addition, it significantly increased the abundance of cecal Bacteroides and Clostridium subcluster XIVa. Treatment with PHGG markedly increased the levels of SCFAs, particularly, butyric acid, acetic acid, propionic acid, and formic acid, in the cecal samples. CONCLUSION PHGG partially prevented NAFLD development in mice through the gut-liver axis by modulating microbiota and downstream SCFA profiles.
Collapse
Affiliation(s)
- Shun Takayama
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kazuhiro Katada
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomohisa Takagi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department of Medical Innovation and Translational Medical Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takaya Iida
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomohiro Ueda
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Katsura Mizushima
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yasuki Higashimura
- Department of Food Science, Ishikawa Prefectural University, Nonoichi 921-8836, Japan
| | - Mayuko Morita
- Department of Health Care Nutrition, Showa Gakuin Junior College, Ichikawa 272-0823, Japan
| | - Tetsuya Okayama
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kazuhiro Kamada
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kazuhiko Uchiyama
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Osamu Handa
- Division of Gastroenterology, Department of Internal Medicine, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Takeshi Ishikawa
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Zenta Yasukawa
- Department of Nutrition, Taiyo Kagaku Co. Ltd, Yokkaichi 510-0844, Japan
| | - Tsutomu Okubo
- Department of Nutrition, Taiyo Kagaku Co. Ltd, Yokkaichi 510-0844, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|