1
|
Wang L, Xu Z, Bains A, Ali N, Shang Z, Patil A, Patil S. Exploring Anticancer Potential of Lactobacillus Strains: Insights into Cytotoxicity and Apoptotic Mechanisms on HCT 115 Cancer Cells. Biologics 2024; 18:285-295. [PMID: 39372887 PMCID: PMC11453158 DOI: 10.2147/btt.s477602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/21/2024] [Indexed: 10/08/2024]
Abstract
Introduction This study aims to systematically assess the anticancer potential of distinct Lactobacillus strains on Human Colorectal Tumor (HCT) 115 cancer cells, with a primary focus on the apoptotic mechanisms involved. Lactobacillus strains were isolated from sheep milk and underwent a meticulous microbial isolation process. Previous research indicates that certain probiotic bacteria, including Lactobacillus species, may exhibit anticancer properties through mechanisms such as apoptosis induction. However, there is limited understanding of how different Lactobacillus strains exert these effects on cancer cells and the underlying molecular pathways involved. Methods Cytotoxicity was evaluated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and exposure durations of Lactobacillus cell-free lyophilized filtrates. Additional apoptotic features were characterized using 4.6-diamidino-2-phenylindole (DAPI) analysis for nuclear fragmentation and Annexin V/PI analysis for apoptosis quantification. Genetic analysis explored the modulation of apoptotic proteins (Bax and Bcl2) in response to Lactobacillus treatment. Whole-genome sequencing (WGS) was performed to understand the genetic makeup of the Lactobacillus strains used in the study. Results The study demonstrated a significant reduction in HCT 115 cell viability, particularly with L. plantarum, as evidenced by Sulforhodamine B (SRB) and MTT assays. DAPI analysis revealed nuclear fragmentation, emphasizing an apoptotic cell death mechanism. Annexin V/PI analysis supported this, showing a higher percentage of early and late apoptosis in L. plantarum-treated cells. Genetic analysis uncovered up-regulation of pro-apoptotic protein Bax and down-regulation of anti-apoptotic protein Bcl2 in response to Lactobacillus treatment. WGS study revealed a strain reported to NCBI PRJNA439183. Discussion L. plantarum emerged as a potent antiproliferative agent against HCT 115 cancer cells, inducing apoptosis through intricate molecular mechanisms. This study underscores the scientific basis for L. plantarum's potential role in cancer therapeutics, highlighting its impact on antiproliferation, adhesion, and gene-protein regulation. Further research is warranted to elucidate the specific molecular pathways involved and to evaluate the therapeutic potential of L. plantarum in preclinical and clinical settings.
Collapse
Affiliation(s)
- Luolin Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Zhenglei Xu
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Aarti Bains
- Deparment of Microbiology, Lovely Professional University, Phagwara, Punjab, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Zifang Shang
- Research Experiment Center, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, Guangdong, People’s Republic of China
| | - Abhinandan Patil
- Department of Pharmaceutics, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
| | - Sandip Patil
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
2
|
Rodríguez MA, Fernández LA, Díaz ML, Gallo CA, Corona M, Evans JD, Reynaldi FJ. Bacterial diversity using metagenomics of 16s rDNA in water kefir, an innovative source of probiotics for bee nutrition. Rev Argent Microbiol 2024; 56:191-197. [PMID: 38272730 DOI: 10.1016/j.ram.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/06/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024] Open
Abstract
Water kefir is a sparkling, slightly acidic fermented beverage made from sugar, water, and water kefir grains, which are a mixture of yeast and bacteria. These grains produce a variety of fermentation compounds such as lactic acid, acetaldehyde, acetoin, ethanol and carbon dioxide. In this study, a high-throughput sequencing technique was used to characterize the bacterial composition of the original water kefir from which potential probiotics were obtained. We studied the bacterial diversity of both water kefir grains and beverages. DNA was extracted from three replicate samples of both grains and beverages using the Powerlyzer Microbial Kit. The hypervariable V1-V2 region of the bacterial 16S ribosomal RNA gene was amplified to prepare six DNA libraries. Between 1.4M and 2.4M base-pairs were sequenced for the library. In total, 28721971 raw reads were obtained from all the samples. Estimated species richness was higher in kefir beverage samples compared to grain samples. Moreover, a higher level of microbial alpha diversity was observed in the beverage samples. Particularly, the predominant bacteria in beverages were Anaerocolumna and Ralstonia, while in grains Liquorilactobacillus dominated, with lower levels of Leuconostoc and Oenococcus. Although the bacterial diversity in kefir grains was low because only three genera were the most represented, all of them are LAB bacteria with the potential to serve as probiotics in the artificial feeding of bees.
Collapse
Affiliation(s)
- María A Rodríguez
- Laboratorio de Estudios Apícolas (LabEA-CIC), Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina; Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Argentina
| | - Leticia A Fernández
- Laboratorio de Estudios Apícolas (LabEA-CIC), Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marina L Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Buenos Aires, Argentina; Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur-CONICET, Bahía Blanca, Argentina
| | - Cristian A Gallo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur-CONICET, Bahía Blanca, Argentina
| | - Miguel Corona
- United States Department of Agriculture, Bee Research Laboratory, Beltsville, MD, USA
| | - Jay D Evans
- United States Department of Agriculture, Bee Research Laboratory, Beltsville, MD, USA
| | - Francisco J Reynaldi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Centro de Microbiología Básica y Aplicada (CEMIBA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Dehghani Champiri I, Bamzadeh Z, Rahimi E, Rouhi L. Lacticaseibacillus paracasei LB12, a Potential Probiotic Isolated from Traditional Iranian Fermented Milk (Doogh). Curr Microbiol 2023; 80:333. [PMID: 37658854 DOI: 10.1007/s00284-023-03376-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 06/13/2023] [Indexed: 09/05/2023]
Abstract
In Iran, dairy-based fermented foods, like yogurt, cheese, fermented milk, buttermilk, kashk, butter, and Doogh are essential dietary components. Doogh is typically made using fermented yogurt or buttermilk. However, a literature review revealed a lack of research on extracting probiotics from Doogh during processing. As dairy products contain lactic acid bacteria, the aim was to isolate and identify them using culture and PCR-sequencing techniques. Samples of traditional Doogh were collected throughout the Chaharmahal Bakhtiari province of Iran. A specific number of strains have been isolated and among them, the strain LB12 was selected for further characterization based on its probiotic properties. Probiotic properties like adhesion capability, antagonistic activity, resistance to the simulated stomach and intestinal fluids, pH, and bile salt were assessed according to National Standard ISO 19459 of Iran. The LB12 strain was identified as Lacticaseibacillus paracasei by partial 16 rDNA sequence analysis. This L. paracasei strain demonstrated its in vitro resilience to stomach conditions with 58.04% survival at pH 3 and more than 50% resistance to different bile salt concentrations. L. paracasei LB12 showed a cell surface hydrophobicity of 38.18% and a 6.2 log CFU/ml resistance to simulated gastric and intestinal fluids, and a rate of auto- and co-aggregation of 15% and 22%, respectively. L. parasei LB12 showed also a moderate adhesion to HT-29 cell line. In conclusion, L. paracasei LB12 is considered a promising potential probiotic suitable for the development of food supplement and pharmaceutical products.
Collapse
Affiliation(s)
- Iman Dehghani Champiri
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Zahra Bamzadeh
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Ebrahim Rahimi
- Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Leila Rouhi
- Cellular and Developmental Research Center, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
4
|
Wang J, Zhang J, Guo H, Cheng Q, Abbas Z, Tong Y, Yang T, Zhou Y, Zhang H, Wei X, Si D, Zhang R. Optimization of Exopolysaccharide Produced by Lactobacillus plantarum R301 and Its Antioxidant and Anti-Inflammatory Activities. Foods 2023; 12:2481. [PMID: 37444218 DOI: 10.3390/foods12132481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, the yield of exopolysaccharide (EPS) from Lactobacillus plantarum R301 was optimized using a single-factor experiment and response surface methodology (RSM). After optimization, the EPS yield was increased with a fold-change of 0.85. The significant factors affecting EPS production, as determined through a Plackett-Burman design and Central Composite Design (CCD), were MgSO4 concentration, initial pH, and inoculation size. The maximum yield was 97.85 mg/mL under the condition of 0.01% MgSO4, an initial pH 7.4, and 6.4% of the inoculation size. In addition, the EPS exhibited strong antioxidant activity, as demonstrated by its ability to scavenge DPPH, ABTS, and hydroxyl radicals. The scavenging rate was up to 100% at concentrations of 4 mg/mL, 1 mg/mL, and 2 mg/mL, respectively. Moreover, the EPS also exhibited reducing power, which was about 30% that of ascorbic acid when both tended to be stable with the increased concentration. These results suggest that L. plantarum R301 EPS possesses different antioxidant mechanisms and warrants further investigation. In addition to its antioxidant activity, the EPS also demonstrated good anti-inflammatory activity by inhibiting the inflammation induced by lipopolysaccharide (LPS) in RAW 264.7 cells, which could decrease nitric oxide (NO) production and expression of the proinflammatory cytokine Il-6. These findings suggest that L. plantarum R301 EPS could be used as a potential multifunctional food additive in the food industry.
Collapse
Affiliation(s)
- Junyong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jing Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Henan Guo
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qiang Cheng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zaheer Abbas
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yucui Tong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tiantian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yichen Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Haosen Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xubiao Wei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dayong Si
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Rijun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Kiousi DE, Efstathiou C, Tzampazlis V, Plessas S, Panopoulou M, Koffa M, Galanis A. Genetic and phenotypic assessment of the antimicrobial activity of three potential probiotic lactobacilli against human enteropathogenic bacteria. Front Cell Infect Microbiol 2023; 13:1127256. [PMID: 36844407 PMCID: PMC9944596 DOI: 10.3389/fcimb.2023.1127256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Lactobacilli are avid producers of antimicrobial compounds responsible for their adaptation and survival in microbe-rich matrices. The bactericidal or bacteriostatic ability of lactic acid bacteria (LAB) can be exploited for the identification of novel antimicrobial compounds to be incorporated in functional foodstuffs or pharmaceutical supplements. In this study, the antimicrobial and antibiofilm properties of Lactiplantibacillus pentosus L33, Lactiplantibacillus plantarum L125 and Lacticaseibacillus paracasei SP5, previously isolated form fermented products, were examined, against clinical isolates of Staphylococcus aureus, Salmonella enterica subsp. enterica serovar Enteritidis and Escherichia coli. Methods The ability of viable cells to inhibit pathogen colonization on HT-29 cell monolayers, as well as their co-aggregation capacity, were examined utilizing the competitive exclusion assay. The antimicrobial activity of cell-free culture supernatants (CFCS) was determined against planktonic cells and biofilms, using microbiological assays, confocal microscopy, and gene expression analysis of biofilm formation-related genes. Furthermore, in vitro analysis was supplemented with in silico prediction of bacteriocin clusters and of other loci involved in antimicrobial activity. Results The three lactobacilli were able to limit the viability of planktonic cells of S. aureus and E. coli in suspension. Greater inhibition of biofilm formation was recorded after co-incubation of S. enterica with the CFCS of Lc. paracasei SP5. Predictions based on sequence revealed the ability of strains to produce single or two-peptide Class II bacteriocins, presenting sequence and structural conservation with functional bacteriocins. Discussion The efficiency of the potentially probiotic bacteria to elicit antimicrobial effects presented a strain- and pathogen-specific pattern. Future studies, utilizing multi-omic approaches, will focus on the structural and functional characterization of molecules involved in the recorded phenotypes.
Collapse
Affiliation(s)
- Despoina Eugenia Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christos Efstathiou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vasilis Tzampazlis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Stavros Plessas
- Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - Maria Panopoulou
- Department of Medicine, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Koffa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
6
|
Amara AA, El-Baky NA. Fungi as a Source of Edible Proteins and Animal Feed. J Fungi (Basel) 2023; 9:73. [PMID: 36675894 PMCID: PMC9863462 DOI: 10.3390/jof9010073] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
It is expected that the world population will reach 9 billion by 2050. Thus, meat, dairy or plant-based protein sources will fail to meet global demand. New solutions must be offered to find innovative and alternative protein sources. As a natural gift, edible wild mushrooms growing in the wet and shadow places and can be picked by hand have been used as a food. From searching mushrooms in the forests and producing single cell proteins (SCP) in small scales to mega production, academia, United Nations Organizations, industries, political makers and others, play significant roles. Fermented traditional foods have also been reinvestigated. For example, kefir, miso, and tempeh, are an excellent source for fungal isolates for protein production. Fungi have unique criteria of consuming various inexpensive wastes as sources of carbon and energy for producing biomass, protein concentrate or amino acids with a minimal requirement of other environmental resources (e.g., light and water). Fungal fermented foods and SCP are consumed either intentionally or unintentionally in our daily meals and have many applications in food and feed industries. This review addresses fungi as an alternative source of edible proteins and animal feed, focusing mainly on SCP, edible mushrooms, fungal fermented foods, and the safety of their consumption.
Collapse
Affiliation(s)
- Amro A. Amara
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Universities and Research Center District, New Borg El-Arab City P.O. Box 21934, Alexandria, Egypt
| | - Nawal Abd El-Baky
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Universities and Research Center District, New Borg El-Arab City P.O. Box 21934, Alexandria, Egypt
| |
Collapse
|
7
|
Quality Characteristics of Novel Sourdough Breads Made with Functional Lacticaseibacillus paracasei SP5 and Prebiotic Food Matrices. Foods 2022; 11:3226. [PMCID: PMC9601700 DOI: 10.3390/foods11203226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Lacticaseibacillus paracasei SP5, isolated from kefir, was assessed as a starter culture for sourdough bread making in freeze-dried form, both free (BSP5 bread) and immobilised on wheat bran (BIWB) and on a traditional flour/sour milk food, ‘trahanas’ (BITR). Physicochemical characteristics, shelf-life, volatilome, phytic acid, and sensory properties of the breads were evaluated. The BITR breads had higher acidity (9.05 ± 0.14 mL of 0.1 M NaOH/10 g) and organic acid content (g/Kg; 2.90 ± 0.05 lactic, 1.04 ± 0.02 acetic), which justifies the better resistance against mould and rope spoilage (>10 days). The highest number of volatiles (35) and at higher concentration (11.14 μg/g) were also found in BITR, which is in line with the sensory (consumer) evaluation regarding flavour. Finally, higher reduction of phytate (an antinutrient) was observed in all L. paracasei SP5 sourdoughs (83.3–90.7%) compared to the control samples (71.4%). The results support the use of the new strain for good quality sourdough bread.
Collapse
|
8
|
Chen W, Wang J, Du L, Chen J, Zheng Q, Li P, Du B, Fang X, Liao Z. Kefir microbiota and metabolites stimulate intestinal mucosal immunity and its early development. Crit Rev Food Sci Nutr 2022; 64:1371-1384. [PMID: 36039934 DOI: 10.1080/10408398.2022.2115975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Kefir consists of a large number of probiotics, which can regulate or shape the balance of intestinal microbiota, and enhance the host's immune response. Kefir microbiota can shape the mucosal immunity of the body through SCFAs, EPS, polypeptides, lactic acid, and other metabolites and microbial antigens themselves, and this shaping may have time windows and specific pathways. Kefir can regulate antibody SIgA and IL-10 levels to maintain intestinal homeostasis, and its secreted SIgA can shape the stable microbiota system by wrapping and binding different classes of microorganisms. The incidence of intestinal inflammation is closely linked to the development and maturation of intestinal mucosal immunity. Based on summarizing the existing research results on Kefir, its metabolites, and immune system development, this paper proposes to use Kefir, traditional fermented food with natural immune-enhancing components and stable functional microbiota, as an intervention method. Early intervention in the immune system may seize the critical window period of mucosal immunity and stimulate the development and maturation of intestinal mucosal immunity in time.
Collapse
Affiliation(s)
- Weizhe Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jie Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Liyu Du
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Junjie Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qikai Zheng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhenlin Liao
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Kiousi DE, Efstathiou C, Tegopoulos K, Mantzourani I, Alexopoulos A, Plessas S, Kolovos P, Koffa M, Galanis A. Genomic Insight Into Lacticaseibacillus paracasei SP5, Reveals Genes and Gene Clusters of Probiotic Interest and Biotechnological Potential. Front Microbiol 2022; 13:922689. [PMID: 35783439 PMCID: PMC9244547 DOI: 10.3389/fmicb.2022.922689] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 12/22/2022] Open
Abstract
The Lacticaseibacillus paracasei species is comprised by nomadic bacteria inhabiting a wide variety of ecological niches, from fermented foodstuffs to host-associated microenvironments. Lc. paracasei SP5 is a novel strain, originally isolated from kefir grains that presents desirable probiotic and biotechnological attributes. In this study, we applied genomic tools to further characterize the probiotic and biotechnological potential of the strain. Firstly, whole genome sequencing and assembly, were performed to construct the chromosome map of the strain and determine its genomic stability. Lc. paracasei SP5 carriers several insertion sequences, however, no plasmids or mobile elements were detected. Furthermore, phylogenomic and comparative genomic analyses were utilized to study the nomadic attributes of the strain, and more specifically, its metabolic capacity and ability to withstand environmental stresses imposed during food processing and passage through the gastrointestinal (GI) tract. More specifically, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Carbohydrate-active enzyme (CAZymes) analyses provided evidence for the ability of the stain to utilize an array of carbohydrates as growth substrates. Consequently, genes for heat, cold, osmotic shock, acidic pH, and bile salt tolerance were annotated. Importantly bioinformatic analysis showed that the novel strain does not harbor acquired antimicrobial resistance genes nor virulence factors, in agreement with previous experimental data. Putative bacteriocin biosynthesis clusters were identified using BAGEL4, suggesting its potential antimicrobial activity. Concerning microbe-host interactions, adhesins, moonlighting proteins, exopolysaccharide (EPS) biosynthesis genes and pilins mediating the adhesive phenotype were, also, pinpointed in the genome of Lc. paracasei SP5. Validation of this phenotype was performed by employing a microbiological method and confocal microscopy. Conclusively, Lc. paracasei SP5 harbors genes necessary for the manifestation of the probiotic character and application in the food industry. Upcoming studies will focus on the mechanisms of action of the novel strain at multiple levels.
Collapse
Affiliation(s)
- Despoina Eugenia Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christos Efstathiou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Tegopoulos
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioanna Mantzourani
- Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - Athanasios Alexopoulos
- Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - Stavros Plessas
- Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
- *Correspondence: Stavros Plessas,
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Koffa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
- Alex Galanis,
| |
Collapse
|
10
|
Valorization of Lactic Acid Fermentation of Pomegranate Juice by an Acid Tolerant and Potentially Probiotic LAB Isolated from Kefir Grains. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8040142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present study describes the application of an acid tolerant and potentially probiotic L. paracasei SP3 strain, recently isolated from kefir grains, in the production of a novel functional beverage based on the fermentation of pomegranate juice. The fermentation ability of the novel strain was assessed during pomegranate juice fermentations at 30 °C for 24 h and storage at 4 °C for 4 weeks. Various parameters were assessed such as residual sugar, organic acid and alcohol levels, total phenolics content, antioxidant activity, astringency, cell viability, and consumer acceptance. Residual sugar was decreased by approximately 25%, while respectable amounts of lactic acid were determined (4.8 g/L) on the 28th day of storage, proving that the novel strain was effective at lactic acid fermentation. The concentration of ethanol was maintained at low levels (0.3–0.4 % v/v) and low levels of acetic acid were detected (0.6 g/L). The viability of L. paracasei SP3 cells retained high levels (>7 log cfu/mL), even by the 4th week. The total phenolic content (123.7–201.1 mg GAE/100 mL) and antioxidant activity (124.5–148.5 mgTE/100 mL) of fermented pomegranate juice were recorded at higher levels for all of the studied time periods compared to the non-fermented juice. The employment of the novel strain led to a significant reduction in the levels of hydrolysable tannins (42%) in the juice, reducing its astringency. The latter was further proven through sensorial tests, which reflected the amelioration of the sensorial features of the final product. It should be underlined that fruit juices as well as pomegranate juice comprised a very harsh food matrix for microorganisms to survive and ferment. Likewise, the L. paracasei SP3 strain showed a significant potential, because it was applied as a free culture, without the application of microencapsulation methods that are usually employed in these fermentations, leading to a product with possible functional properties and a high nutritive value.
Collapse
|
11
|
González-Orozco BD, García-Cano I, Jiménez-Flores R, Alvárez VB. Invited review: Milk kefir microbiota—Direct and indirect antimicrobial effects. J Dairy Sci 2022; 105:3703-3715. [DOI: 10.3168/jds.2021-21382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/10/2022] [Indexed: 11/19/2022]
|
12
|
Tegopoulos K, Stergiou OS, Kiousi DE, Tsifintaris M, Koletsou E, Papageorgiou AC, Argyri AA, Chorianopoulos N, Galanis A, Kolovos P. Genomic and Phylogenetic Analysis of Lactiplantibacillus plantarum L125, and Evaluation of Its Anti-Proliferative and Cytotoxic Activity in Cancer Cells. Biomedicines 2021; 9:biomedicines9111718. [PMID: 34829947 PMCID: PMC8615743 DOI: 10.3390/biomedicines9111718] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 01/24/2023] Open
Abstract
Lactiplantibacillus plantarum is a diverse species that includes nomadic strains isolated from a variety of environmental niches. Several L. plantarum strains are being incorporated in fermented foodstuffs as starter cultures, while some of them have also been characterized as probiotics. In this study, we present the draft genome sequence of L. plantarum L125, a potential probiotic strain presenting biotechnological interest, originally isolated from a traditional fermented meat product. Phylogenetic and comparative genomic analysis with other potential probiotic L. plantarum strains were performed to determine its evolutionary relationships. Furthermore, we located genes involved in the probiotic phenotype by whole genome annotation. Indeed, genes coding for proteins mediating host–microbe interactions and bile salt, heat and cold stress tolerance were identified. Concerning the potential health-promoting attributes of the novel strain, we determined that L. plantarum L125 carries an incomplete plantaricin gene cluster, in agreement with previous in vitro findings, where no bacteriocin-like activity was detected. Moreover, we showed that cell-free culture supernatant (CFCS) of L. plantarum L125 exerts anti-proliferative, anti-clonogenic and anti-migration activity against the human colon adenocarcinoma cell line, HT-29. Conclusively, L. plantarum L125 presents desirable probiotic traits. Future studies will elucidate further its biological and health-related properties.
Collapse
Affiliation(s)
- Konstantinos Tegopoulos
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.T.); (O.S.S.); (D.E.K.); (M.T.); (E.K.); (A.C.P.)
| | - Odysseas Sotirios Stergiou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.T.); (O.S.S.); (D.E.K.); (M.T.); (E.K.); (A.C.P.)
| | - Despoina Eugenia Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.T.); (O.S.S.); (D.E.K.); (M.T.); (E.K.); (A.C.P.)
| | - Margaritis Tsifintaris
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.T.); (O.S.S.); (D.E.K.); (M.T.); (E.K.); (A.C.P.)
| | - Ellie Koletsou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.T.); (O.S.S.); (D.E.K.); (M.T.); (E.K.); (A.C.P.)
| | - Aristotelis C. Papageorgiou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.T.); (O.S.S.); (D.E.K.); (M.T.); (E.K.); (A.C.P.)
| | - Anthoula A. Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Sofokli Venizelou 1, Lycovrissi, 14123 Attiki, Greece; (A.A.A.); (N.C.)
| | - Nikos Chorianopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Sofokli Venizelou 1, Lycovrissi, 14123 Attiki, Greece; (A.A.A.); (N.C.)
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.T.); (O.S.S.); (D.E.K.); (M.T.); (E.K.); (A.C.P.)
- Correspondence: (A.G.); (P.K.)
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.T.); (O.S.S.); (D.E.K.); (M.T.); (E.K.); (A.C.P.)
- Correspondence: (A.G.); (P.K.)
| |
Collapse
|
13
|
Stergiou OS, Tegopoulos K, Kiousi DE, Tsifintaris M, Papageorgiou AC, Tassou CC, Chorianopoulos N, Kolovos P, Galanis A. Whole-Genome Sequencing, Phylogenetic and Genomic Analysis of Lactiplantibacillus pentosus L33, a Potential Probiotic Strain Isolated From Fermented Sausages. Front Microbiol 2021; 12:746659. [PMID: 34764945 PMCID: PMC8576124 DOI: 10.3389/fmicb.2021.746659] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/08/2021] [Indexed: 01/11/2023] Open
Abstract
Lactobacillus is a diverse genus that includes species of industrial and biomedical interest. Lactiplantibacillus pentosus, formerly known as Lactobacillus pentosus, is a recently reclassified species, that contains strains isolated from diverse environmental niches, ranging from fermented products to mammalian gut microbiota. Importantly, several L. pentosus strains present health-promoting properties, such as immunomodulatory and antiproliferative activities, and are regarded as potential probiotic strains. In this study, we present the draft genome sequence of the potential probiotic strain L. pentosus L33, originally isolated from fermented sausages. Comprehensive bioinformatic analysis and whole-genome annotation were performed to highlight the genetic loci involved in host-microbe interactions and the probiotic phenotype. Consequently, we found that this strain codes for bile salt hydrolases, adhesins and moonlighting proteins, and for Class IIb bacteriocin peptides lacking the GxxxG and GxxxG-like motifs, crucial for their inhibitory activity. Its adhesion ability was also validated in vitro, on human cancer cells. Furthermore, L. pentosus L33 contains an exopolysaccharide (EPS) biosynthesis cluster, and it does not carry transferable antibiotic resistance genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and CAZymes analyses showed that L. pentosus L33 possesses biosynthetic pathways for seven amino acids, while it can degrade a wide array of carbohydrates. In parallel, Clusters of Orthologous Groups (COGs) and KEGG profiles of L. pentosus L33 are similar to those of 26 L. pentosus strains, as well as of two well documented L. plantarum probiotic strains. Conclusively, L. pentosus L33 exhibits good probiotic potential, although further studies are needed to elucidate the extent of its biological properties.
Collapse
Affiliation(s)
- Odysseas Sotirios Stergiou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Tegopoulos
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Despoina Eugenia Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Margaritis Tsifintaris
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Aristotelis C Papageorgiou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Chrysoula C Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Athens, Greece
| | - Nikos Chorianopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Athens, Greece
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
14
|
Health-Promoting Properties of Lacticaseibacillus paracasei: A Focus on Kefir Isolates and Exopolysaccharide-Producing Strains. Foods 2021; 10:foods10102239. [PMID: 34681288 PMCID: PMC8534925 DOI: 10.3390/foods10102239] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 01/13/2023] Open
Abstract
Among artisanal fermented beverages, kefir (fermented milk drink) and water kefir (fermented nondairy beverage) are of special interest because their grains can be considered natural reservoirs of safe and potentially probiotic strains. In the last years, several reports on Lacticaseibacillus paracasei (formerly Lactobacillus paracasei) isolated from both artisanal fermented beverages were published focusing on their health-promoting properties. Although this is not the predominant species in kefir or water kefir, it may contribute to the health benefits associated to the consumption of the fermented beverage. Since the classification of L. paracasei has been a difficult task, the selection of an adequate method for identification, which is essential to avoid mislabeling in products, publications, and some publicly available DNA sequences, is discussed in the present work. The last findings in health promoting properties of L. paracasei and the bioactive compounds are described and compared to strains isolated from kefir, providing a special focus on exopolysaccharides as effector molecules. The knowledge of the state of the art of Lacticaseibacillus paracasei from kefir and water kefir can help to understand the contribution of these microorganisms to the health benefits of artisanal beverages as well as to discover new probiotic strains for applications in food industry.
Collapse
|
15
|
Shubha JR, Tripathi P, Somashekar BS, Kurrey N, Bhatt P. Woodfordia fruticosa extract supplementation stimulates the growth of Lacticaseibacillus casei and Lacticaseibacillus rhamnosus with adapted intracellular and extracellular metabolite pool. J Appl Microbiol 2021; 131:2994-3007. [PMID: 33973306 DOI: 10.1111/jam.15132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/15/2021] [Accepted: 04/30/2021] [Indexed: 01/24/2023]
Abstract
AIM To investigate the effect of Woodfordia fruticosa extract (WfE) on two probiotic bacteria: Lacticaseibacillus casei and Lacticaseibacillus rhamnosus. METHODS AND RESULTS WfE supplementation at 0·5 and 1 mg ml-1 stimulated probiotic growth (P < 0·05), enhanced adhesion to CaCO2 cells (P < 0·05) while inhibiting foodborne pathogens Escherichia coli and Staphylococcus aureus (P < 0·05). 1 H-NMR based metabolomic studies indicated higher glucose : lactate and glucose : acetate in the extracellular matrix with significant variation (P < 0·05) in intracellular concentrations of lactate, acetate, glutamate, dimethylamine, phenylalanine, branched-chain amino acids and total cellular lipid composition. Fatty acid methyl ester analysis showed a chemical shift from saturated to unsaturated lipids with WfE supplementation. PCA plots indicated clear discrimination between test groups, highlighting variation in metabolite pool in response to WfE supplementation. CONCLUSION Phytonutrient-rich WfE exhibited prebiotic-like attributes, and probiotic bacteria showed altered metabolite pools as an adaptive mechanism. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report providing insights into the prebiotic-like activity of WfE on gut representative probiotics. The extended metabolomic studies shed light on the positive interaction between phytonutrients and beneficial bacteria that possibly help them to adapt to a phytonutrient-rich WfE environment. WfE with potential prebiotic attributes can be used in the development of novel synbiotic functional products targeting gut microbial modulation to improve health.
Collapse
Affiliation(s)
- J R Shubha
- Microbiology and Fermentation Technology Department, CSIR-CFTRI, Mysuru, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - P Tripathi
- Spices and Flavor Science Department, CSIR-CFTRI, Mysuru, India
| | | | - N Kurrey
- Department of Biochemistry, CSIR-CFTRI, Mysuru, India
| | - P Bhatt
- Microbiology and Fermentation Technology Department, CSIR-CFTRI, Mysuru, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|