1
|
Zhang W, Pei B, Zhou Y, Li H, Ma W, Zhou B, Zhou C, Jiang H, Ji X. Emerging Targets, Novel Directions, and Innovative Approaches in Thrombosis Therapy. Aging Dis 2025:AD.2024.1688. [PMID: 40153578 DOI: 10.14336/ad.2024.1688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/11/2025] [Indexed: 03/30/2025] Open
Abstract
In clinical practice, antiplatelet, anticoagulant and fibrinolytic drugs are the mainstay of thrombosis treatment, but their potential bleeding side effects limit their widespread use. Therefore, modifying these existing drugs or developing new therapies that mitigate bleeding risks while maintaining their efficacy and utilization is necessary. Since the critical role of platelets in thrombosis is closely related to their cell surface receptors, intracellular signaling pathways and metabolism, current research focuses on these three major classes of platelet targets to develop new antithrombotic drugs. The coagulation cascade has always been the main target of anticoagulant drugs, but since the role of molecules of the contact system is more critical in thrombosis than in hemostasis, molecules targeting the contact system, such as FXIa and FXIIa, have become the main direction of anticoagulant drug research at present. Moreover, since the inflammatory response has been found to be significantly associated with thrombosis in recent years, the development of drugs that target inflammatory pathways, such as inflammasome, has also become a hot topic. This article provides a detailed description of these targets or drug formulations that are currently being investigated, including their mode of action and antithrombotic efficiency, and also points out their existing shortcomings. Moreover, antithrombotic nanomedicines can achieve precise release of drugs, which can greatly improve the thrombolytic efficiency and reduce side effects. In conclusion, this review focuses on summarizing the current new targets and new methods of antithrombotic drug research, hoping to provide a little reference for future related research.
Collapse
Affiliation(s)
- Weiyue Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Baoqing Pei
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yifan Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Hui Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wei Ma
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Bing Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Chen Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Huimin Jiang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, 100069, China
| | - Xunming Ji
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, 100069, China
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| |
Collapse
|
2
|
Zhao H, Yang J, Wang M, Zhang H, Zhan Y, Cao Z, Gu Z, Wang Y. Effect of IL-9 neutralising antibody on pyroptosis via SGK1/NF-κB/NLRP3/GSDMD in allergic rhinitis mice. Biomed Pharmacother 2024; 177:117019. [PMID: 38917753 DOI: 10.1016/j.biopha.2024.117019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Allergic rhinitis is a common non-infectious inflammatory disease that affects approximately 15 % of people worldwide and has a complex and unclear aetiology. In recent years, pyroptosis has been found to play a role in the development of allergic rhinitis. IL-9, pyroptosis, serum and glucocorticoid-induced protein kinase 1 (SGK1), NOD-like receptor 3 (NLRP3), and nuclear factor kappa B (NF-κB) have been shown to influence each other. Herein, we aimed to explore the role of IL-9 neutralising antibody in pyroptosis involving IL-9, SGK1, NF-κB, and NLRP3 in allergic rhinitis. We observed a decrease in cytokines involved in pyroptosis and gasdermin D (GSDMD) compared with those in mice with allergic rhinitis. Further, phosphorylation of NF-κB/p65 decreased compared with that in mice with allergic rhinitis; NLRP3 and ASC also decreased, although the levels were higher than those in controls. SGK1 levels decreased compared with that in mice with allergic rhinitis and increased after using IL-9 neutralising antibodies, thus demonstrating its negative regulatory effects. The IL-9 neutralising antibody reduced the inflammatory and pyroptosis responses via SGK1 and NF-κB/NLRP3/GSDMD pathway. Our research results indicate that IL-9 regulates allergic rhinitis via the influence of SGK1 and NF-κB/NLRP3/GSDMD signalling pathway, providing new insights for developing novel drugs to treat allergic rhinitis.
Collapse
Affiliation(s)
- He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Meng Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Hanxue Zhang
- Department of Laboratory, Liaoning Blood Center, Shenyang 110004, PR China
| | - Yue Zhan
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Zhiwei Cao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Zhaowei Gu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Yunxiu Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China; Department of Clinical Epidemiology, Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| |
Collapse
|
3
|
Yakati V, Shevde LA, Rao SS. Matrix stiffness influences response to chemo and targeted therapy in brain metastatic breast cancer cells. Biomater Sci 2024; 12:3882-3895. [PMID: 38912649 DOI: 10.1039/d4bm00342j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Breast cancer is the most common malignancy accounting for 12.5% of all newly diagnosed cancer cases across the globe. Breast cancer cells are known to metastasize to distant organs (i.e., brain), wherein they can exhibit a dormant phenotype for extended time periods. These dormant cancer cells exhibit reduced proliferation and therapeutic resistance. However, the mechanisms by which dormant cancer cells exhibit resistance to therapy, in the context of brain metastatic breast cancer (BMBC), is not well understood. Herein, we utilized hyaluronic acid (HA) hydrogels with varying stiffnesses to study drug responsiveness in dormant vs. proliferative BMBC cells. It was found that cells cultured on soft HA hydrogels (∼0.4 kPa) that showed a non-proliferative (dormant) phenotype exhibited resistance to Paclitaxel or Lapatinib. In contrast, cells cultured on stiff HA hydrogels (∼4.5 kPa) that showed a proliferative phenotype exhibited responsiveness to Paclitaxel or Lapatinib. Moreover, dormancy-associated resistance was found to be due to upregulation of the serum/glucocorticoid regulated kinase 1 (SGK1) gene which was mediated, in part, by the p38 signaling pathway. Accordingly, SGK1 inhibition resulted in a dormant-to-proliferative switch and response to therapy. Overall, our study demonstrates that matrix stiffness influences dormancy-associated therapy response mediated, in part, via the p38/SGK1 axis.
Collapse
Affiliation(s)
- Venu Yakati
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Lalita A Shevde
- Department of Pathology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
4
|
Kim YJ, Lee Y, Shin H, Hwang S, Park J, Song EJ. Ubiquitin-proteasome system as a target for anticancer treatment-an update. Arch Pharm Res 2023; 46:573-597. [PMID: 37541992 DOI: 10.1007/s12272-023-01455-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
As the ubiquitin-proteasome system (UPS) regulates almost every biological process, the dysregulation or aberrant expression of the UPS components causes many pathological disorders, including cancers. To find a novel target for anticancer therapy, the UPS has been an active area of research since the FDA's first approval of a proteasome inhibitor bortezomib in 2003 for treating multiple myeloma (MM). Here, we summarize newly described UPS components, including E3 ubiquitin ligases, deubiquitinases (DUBs), and immunoproteasome, whose malfunction leads to tumorigenesis and whose inhibitors have been investigated in clinical trials as anticancer therapy since 2020. We explain the mechanism and effects of several inhibitors in depth to better comprehend the advantages of targeting UPS components for cancer treatment. In addition, we describe attempts to overcome resistance and limited efficacy of some launched proteasome inhibitors, as well as an emerging PROTAC-based tool targeting UPS components for anticancer therapy.
Collapse
Affiliation(s)
- Yeon Jung Kim
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Yeonjoo Lee
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Hyungkyung Shin
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - SuA Hwang
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Jinyoung Park
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio‑Medical Science and Technology, KIST‑School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Eun Joo Song
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| |
Collapse
|
5
|
Metabolic Alterations in Multiple Myeloma: From Oncogenesis to Proteasome Inhibitor Resistance. Cancers (Basel) 2023; 15:cancers15061682. [PMID: 36980568 PMCID: PMC10046772 DOI: 10.3390/cancers15061682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Despite significant improvements in treatment strategies over the past couple of decades, multiple myeloma (MM) remains an incurable disease due to the development of drug resistance. Metabolic reprogramming is a key feature of cancer cells, including MM, and acts to fuel increased proliferation, create a permissive tumour microenvironment, and promote drug resistance. This review presents an overview of the key metabolic adaptations that occur in MM pathogenesis and in the development of resistance to proteasome inhibitors, the backbone of current MM therapy, and considers the potential for therapeutic targeting of key metabolic pathways to improve outcomes.
Collapse
|
6
|
Krushkal J, Vural S, Jensen TL, Wright G, Zhao Y. Increased copy number of imprinted genes in the chromosomal region 20q11-q13.32 is associated with resistance to antitumor agents in cancer cell lines. Clin Epigenetics 2022; 14:161. [PMID: 36461044 PMCID: PMC9716673 DOI: 10.1186/s13148-022-01368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Parent of origin-specific allelic expression of imprinted genes is epigenetically controlled. In cancer, imprinted genes undergo both genomic and epigenomic alterations, including frequent copy number changes. We investigated whether copy number loss or gain of imprinted genes in cancer cell lines is associated with response to chemotherapy treatment. RESULTS We analyzed 198 human imprinted genes including protein-coding genes and noncoding RNA genes using data from tumor cell lines from the Cancer Cell Line Encyclopedia and Genomics of Drug Sensitivity in Cancer datasets. We examined whether copy number of the imprinted genes in 35 different genome locations was associated with response to cancer drug treatment. We also analyzed associations of pretreatment expression and DNA methylation of imprinted genes with drug response. Higher copy number of BLCAP, GNAS, NNAT, GNAS-AS1, HM13, MIR296, MIR298, and PSIMCT-1 in the chromosomal region 20q11-q13.32 was associated with resistance to multiple antitumor agents. Increased expression of BLCAP and HM13 was also associated with drug resistance, whereas higher methylation of gene regions of BLCAP, NNAT, SGK2, and GNAS was associated with drug sensitivity. While expression and methylation of imprinted genes in several other chromosomal regions was also associated with drug response and many imprinted genes in different chromosomal locations showed a considerable copy number variation, only imprinted genes at 20q11-q13.32 had a consistent association of their copy number with drug response. Copy number values among the imprinted genes in the 20q11-q13.32 region were strongly correlated. They were also correlated with the copy number of cancer-related non-imprinted genes MYBL2, AURKA, and ZNF217 in that chromosomal region. Expression of genes at 20q11-q13.32 was associated with ex vivo drug response in primary tumor samples from the Beat AML 1.0 acute myeloid leukemia patient cohort. Association of the increased copy number of the 20q11-q13.32 region with drug resistance may be complex and could involve multiple genes. CONCLUSIONS Copy number of imprinted and non-imprinted genes in the chromosomal region 20q11-q13.32 was associated with cancer drug resistance. The genes in this chromosomal region may have a modulating effect on tumor response to chemotherapy.
Collapse
Affiliation(s)
- Julia Krushkal
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr, Rockville, MD, 20850, USA.
| | - Suleyman Vural
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr, Rockville, MD, 20850, USA.,Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | | | - George Wright
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr, Rockville, MD, 20850, USA
| | - Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr, Rockville, MD, 20850, USA
| |
Collapse
|
7
|
Li T, Zhang G, Zhang X, Lin H, Liu Q. The 8p11 myeloproliferative syndrome: Genotypic and phenotypic classification and targeted therapy. Front Oncol 2022; 12:1015792. [PMID: 36408177 PMCID: PMC9669583 DOI: 10.3389/fonc.2022.1015792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/10/2022] [Indexed: 10/05/2023] Open
Abstract
EMS(8p11 myeloproliferative syndrome, EMS) is an aggressive hematological neoplasm with/without eosinophilia caused by a rearrangement of the FGFR1 gene at 8p11-12. It was found that all cases carry chromosome abnormalities at the molecular level, not only the previously reported chromosome translocation and insertion but also a chromosome inversion. These abnormalities produced 17 FGFR1 fusion genes, of which the most common partner genes are ZNF198 on 13q11-12 and BCR of 22q11.2. The clinical manifestations can develop into AML (acute myeloid leukemia), T-LBL (T-cell lymphoblastic lymphoma), CML (chronic myeloid leukemia), CMML (chronic monomyelocytic leukemia), or mixed phenotype acute leukemia (MPAL). Most patients are resistant to traditional chemotherapy, and a minority of patients achieve long-term clinical remission after stem cell transplantation. Recently, the therapeutic effect of targeted tyrosine kinase inhibitors (such as pemigatinib and infigratinib) in 8p11 has been confirmed in vitro and clinical trials. The TKIs may become an 8p11 treatment option as an alternative to hematopoietic stem cell transplantation, which is worthy of further study.
Collapse
Affiliation(s)
- Taotao Li
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Gaoling Zhang
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Hai Lin
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Qiuju Liu
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Dziadowicz SA, Wang L, Akhter H, Aesoph D, Sharma T, Adjeroh DA, Hazlehurst LA, Hu G. Bone Marrow Stroma-Induced Transcriptome and Regulome Signatures of Multiple Myeloma. Cancers (Basel) 2022; 14:927. [PMID: 35205675 PMCID: PMC8870223 DOI: 10.3390/cancers14040927] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Multiple myeloma (MM) is a hematological cancer with inevitable drug resistance. MM cells interacting with bone marrow stromal cells (BMSCs) undergo substantial changes in the transcriptome and develop de novo multi-drug resistance. As a critical component in transcriptional regulation, how the chromatin landscape is transformed in MM cells exposed to BMSCs and contributes to the transcriptional response to BMSCs remains elusive. We profiled the transcriptome and regulome for MM cells using a transwell coculture system with BMSCs. The transcriptome and regulome of MM cells from the upper transwell resembled MM cells that coexisted with BMSCs from the lower chamber but were distinctive to monoculture. BMSC-induced genes were enriched in the JAK2/STAT3 signaling pathway, unfolded protein stress, signatures of early plasma cells, and response to proteasome inhibitors. Genes with increasing accessibility at multiple regulatory sites were preferentially induced by BMSCs; these genes were enriched in functions linked to responses to drugs and unfavorable clinic outcomes. We proposed JUNB and ATF4::CEBPβ as candidate transcription factors (TFs) that modulate the BMSC-induced transformation of the regulome linked to the transcriptional response. Together, we characterized the BMSC-induced transcriptome and regulome signatures of MM cells to facilitate research on epigenetic mechanisms of BMSC-induced multi-drug resistance in MM.
Collapse
Affiliation(s)
- Sebastian A. Dziadowicz
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (S.A.D.); (L.W.); (H.A.); (D.A.); (T.S.)
| | - Lei Wang
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (S.A.D.); (L.W.); (H.A.); (D.A.); (T.S.)
| | - Halima Akhter
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (S.A.D.); (L.W.); (H.A.); (D.A.); (T.S.)
- Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA;
| | - Drake Aesoph
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (S.A.D.); (L.W.); (H.A.); (D.A.); (T.S.)
- Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA;
| | - Tulika Sharma
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (S.A.D.); (L.W.); (H.A.); (D.A.); (T.S.)
| | - Donald A. Adjeroh
- Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA;
| | - Lori A. Hazlehurst
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA;
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morganton, WV 26506, USA
| | - Gangqing Hu
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (S.A.D.); (L.W.); (H.A.); (D.A.); (T.S.)
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA;
| |
Collapse
|
9
|
Zhang X, Wang F, Yan F, Huang D, Wang H, Gao B, Gao Y, Hou Z, Lou J, Li W, Yan J. Identification of a novel HOOK3-FGFR1 fusion gene involved in activation of the NF-kappaB pathway. Cancer Cell Int 2022; 22:40. [PMID: 35081975 PMCID: PMC8793161 DOI: 10.1186/s12935-022-02451-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022] Open
Abstract
Background Rearrangements involving the fibroblast growth factor receptor 1 (FGFR1) gene result in 8p11 myeloproliferative syndrome (EMS), which is a rare and aggressive hematological malignancy that is often initially diagnosed as myelodysplastic syndrome (MDS). Clinical outcomes are typically poor due to relative resistance to tyrosine kinase inhibitors (TKIs) and rapid transformation to acute leukemia. Deciphering the transcriptomic signature of FGFR1 fusions may open new treatment strategies for FGFR1 rearrangement patients. Methods DNA sequencing (DNA-seq) was performed for 20 MDS patients and whole exome sequencing (WES) was performed for one HOOK3-FGFR1 fusion positive patient. RNA sequencing (RNA-seq) was performed for 20 MDS patients and 8 healthy donors. Fusion genes were detected using the STAR-Fusion tool. Fluorescence in situ hybridization (FISH), quantitative real-time PCR (qRT-PCR), and Sanger sequencing were used to confirm the HOOK3-FGFR1 fusion gene. The phosphorylation antibody array was performed to validate the activation of nuclear factor-kappaB (NF-kappaB) signaling. Results We identified frequently recurrent mutations of ASXL1 and U2AF1 in the MDS cohort, which is consistent with previous reports. We also identified a novel in-frame HOOK3-FGFR1 fusion gene in one MDS case with abnormal monoclonal B-cell lymphocytosis and ring chromosome 8. FISH analysis detected the FGFR1 break-apart signal in myeloid blasts only. qRT-PCR and Sanger sequencing confirmed the HOOK3-FGFR1 fusion transcript with breakpoints located at the 11th exon of HOOK3 and 10th exon of FGFR1, and Western blot detected the chimeric HOOK3-FGFR1 fusion protein that is presumed to retain the entire tyrosine kinase domain of FGFR1. The transcriptional feature of HOOK3-FGFR1 fusion was characterized by the significant enrichment of the NF-kappaB pathway by comparing the expression profiling of FGFR1 fusion positive MDS with 8 healthy donors and FGFR1 fusion negative MDS patients. Further validation by phosphorylation antibody array also showed NF-kappaB activation, as evidenced by increased phosphorylation of p65 (Ser 536) and of IKBalpha (Ser 32). Conclusions The HOOK3-FGFR1 fusion gene may contribute to the pathogenesis of MDS and activate the NF-kappaB pathway. These findings highlight a potential novel approach for combination therapy for FGFR1 rearrangement patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02451-y.
Collapse
Affiliation(s)
- Xuehong Zhang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Furong Wang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China
| | - Fanzhi Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China
| | - Dan Huang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China
| | - Haina Wang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China
| | - Beibei Gao
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China
| | - Yuan Gao
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China
| | - Zhijie Hou
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Jiacheng Lou
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, 116044, Dalian, China
| | - Weiling Li
- Department of Biotechnology College of Basic Medical Science, Dalian Medical University, 116044, Dalian, China.
| | - Jinsong Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China. .,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.
| |
Collapse
|
10
|
Chen B, Li C, Chang G, Wang H. Dihydroartemisinin targets fibroblast growth factor receptor 1 (FGFR1) to inhibit interleukin 17A (IL-17A)-induced hyperproliferation and inflammation of keratinocytes. Bioengineered 2022; 13:1530-1540. [PMID: 35006038 PMCID: PMC8805964 DOI: 10.1080/21655979.2021.2021701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Psoriasis is a common chronic immune-mediated disease that often has a serious negative impact on the physical and mental health of patients. Dihydroartemisinin (DHA) is a drug with anti-fibrotic and anti-inflammatory effects that may be involved in the autoimmune regulation of immune diseases. However, the effects of DHA on psoriasis have not been reported comprehensively. Therefore, the aim of this study was to investigate the effect of DHA on abnormal proliferation and inflammation of epidermal keratinocyte cells in psoriasis and its mechanism of action. IL-17A-induced human epidermal keratin-forming cells (HaCaT) were used as a model. And after induction exposure to different concentrations of DHA, CCK-8, EDU staining, wound healing and Western blotting were performed to assess cell viability, proliferation, migration, differentiation and inflammatory factors, respectively. Subsequently, agonists of fibroblast growth factor receptor 1 (FGFR1) were added and the above experiments were repeated. The results showed that DHA obviously inhibited IL-17A-induced hyperproliferation, migration and expression of inflammatory factors in HaCaT cells. Furthermore, FGFR1 was highly expressed in IL-17A-induced HaCaT cells, and DHA inhibited its expression. However, the inhibitory effect of DHA on IL-17A-induced HaCaT cells was reversed after the addition of FGFR1 agonist. In conclusion, DHA could inhibit IL-17A-induced hyperproliferation and inflammation of keratinocytes by targeting FGFR1, which also provided a new target for the treatment of psoriasis.
Collapse
Affiliation(s)
- Baojiang Chen
- Department of Dermatology, Tianjin TEDA Hospital, Tianjin, P.R. China
| | - Chen Li
- Department of Internal Medicine, Tianjin Beichen Traditional Chinese Medicine Hospital, Tianjin, P.R. China
| | - Guizhen Chang
- Department of Dermatology, Tianjin TEDA Hospital, Tianjin, P.R. China
| | - Huan Wang
- Department of Dermatology, Tianjin TEDA Hospital, Tianjin, P.R. China
| |
Collapse
|
11
|
Bennett MK, Li M, Tea MN, Pitman MR, Toubia J, Wang PPS, Anderson D, Creek DJ, Orlowski RZ, Gliddon BL, Powell JA, Wallington-Beddoe CT, Pitson SM. Resensitising proteasome inhibitor-resistant myeloma with sphingosine kinase 2 inhibition. Neoplasia 2021; 24:1-11. [PMID: 34826777 PMCID: PMC8626806 DOI: 10.1016/j.neo.2021.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
The introduction of the proteasome inhibitor bortezomib into treatment regimens for myeloma has led to substantial improvement in patient survival. However, whilst bortezomib elicits initial responses in many myeloma patients, this haematological malignancy remains incurable due to the development of acquired bortezomib resistance. With other patients presenting with disease that is intrinsically bortezomib resistant, it is clear that new therapeutic approaches are desperately required to target bortezomib-resistant myeloma. We have previously shown that targeting sphingolipid metabolism with the sphingosine kinase 2 (SK2) inhibitor K145 in combination with bortezomib induces synergistic death of bortezomib-naïve myeloma. In the current study, we have demonstrated that targeting sphingolipid metabolism with K145 synergises with bortezomib and effectively resensitises bortezomib-resistant myeloma to this proteasome inhibitor. Notably, these effects were dependent on enhanced activation of the unfolded protein response, and were observed in numerous separate myeloma models that appear to have different mechanisms of bortezomib resistance, including a new bortezomib-resistant myeloma model we describe which possesses a clinically relevant proteasome mutation. Furthermore, K145 also displayed synergy with the next-generation proteasome inhibitor carfilzomib in bortezomib-resistant and carfilzomib-resistant myeloma cells. Together, these findings indicate that targeting sphingolipid metabolism via SK2 inhibition may be effective in combination with a broad spectrum of proteasome inhibitors in the proteasome inhibitor resistant setting, and is an approach worth clinical exploration.
Collapse
Affiliation(s)
- Melissa K Bennett
- Centre for Cancer Biology, University of South Australia and SA Pathology, Bradley Building, North Tce, Adelaide SA, 5000, Australia
| | - Manjun Li
- Centre for Cancer Biology, University of South Australia and SA Pathology, Bradley Building, North Tce, Adelaide SA, 5000, Australia
| | - Melinda N Tea
- Centre for Cancer Biology, University of South Australia and SA Pathology, Bradley Building, North Tce, Adelaide SA, 5000, Australia
| | - Melissa R Pitman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Bradley Building, North Tce, Adelaide SA, 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide SA, 5000, Australia
| | - John Toubia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Bradley Building, North Tce, Adelaide SA, 5000, Australia; ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, 5000, Australia
| | - Paul P-S Wang
- Centre for Cancer Biology, University of South Australia and SA Pathology, Bradley Building, North Tce, Adelaide SA, 5000, Australia; ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, 5000, Australia
| | - Dovile Anderson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Briony L Gliddon
- Centre for Cancer Biology, University of South Australia and SA Pathology, Bradley Building, North Tce, Adelaide SA, 5000, Australia
| | - Jason A Powell
- Centre for Cancer Biology, University of South Australia and SA Pathology, Bradley Building, North Tce, Adelaide SA, 5000, Australia; Adelaide Medical School, University of Adelaide, Adelaide SA, 5000, Australia
| | - Craig T Wallington-Beddoe
- Centre for Cancer Biology, University of South Australia and SA Pathology, Bradley Building, North Tce, Adelaide SA, 5000, Australia; Adelaide Medical School, University of Adelaide, Adelaide SA, 5000, Australia; College of Medicine and Public Health, Flinders University, Bedford Park SA, 5042, Australia; Flinders Medical Centre, Bedford Park SA, 5042, Australia.
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Bradley Building, North Tce, Adelaide SA, 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide SA, 5000, Australia; Adelaide Medical School, University of Adelaide, Adelaide SA, 5000, Australia.
| |
Collapse
|