1
|
Aldroubi BG, Najjar JA, Youssef TS, Rizk CE, Abuamreh BA, Aramouni K, Ghadieh HE, Najjar SM. Cell-specific regulation of insulin action and hepatic fibrosis by CEACAM1. METABOLISM AND TARGET ORGAN DAMAGE 2024; 4:34. [PMID: 39640841 PMCID: PMC11619085 DOI: 10.20517/mtod.2024.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) has reached an epidemic rise worldwide. The disease is a constellation of a broad range of metabolic and histopathologic abnormalities. It begins with hepatic steatosis and progresses to metabolic dysfunction-associated steatohepatitis (MASH), including hepatic fibrosis, apoptosis, and cell injury. Despite ample research effort, the pathogenesis of the disease has not been fully delineated. Whereas insulin resistance is implicated in the early stages of the disease, its role in hepatic fibrosis remains controversial. We have focused our studies on the role of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in hepatocytes and endothelial cells in the metabolic and histopathological dysregulation in MASH. Patients with MASH exhibit lower hepatic CEACAM1 with a progressive decline in hepatocytes and endothelial cells as the fibrosis stage advances. In mice, conditional deletion of CEACAM1 in hepatocytes impairs insulin clearance to cause hyperinsulinemia-driven insulin resistance with steatohepatitis and hepatic fibrosis even when mice are fed a regular chow diet. In contrast, its conditional deletion in endothelial cells causes inflammation-driven hepatic fibrosis without adversely affecting metabolism (mice remain insulin-sensitive and do not develop hepatic steatosis). Thus, this review provides in vivo evidence that supports or discards the role of insulin resistance in liver injury and hepatic fibrosis.
Collapse
Affiliation(s)
- Basel G. Aldroubi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - John A. Najjar
- Department of Pathology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Tya S. Youssef
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al-Koura PO box 100 Tripoli, Kalhat, Lebanon
| | - Carl E. Rizk
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al-Koura PO box 100 Tripoli, Kalhat, Lebanon
| | - Basil A.M. Abuamreh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Karl Aramouni
- Department of Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hilda E. Ghadieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al-Koura PO box 100 Tripoli, Kalhat, Lebanon
| | - Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 43614, USA
| |
Collapse
|
2
|
Haahr H, Cieslarová B, Hingst JR, Jiang S, Kristensen NR, Kupčová V, Nørgreen L, Wagner FDH, Ignatenko S. The Effect of Various Degrees of Renal or Hepatic Impairment on the Pharmacokinetic Properties of Once-Weekly Insulin Icodec. Clin Pharmacokinet 2024; 63:819-830. [PMID: 38722461 PMCID: PMC11222188 DOI: 10.1007/s40262-024-01375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND AND OBJECTIVE Icodec is a once-weekly insulin being developed to provide basal insulin coverage in diabetes mellitus. This study evaluated the effects of renal or hepatic impairment on icodec pharmacokinetics. METHODS Two open-label, parallel-group, single-dose (1.5 U/kg subcutaneously) trials were conducted. In a renal impairment trial, 58 individuals were allocated to normal renal function (measured glomerular filtration rate ≥ 90 mL/min), mild (60 to < 90 mL/min), moderate (30 to < 60 mL/min) or severe (< 30 mL/min) renal impairment or end-stage renal disease. In a hepatic impairment trial, 25 individuals were allocated to normal hepatic function or mild (Child-Pugh Classification grade A), moderate (grade B) or severe (grade C) hepatic impairment. Blood was sampled frequently for a pharmacokinetic analysis until 35 days post-dose. RESULTS The shape of the icodec pharmacokinetic profile was not affected by renal or hepatic impairment. Total icodec exposure was greater for mild (estimated ratio [95% confidence interval]: 1.12 [1.01; 1.24]), moderate (1.24 [1.12; 1.37]) and severe (1.28 [1.16; 1.42]) renal impairment, and for end-stage renal disease (1.14 [1.03; 1.28]), compared with normal renal function. It was also greater for mild (1.13 [1.00; 1.28]) and moderate (1.15 [1.02; 1.29]) hepatic impairment versus normal hepatic function. There was no statistically significant difference between severe hepatic impairment and normal hepatic function. Serum albumin levels (range 2.7-5.1 g/dL) did not statistically significantly influence icodec exposure. CONCLUSIONS The clinical relevance of the slightly higher icodec exposure with renal or hepatic impairment is limited as icodec should be dosed according to individual need. No specific icodec dose adjustment is required in renal or hepatic impairment. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov identifiers: NCT03723785 and NCT04597697.
Collapse
Affiliation(s)
| | | | | | | | | | - Viera Kupčová
- Dérer's Hospital, Comenius University, Bratislava, Slovakia
| | | | | | | |
Collapse
|
3
|
Einarson K, Bendtsen KM, Li K, Thomsen M, Kristensen NR, Winther O, Fulle S, Clemmensen L, Refsgaard HH. Molecular Representations in Machine-Learning-Based Prediction of PK Parameters for Insulin Analogs. ACS OMEGA 2023; 8:23566-23578. [PMID: 37426277 PMCID: PMC10324072 DOI: 10.1021/acsomega.3c01218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
Therapeutic peptides and proteins derived from either endogenous hormones, such as insulin, or de novo design via display technologies occupy a distinct pharmaceutical space in between small molecules and large proteins such as antibodies. Optimizing the pharmacokinetic (PK) profile of drug candidates is of high importance when it comes to prioritizing lead candidates, and machine-learning models can provide a relevant tool to accelerate the drug design process. Predicting PK parameters of proteins remains difficult due to the complex factors that influence PK properties; furthermore, the data sets are small compared to the variety of compounds in the protein space. This study describes a novel combination of molecular descriptors for proteins such as insulin analogs, where many contained chemical modifications, e.g., attached small molecules for protraction of the half-life. The underlying data set consisted of 640 structural diverse insulin analogs, of which around half had attached small molecules. Other analogs were conjugated to peptides, amino acid extensions, or fragment crystallizable regions. The PK parameters clearance (CL), half-life (T1/2), and mean residence time (MRT) could be predicted by using classical machine-learning models such as Random Forest (RF) and Artificial Neural Networks (ANN) with root-mean-square errors of CL of 0.60 and 0.68 (log units) and average fold errors of 2.5 and 2.9 for RF and ANN, respectively. Both random and temporal data splittings were employed to evaluate ideal and prospective model performance with the best models, regardless of data splitting, achieving a minimum of 70% of predictions within a twofold error. The tested molecular representations include (1) global physiochemical descriptors combined with descriptors encoding the amino acid composition of the insulin analogs, (2) physiochemical descriptors of the attached small molecule, (3) protein language model (evolutionary scale modeling) embedding of the amino acid sequence of the molecules, and (4) a natural language processing inspired embedding (mol2vec) of the attached small molecule. Encoding the attached small molecule via (2) or (4) significantly improved the predictions, while the benefit of using the protein language model-based encoding (3) depended on the used machine-learning model. The most important molecular descriptors were identified as descriptors related to the molecular size of both the protein and protraction part using Shapley additive explanations values. Overall, the results show that combining representations of proteins and small molecules was key for PK predictions of insulin analogs.
Collapse
Affiliation(s)
- Kasper
A. Einarson
- Danish
Technical University (DTU), Applied Mathematics
and Computer Science, Kongens Lyngby 2800, Denmark
- Novo
Nordisk A/S, Global Drug Discovery, Research
& Early Development (R&ED), Måløv 2760, Denmark
| | | | - Kang Li
- Novo
Nordisk A/S, Digital Science & Innovation, R&ED, Måløv 2760, Denmark
| | - Maria Thomsen
- Novo
Nordisk A/S, Digital Science & Innovation, R&ED, Måløv 2760, Denmark
| | | | - Ole Winther
- Danish
Technical University (DTU), Applied Mathematics
and Computer Science, Kongens Lyngby 2800, Denmark
- Center
for Genomic Medicine, Rigshospitalet (Copenhagen
University Hospital), Copenhagen 2100, Denmark
- Department
of Biology, Bioinformatics Centre, University
of Copenhagen, Copenhagen 2200, Denmark
| | - Simone Fulle
- Novo
Nordisk A/S, Digital Science & Innovation, R&ED, Måløv 2760, Denmark
| | - Line Clemmensen
- Danish
Technical University (DTU), Applied Mathematics
and Computer Science, Kongens Lyngby 2800, Denmark
| | - Hanne H.F. Refsgaard
- Novo
Nordisk A/S, Global Drug Discovery, Research
& Early Development (R&ED), Måløv 2760, Denmark
| |
Collapse
|
4
|
Rajabian N, Ikhapoh I, Shahini S, Choudhury D, Thiyagarajan R, Shahini A, Kulczyk J, Breed K, Saha S, Mohamed MA, Udin SB, Stablewski A, Seldeen K, Troen BR, Personius K, Andreadis ST. Methionine adenosyltransferase2A inhibition restores metabolism to improve regenerative capacity and strength of aged skeletal muscle. Nat Commun 2023; 14:886. [PMID: 36797255 PMCID: PMC9935517 DOI: 10.1038/s41467-023-36483-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
We investigate the age-related metabolic changes that occur in aged and rejuvenated myoblasts using in vitro and in vivo models of aging. Metabolic and signaling experiments reveal that human senescent myoblasts and myoblasts from a mouse model of premature aging suffer from impaired glycolysis, insulin resistance, and generate Adenosine triphosphate by catabolizing methionine via a methionine adenosyl-transferase 2A-dependant mechanism, producing significant levels of ammonium that may further contribute to cellular senescence. Expression of the pluripotency factor NANOG downregulates methionine adenosyltransferase 2 A, decreases ammonium, restores insulin sensitivity, increases glucose uptake, and enhances muscle regeneration post-injury. Similarly, selective inhibition of methionine adenosyltransferase 2 A activates Akt2 signaling, repairs pyruvate kinase, restores glycolysis, and enhances regeneration, which leads to significant enhancement of muscle strength in a mouse model of premature aging. Collectively, our investigation indicates that inhibiting methionine metabolism may restore age-associated impairments with significant gain in muscle function.
Collapse
Affiliation(s)
- Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Izuagie Ikhapoh
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Shahryar Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Debanik Choudhury
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Ramkumar Thiyagarajan
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Aref Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Joseph Kulczyk
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Kendall Breed
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Shilpashree Saha
- Department of Biomedical Engineering, University at Buffalo, Amherst, NY, USA
| | - Mohamed Alaa Mohamed
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Susan B Udin
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Aimee Stablewski
- Gene Targeting and Transgenic Shared Resource, Roswell Park Comprehensive Cancer Institute, Buffalo, NY, USA
| | - Kenneth Seldeen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Bruce R Troen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Kirkwood Personius
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA.
- Department of Biomedical Engineering, University at Buffalo, Amherst, NY, USA.
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA.
- Cell, Gene and Tissue Engineering (CGTE) Center, School of Engineering and Applied Sciences, University at Buffalo, Amherst, NY, USA.
| |
Collapse
|
5
|
Abstract
Insulin action is impaired in type 2 diabetes. The functions of the hormone are an integrated product of insulin secretion from pancreatic β-cells and insulin clearance by receptor-mediated endocytosis and degradation, mostly in liver (hepatocytes) and, to a lower extent, in extrahepatic peripheral tissues. Substantial evidence indicates that genetic or acquired abnormalities of insulin secretion or action predispose to type 2 diabetes. In recent years, along with the discovery of the molecular foundation of receptor-mediated insulin clearance, such as through the membrane glycoprotein CEACAM1, a consensus has begun to emerge that reduction of insulin clearance contributes to the disease process. In this review, we consider the evidence suggesting a pathogenic role for reduced insulin clearance in insulin resistance, obesity, hepatic steatosis, and type 2 diabetes.
Collapse
Affiliation(s)
- Sonia M Najjar
- Department of Biomedical Sciences and the Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA;
| | - Sonia Caprio
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology-National Research Council, Pisa, Italy
| |
Collapse
|
6
|
Alqallaf A, Swan P, Docherty NG. Renal insulin resistance in type 2 diabetes mellitus and progression of chronic kidney disease: potential pathogenic mechanisms. Expert Rev Endocrinol Metab 2022; 17:523-532. [PMID: 36203374 DOI: 10.1080/17446651.2022.2131534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/28/2022] [Indexed: 01/06/2023]
Abstract
INTRODUCTION A bidirectional association exists between insulin resistance (IR) and chronic kidney disease (CKD) in Type 2 Diabetes Mellitus (T2DM). Baseline measures of IR are predictive of CKD progression, and uremia in progressive CKD is itself, in turn, associated with a worsening of IR. Pre-clinical research reveals that intrinsic IR in glomerular podocytes and the renal tubule may serve as a pathogenic driver of CKD in T2DM. AREAS COVERED The present manuscript takes as its point of departure, the recently identified prognostic utility of severe insulin resistance as a predictor of CKD in T2DM. Findings from a series of studies describing the association of IR with pathological alterations in both established, and less commonly assessed dynamic measures of renal impairment are discussed. Drawing upon the pre-clinical mechanistic evidence base, the cellular and molecular basis of intrinsic renal IR as a promoter of CKD is considered. EXPERT OPINION Measurement of insulin sensitivity may add value to profiling of renal risk in T2DM. Rational selection of therapeutic strategies targeting the enhancement of insulin sensitivity merits special attention regarding the personalized management of CKD in insulin resistance predominant T2DM.
Collapse
Affiliation(s)
- Alrataj Alqallaf
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick Swan
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Neil G Docherty
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Mansour SZ, Moustafa EM, Moawed FSM. Modulation of endoplasmic reticulum stress via sulforaphane-mediated AMPK upregulation against nonalcoholic fatty liver disease in rats. Cell Stress Chaperones 2022; 27:499-511. [PMID: 35779187 PMCID: PMC9485504 DOI: 10.1007/s12192-022-01286-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 01/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major health concern. Endoplasmic reticulum (ER) stress, inflammation, and metabolic dysfunctions may be targeted to prevent the progress of nonalcoholic fatty liver disease. Sulforaphane (SFN), a sulfur-containing compound that is abundant in broccoli florets, seeds, and sprouts, has been reported to have beneficial effects on attenuating metabolic diseases. In light of this, the present study was designed to elucidate the mechanisms by which SFN ameliorated ER stress, inflammation, lipid metabolism, and insulin resistance - induced by a high-fat diet and ionizing radiation (IR) in rats. In our study, the rats were randomly divided into five groups: control, HFD, HFD + SFN, HFD + IR, and HFD + IR + SFN groups. After the last administration of SFN, liver and blood samples were taken. As a result, the lipid profile, liver enzymes, glucose, insulin, IL-1β, adipokines (leptin and resistin), and PI3K/AKT protein levels, as well as the mRNA gene expression of ER stress markers (IRE-1, sXBP-1, PERK, ATF4, and CHOP), fatty acid synthase (FAS), peroxisome proliferator-activated receptor-α (PPAR-α). Interestingly, SFN treatment modulated the levels of proinflammatory cytokine including IL-1β, metabolic indices (lipid profile, glucose, insulin, and adipokines), and ER stress markers in HFD and HFD + IR groups. SFN also increases the expression of PPAR-α and AMPK genes in the livers of HFD and HFD + IR groups. Meanwhile, the gene expression of FAS and CHOP was significantly attenuated in the SFN-treated groups. Our results clearly show that SFN inhibits liver toxicity induced by HFD and IR by ameliorating the ER stress events in the liver tissue through the upregulation of AMPK and PPAR-α accompanied by downregulation of FAS and CHOP gene expression.
Collapse
Affiliation(s)
- Somaya Z Mansour
- Radiation Biology Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Enas M Moustafa
- Radiation Biology Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Fatma S M Moawed
- Health Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
8
|
Najjar SM, Abdolahipour R, Ghadieh HE, Jahromi MS, Najjar JA, Abuamreh BAM, Zaidi S, Kumarasamy S, Muturi HT. Regulation of Insulin Clearance by Non-Esterified Fatty Acids. Biomedicines 2022; 10:biomedicines10081899. [PMID: 36009446 PMCID: PMC9405499 DOI: 10.3390/biomedicines10081899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Insulin stores lipid in adipocytes and prevents lipolysis and the release of non-esterified fatty acids (NEFA). Excessive release of NEFA during sustained energy supply and increase in abdominal adiposity trigger systemic insulin resistance, including in the liver, a major site of insulin clearance. This causes a reduction in insulin clearance as a compensatory mechanism to insulin resistance in obesity. On the other hand, reduced insulin clearance in the liver can cause chronic hyperinsulinemia, followed by downregulation of insulin receptor and insulin resistance. Delineating the cause–effect relationship between reduced insulin clearance and insulin resistance has been complicated by the fact that insulin action and clearance are mechanistically linked to insulin binding to its receptors. This review discusses how NEFA mobilization contributes to the reciprocal relationship between insulin resistance and reduced hepatic insulin clearance, and how this may be implicated in the pathogenesis of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Correspondence: ; Tel.: +1-740-593-2376; Fax: +1-740-593-2320
| | - Raziyeh Abdolahipour
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Hilda E. Ghadieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Balamand P.O. Box 100, Lebanon
| | - Marziyeh Salehi Jahromi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - John A. Najjar
- Department of Internal Medicine, College of Medicine, University of Toledo, Toledo, OH 43606, USA
| | - Basil A. M. Abuamreh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Sobia Zaidi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Sivarajan Kumarasamy
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Harrison T. Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
9
|
Protective and Therapeutic Effects of Orlistat on Metabolic Syndrome and Oxidative Stress in High-Fat Diet-Induced Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) in Rats: Role on Nrf2 Activation. Vet Sci 2021; 8:vetsci8110274. [PMID: 34822647 PMCID: PMC8622931 DOI: 10.3390/vetsci8110274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/27/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is an excessive buildup of liver lipids closely associated with various kinds of undesirable metabolic effects and oxidative stress. We aimed to investigate the protective and therapeutic effects of orlistat on metabolic syndrome and oxidative stress parameters in high-fat diet (HFD) induced-MAFLD rats. Twenty-four male Sprague-Dawley rats were randomly divided into four groups (n = 6/group), i.e., Normal control (N), HFD, HFD + orlistat (HFD + O) (10 mg/kg/day administered concomitantly for 12 weeks as a protective model), and obese+orlistat (OB + O) (10 mg/kg/day administered 6 weeks after induction of obesity as a therapeutic model) groups. After 12 weeks, the HFD group had significantly increased Lee obesity index, serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total cholesterol, triglyceride, low-density lipoprotein levels, liver total cholesterol and triglyceride levels, insulin resistance and non-alcoholic steatohepatitis (NASH) together with decreased serum high-density lipoprotein level. Additionally, the HFD group also showed increased Nrf2 translocation to the nucleus with high Keap1 expression and increased liver oxidative stress parameters. Orlistat significantly improved all these alterations in HFD rats. We demonstrated that orlistat might have protective and therapeutic effects against HFD-induced MAFLD rats by its activation on Nrf2 signaling pathway, which subsequently improved metabolic syndrome and oxidative stress parameters.
Collapse
|
10
|
Short-Term SGLT2 Inhibitor Administration Does Not Alter Systemic Insulin Clearance in Type 2 Diabetes. Biomedicines 2021; 9:biomedicines9091154. [PMID: 34572340 PMCID: PMC8472728 DOI: 10.3390/biomedicines9091154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Decreased insulin clearance could be a relatively upstream abnormality in obesity, metabolic syndrome, and nonalcoholic fatty liver disease. Previous studies have shown that sodium-glucose cotransporter 2 inhibitor (SGLT2i) increases insulin–C-peptide ratio, a marker of insulin clearance, and improves metabolic parameters. We evaluated the effects of the SGLT2i tofogliflozin on metabolic clearance rate of insulin (MCRI) with a hyperinsulinemic euglycemic clamp study, the gold standard for measuring systemic insulin clearance. Methods: Study participants were 12 Japanese men with type 2 diabetes. We evaluated MCRI and tissue-specific insulin sensitivity with a hyperinsulinemic euglycemic clamp (insulin infusion rate, 40 mU/m2·min) before and immediately after a single dose (n = 12) and 8 weeks (n = 9) of tofogliflozin. We also measured ectopic fat in muscle and liver and the abdominal fat area using 1H-magnetic resonance spectroscopy and magnetic resonance imaging, respectively, before and after 8 weeks of tofogliflozin. Results: MCRI did not change after a single dose of tofogliflozin (594.7 ± 67.7 mL/min·m2 and 608.3 ± 90.9 mL/min·m2, p = 0.61) or after 8 weeks (582.5 ± 67.3 mL/min·m2 and 602.3 ± 67.0 mL/min·m2, p = 0.41). The 8-week treatment significantly improved glycated hemoglobin and decreased body weight (1.7%) and the subcutaneous fat area (6.4%), whereas insulin sensitivity and ectopic fat in muscle and liver did not change significantly. Conclusions: MCRI did not change after a single dose or 8 weeks of tofogliflozin. Increased MCRI does not precede a decrease in body fat or improved glycemic control.
Collapse
|
11
|
Yang H, Tang L, Qu Z, Lei SH, Li W, Wang YH. Hippocampal insulin resistance and the Sirtuin 1 signaling pathway in diabetes-induced cognitive dysfunction. Neural Regen Res 2021; 16:2465-2474. [PMID: 33907035 PMCID: PMC8374594 DOI: 10.4103/1673-5374.313051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the peripheral nervous system, the activation of Sirtuin 1 can improve insulin resistance; however, the role played by Sirtuin 1 in the central nervous system remains unknown. In this study, rat models of diabetes mellitus were generated by a single injection of streptozotocin. At 8 weeks after streptozotocin injection, the Morris water maze test and western blot assays confirmed that the diabetic model rats had learning and memory deficits, insulin resistance, and Sirtuin 1 expression could be detected in the hippocampus. Insulin and the insulin receptor inhibitor S961 were intranasally administered to investigate the regulatory effects of insulin signaling on Sirtuin 1. The results showed that insulin administration improved the impaired cognitive function of diabetic model rats and increased the expression levels of phosphorylated insulin receptor, phosphorylated insulin receptor substrate 1, and Sirtuin 1 in the hippocampus. Conversely, S961 administration resulted in more severe cognitive dysfunction and reduced the expression levels of phosphorylated insulin receptor, phosphorylated insulin receptor substrate 1, and Sirtuin 1. The Sirtuin 1 activator SRT2104 and the inhibitor Sirtinol were injected into the lateral ventricle, which revealed that the activation of Sirtuin 1 increased the expression levels of target of rapamycin complex 1, phosphorylated cAMP-response element-binding protein, and brain-derived neurotrophic factor. Hippocampal dendritic length and spine density also increased in response to Sirtuin 1 activation. In contrast, Sirtinol decreased the expression levels of target of rapamycin complex 1, phosphorylated cAMP-response element-binding protein, and brain-derived neurotrophic factor and damaged the dendritic structure. These findings suggest that the Sirtuin 1 signaling pathway plays an important role in the development of insulin resistance-related cognitive deficits in diabetic rats. This study was approved by the Animal Ethics Welfare Committee of the First Affiliated Hospital of Hunan University of Chinese Medicine (approval No. ZYFY201811207) in November 2018.
Collapse
Affiliation(s)
- Hui Yang
- The First Hospital of Hunan University of Chinese Medicine; Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Lin Tang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Zhan Qu
- School of Nursing, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Shi-Hui Lei
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Wei Li
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Yu-Hong Wang
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| |
Collapse
|