1
|
Wu L, Zhu L, Chen J. Diverse potential of chimeric antigen receptor-engineered cell therapy: Beyond cancer. Clin Transl Med 2025; 15:e70306. [PMID: 40205818 PMCID: PMC11982526 DOI: 10.1002/ctm2.70306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-engineered cell therapies have made significant progress in haematological cancer treatment. This success has motivated researchers to investigate its potential applications in non-cancerous diseases, with substantial strides already made in this field. MAIN BODY This review summarises the latest research on CAR-engineered cell therapies, with a particular focus on CAR-T cell therapy for non-cancerous diseases, including but not limited to infectious diseases, autoimmune diseases, cardiac diseases and immune-mediated disorders in transplantation. Additionally, the review discusses the current obstacles that need to be addressed for broader clinical applications. CONCLUSION With ongoing research and continuous improvements, CAR-engineered cell therapy holds promise as a potent tool for treating various diseases in the future. KEY POINTS CAR-engineered cell therapy has expanded beyond cancer to treat autoimmune diseases, infections, cardiac diseases, and transplant-related rejection. The CAR platform is diverse, with various cell types such as CAR-T, CAR-NK, and CAR-M potentially suited for different disease contexts. The safety, efficacy, and practicality of CAR cell therapy in non-cancer diseases remain challenging, requiring further technological optimization and clinical translation.
Collapse
Affiliation(s)
- Lvying Wu
- Institute of Clinical MedicineThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Lingfeng Zhu
- Minimally Invasive Urology and Translational Medicine CenterFuzhou First General Hospital Affiliated With Fujian Medical UniversityFuzhouFujianChina
| | - Jin Chen
- Institute of Clinical MedicineThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Minimally Invasive Urology and Translational Medicine CenterFuzhou First General Hospital Affiliated With Fujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
2
|
Eslami M, Arjmand N, Mahmoudian F, Babaeizad A, Tahmasebi H, Fattahi F, Oksenych V. Deciphering Host-Virus Interactions and Advancing Therapeutics for Chronic Viral Infection. Viruses 2025; 17:390. [PMID: 40143318 PMCID: PMC11946419 DOI: 10.3390/v17030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Chronic viral infections like HIV, HBV, and HCV establish persistent interactions with the host immune system, resulting in immune evasion and long-term immune dysfunction. These viruses use a range of strategies to limit host defenses, such as downregulating MHC class I, disrupting interferon signaling, altering apoptosis pathways, and suppressing cytotoxic T-cell activity. Key viral proteins, including HIV Nef, HBV X protein, and HCV NS5A, interfere with antigen presentation and JAK/STAT signaling, thereby reducing antiviral immune responses. Chronic infections induce immune exhaustion due to persistent antigen exposure, which leads to the expression of inhibitory receptors like PD-1 and CTLA-4 on T cells. Viral epigenetic changes, such as N6-methyladenosine modifications and histone deacetylation, enhance immune evasion by modulating gene expression in infected cells. Viruses further manipulate host cytokine networks by promoting an immunosuppressive environment through IL-10 and TGF-β secretion, which suppress inflammatory responses and inhibit T-cell activation. This review examines the molecular/cellular mechanisms that enable chronic viruses to escape host immunity, focusing on antigenic variation, cytokine disruption, and control of apoptotic pathways. It also addresses how host genetic factors, such as HLA polymorphisms, influence disease progression. Lastly, we discuss host-targeted therapies, including immune checkpoint inhibitors, cytokine treatments, and CRISPR.
Collapse
Affiliation(s)
- Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran; (M.E.)
- Department of Bacteriology and Virology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Neda Arjmand
- Department of Obstetrics and Gynecology, Tehran Medical University, Tehran 14167-53955, Iran
| | - Fatemeh Mahmoudian
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran; (M.E.)
| | - Ali Babaeizad
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Hamed Tahmasebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud 36147-73943, Iran
| | - Fahimeh Fattahi
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak 38186-49433, Iran
| | | |
Collapse
|
3
|
Fisher MS, Sennikov SV. T-regulatory cells for the treatment of autoimmune diseases. Front Immunol 2025; 16:1511671. [PMID: 39967659 PMCID: PMC11832489 DOI: 10.3389/fimmu.2025.1511671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Autoimmune diseases result from imbalances in the immune system and disturbances in the mechanisms of immune tolerance. T-regulatory cells (Treg) are key factors in the formation of immune tolerance. Tregs modulate immune responses and repair processes, controlling the innate and adaptive immune system. The use of Tregs in the treatment of autoimmune diseases began with the manipulation of endogenous Tregs using immunomodulatory drugs. Then, a method of adoptive transfer of Tregs grown in vitro was developed. Adoptive transfer of Tregs includes polyclonal Tregs with non-specific effects and antigen-specific Tregs in the form of CAR-Treg and TCR-Treg. This review discusses non-specific and antigen-specific approaches to the use of Tregs, their advantages, disadvantages, gaps in development, and future prospects.
Collapse
Affiliation(s)
- Marina S. Fisher
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
- Laboratory of Immune Engineering, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University under the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Sergey V. Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
- Laboratory of Immune Engineering, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University under the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
4
|
Lu Y, Shi R, He W, An Q, Zhao J, Gao X, Zhang B, Zhang L, Xu K, Ma D. Cell therapy in Sjögren's syndrome: opportunities and challenges. Expert Rev Mol Med 2024; 26:e28. [PMID: 39438246 PMCID: PMC11505611 DOI: 10.1017/erm.2024.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 10/25/2024]
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease caused by immune system disorders. The main clinical manifestations of SS are dry mouth and eyes caused by the destruction of exocrine glands, such as the salivary and lacrimal glands, and systemic manifestations, such as interstitial pneumonia, interstitial nephritis and vasculitis. The pathogenesis of this condition is complex. However, this has not been fully elucidated. Treatment mainly consists of glucocorticoids, disease-modifying antirheumatic drugs and biological agents, which can only control inflammation but not repair the tissue. Therefore, identifying methods to regulate immune disorders and repair damaged tissues is imperative. Cell therapy involves the transplantation of autologous or allogeneic normal or bioengineered cells into the body of a patient to replace damaged cells or achieve a stronger immunomodulatory capacity to cure diseases, mainly including stem cell therapy and immune cell therapy. Cell therapy can reduce inflammation, relieve symptoms and promote tissue repair and regeneration of exocrine glands such as the salivary glands. It has broad application prospects and may become a new treatment strategy for patients with SS. However, there are various challenges in cell preparation, culture, storage and transportation. This article reviews the research status and prospects of cell therapies for SS.
Collapse
Affiliation(s)
- Yangyang Lu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Rongjing Shi
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Wenqin He
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Qi An
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Jingwen Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Xinnan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Baiyan Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Ke Xu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| |
Collapse
|
5
|
Cao H, Xiao J, Baylink DJ, Nguyen V, Shim N, Lee J, Mallari DJR, Wasnik S, Mirshahidi S, Chen CS, Abdel-Azim H, Reeves ME, Xu Y. Development of a Competitive Nutrient-Based T-Cell Immunotherapy Designed to Block the Adaptive Warburg Effect in Acute Myeloid Leukemia. Biomedicines 2024; 12:2250. [PMID: 39457563 PMCID: PMC11504511 DOI: 10.3390/biomedicines12102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: T-cell-based adoptive cell therapies have emerged at the forefront of cancer immunotherapies; however, failed long-term survival and inevitable exhaustion of transplanted T lymphocytes in vivo limits clinical efficacy. Leukemia blasts possess enhanced glycolysis (Warburg effect), exploiting their microenvironment to deprive nutrients (e.g., glucose) from T cells, leading to T-cell dysfunction and leukemia progression. Methods: Thus, we explored whether genetic reprogramming of T-cell metabolism could improve their survival and empower T cells with a competitive glucose-uptake advantage against blasts and inhibit their uncontrolled proliferation. Results: Here, we discovered that high-glucose concentration reduced the T-cell expression of glucose transporter GLUT1 (SLC2A1) and TFAM (mitochondrion transcription factor A), an essential transcriptional regulator of mitochondrial biogenesis, leading to their impaired expansion ex vivo. To overcome the glucose-induced genetic deficiency in metabolism, we engineered T cells with lentiviral overexpression of SLC2A1 and/or TFAM transgene. Multi-omics analyses revealed that metabolic reprogramming promoted T-cell proliferation by increasing IL-2 release and reducing exhaustion. Moreover, the engineered T cells competitively deprived glucose from allogenic blasts and lessened leukemia burden in vitro. Conclusions: Our findings propose a novel T-cell immunotherapy that utilizes a dual strategy of starving blasts and cytotoxicity for preventing uncontrolled leukemia proliferation.
Collapse
Affiliation(s)
- Huynh Cao
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jeffrey Xiao
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - David J. Baylink
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Vinh Nguyen
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Nathan Shim
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jae Lee
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Dave J. R. Mallari
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Samiksha Wasnik
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Saied Mirshahidi
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
- Biospecimen Laboratory, Department of Medicine and Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Chien-Shing Chen
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hisham Abdel-Azim
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Division of Transplant and Cell Therapy, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA
- Division of Hematology and Oncology, Department of Pediatrics, Loma Linda University, Loma Linda, CA 92354, USA
| | - Mark E. Reeves
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yi Xu
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
6
|
Mitchell CL, Kurouski D. Novel strategies in Parkinson's disease treatment: a review. Front Mol Neurosci 2024; 17:1431079. [PMID: 39183754 PMCID: PMC11341544 DOI: 10.3389/fnmol.2024.1431079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
An unprecedented extension of life expectancy observed during the past century drastically increased the number of patients diagnosed with Parkinson's diseases (PD) worldwide. Estimated costs of PD alone reached $52 billion per year, making effective neuroprotective treatments an urgent and unmet need. Current treatments of both AD and PD focus on mitigating the symptoms associated with these pathologies and are not neuroprotective. In this review, we discuss the most advanced therapeutic strategies that can be used to treat PD. We also critically review the shift of the therapeutic paradigm from a small molecule-based inhibition of protein aggregation to the utilization of natural degradation pathways and immune cells that are capable of degrading toxic amyloid deposits in the brain of PD patients.
Collapse
Affiliation(s)
- Charles L. Mitchell
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Dmitry Kurouski
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
7
|
Rehman M, Qaiser A, Khan HS, Manzoor S, Ashraf J. Enhancing CAR T cells function: role of immunomodulators in cancer immunotherapy. Clin Exp Med 2024; 24:180. [PMID: 39105978 PMCID: PMC11303469 DOI: 10.1007/s10238-024-01442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
CAR T-cell therapy is a promising immunotherapy, providing successful results for cancer patients who are unresponsive to standard and traditional therapeutic approaches. However, there are limiting factors which create a hurdle in the therapy performing its role optimally. CAR T cells get exhausted, produce active antitumor responses, and might even produce toxic reactions. Specifically, in the case of solid tumors, chimeric antigen receptor T (CAR-T) cells fail to produce the desired outcomes. Then, the need to use supplementary agents such as immune system modifying immunomodulatory agents comes into play. A series of the literature was studied to evaluate the role of immunomodulators including a phytochemical, Food and Drug Administration (FDA)-approved targeted drugs, and ILs in support of their achievements in boosting the efficiency of CAR-T cell therapy. Some of the most promising out of them are reported in this article. It is expected that by using the right combinations of immunotherapy, immunomodulators, and traditional cancer treatments, the best possible cancer defying results may be produced in the future.
Collapse
Affiliation(s)
- Maheen Rehman
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Ariba Qaiser
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Hassan Sardar Khan
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sobia Manzoor
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Javed Ashraf
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.
- Riphah International University, Islamabad, Pakistan.
| |
Collapse
|
8
|
Sarwar S, Riaz U, Ali A, Kailash SJ. Adverse events associated with chimeric antigen receptor T-cell therapy in ophthalmology: a narrative review. Ann Med Surg (Lond) 2024; 86:4035-4041. [PMID: 38989163 PMCID: PMC11230779 DOI: 10.1097/ms9.0000000000002188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/08/2024] [Indexed: 07/12/2024] Open
Abstract
Chimeric antigen receptors are synthetically produced receptors engineered to engage with target cells with high specificity. These cells are created by inserting an artificial T-cell receptor into an immunoglobulin's antigen-binding region, allowing the cells to combine and target specific antigens. The use of chimeric antigen receptor (CAR) T-cell therapy has been a remarkable achievement in the field of immunotherapy, particularly in the treatment of ophthalmic tumors like retinoblastoma and uveal melanoma. However, there are some documented side effects, such as cytokine release syndrome (CRS) and immunological effector cell-associated neurotoxicity syndrome (ICANS). Additionally, ocular side effects such as blurred vision, vision impairment, and intraocular infections are also concerning and require further evaluation. This review highlights the advances made in chimeric antigen receptor (CAR) immunotherapy, including its structure and manufacture, as well as relevant clinical discoveries and associated adverse effects. By identifying the gaps in current research, this analysis provides insights into potential strategies and solutions for addressing some of the most severe side effects.
Collapse
Affiliation(s)
- Sara Sarwar
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Unood Riaz
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Abraish Ali
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Sejal Jain Kailash
- Department of medicine, Vinnytsia National Medical University, Vinnytsia, Ukraine
| |
Collapse
|
9
|
Choudhery MS, Arif T, Mahmood R, Harris DT. CAR-T-Cell-Based Cancer Immunotherapies: Potentials, Limitations, and Future Prospects. J Clin Med 2024; 13:3202. [PMID: 38892913 PMCID: PMC11172642 DOI: 10.3390/jcm13113202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer encompasses various elements occurring at the cellular and genetic levels, necessitating an immunotherapy capable of efficiently addressing both aspects. T cells can combat cancer cells by specifically recognizing antigens on them. This innate capability of T cells has been used to develop cellular immunotherapies, but most of them can only target antigens through major histocompatibility complexes (MHCs). New gene-editing techniques such as clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (CRISPR-cas9) can precisely edit the DNA sequences. CRISPR-cas9 has made it possible to generate genetically engineered chimeric antigen receptors (CARs) that can overcome the problems associated with old immunotherapies. In chimeric antigen receptor T (CAR-T) cell therapy, the patient's T cells are isolated and genetically modified to exhibit synthetic CAR(s). CAR-T cell treatment has shown remarkably positive clinical outcomes in cancers of various types. Nevertheless, there are various challenges that reduce CAR-T effectiveness in solid tumors. It is required to address these challenges in order to make CAR-T cell therapy a better and safer option. Combining CAR-T treatment with other immunotherapies that target multiple antigens has shown positive outcomes. Moreover, recently generated Boolean logic-gated advanced CARs along with artificial intelligence has expanded its potential to treat solid tumors in addition to blood cancers. This review aims to describe the structure, types, and various methods used to develop CAR-T cells. The clinical applications of CAR-T cells in hematological malignancies and solid tumours have been described in detail. In addition, this discussion has addressed the limitations associated with CAR-T cells, explored potential strategies to mitigate CAR-T-related toxicities, and delved into future perspectives.
Collapse
Affiliation(s)
- Mahmood S. Choudhery
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 54600, Pakistan;
| | - Taqdees Arif
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 54600, Pakistan;
| | - Ruhma Mahmood
- Jinnah Hospital, Allama Iqbal Medical College, Lahore 54700, Pakistan;
| | - David T. Harris
- Department of Immunobiology, College of Medicine, University of Arizona Health Sciences Biorepository, The University of Arizona, Tucson, AZ 85724-5221, USA;
| |
Collapse
|
10
|
Yang Z, Liu Y, Zhao H. CAR T treatment beyond cancer: Hope for immunomodulatory therapy of non-cancerous diseases. Life Sci 2024; 344:122556. [PMID: 38471620 DOI: 10.1016/j.lfs.2024.122556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
Engineering a patient's own T cells to accurately identify and eliminate cancer cells has effectively cured individuals afflicted with previously incurable hematologic cancers. These findings have stimulated research into employing chimeric antigen receptor (CAR) T therapy across various areas within the field of oncology. However, evidence from both clinical and preclinical investigations emphasize the broader potential of CAR T therapy, extending beyond oncology to address autoimmune disorders, persistent infections, cardiac fibrosis, age-related ailments and other conditions. Concurrently, the advent of novel technologies and platforms presents additional avenues for utilizing CAR T therapy in non-cancerous contexts. This review provides an overview of the rationale behind CAR T therapy, delineates ongoing challenges in its application to cancer treatment, summarizes recent findings in non-cancerous diseases, and engages in discourse regarding emerging technologies that bear relevance. The review delves into prospective applications of this therapeutic approach across a diverse range of scenarios. Lastly, the review underscores concerns related to precision and safety, while also outlining the envisioned trajectory for extending CAR T therapy beyond cancer treatment.
Collapse
Affiliation(s)
- Zhibo Yang
- Department of Neurosurgery, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, Shaanxi 723000, China
| | - Yingfeng Liu
- Department of Neurosurgery, Tianshui First People's Hospital, Tianshui, Gansu 741000, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266005, China.
| |
Collapse
|
11
|
Hassan SH, Alshahrani MY, Saleh RO, Mohammed BA, Kumar A, Almalki SG, Alkhafaji AT, Ghildiyal P, Al-Tameemi AR, Elawady A. A new vision of the efficacy of both CAR-NK and CAR-T cells in treating cancers and autoimmune diseases. Med Oncol 2024; 41:127. [PMID: 38656354 DOI: 10.1007/s12032-024-02362-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
Chimeric Antigen Receptor (CAR) based therapies are becoming increasingly important in treating patients. CAR-T cells have been shown to be highly effective in the treatment of hematological malignancies. However, harmful therapeutic barriers have been identified, such as the potential for graft-versus-host disease (GVHD), neurotoxicity, and cytokine release syndrome (CRS). As a result, CAR NK-cell therapy is expected to be a new therapeutic option. NK cells act as cytotoxic lymphocytes, supporting the innate immune response against autoimmune diseases and cancer cells by precisely detecting and eliminating malignant cells. Genetic modification of these cells provides a dual approach to the treatment of AD and cancer. It can be used through both CAR-independent and CAR-dependent mechanisms. The use of CAR-based cell therapies has been successful in treating cancer patients, leading to further investigation of this innovative treatment for alternative diseases, including AD. The complementary roles of CAR T and CAR NK cells have stimulated exploration in this area. Our study examines the latest research on the therapeutic effectiveness of these cells in treating both cancer and ADs.
Collapse
Affiliation(s)
- Salim Hussein Hassan
- Community Health Department, Technical Institute of Karbala, AL-Furat Al-Awsat Technical University, Najaf, Iraq.
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, 620002, Russia
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, 11952, Majmaah, Saudi Arabia
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
12
|
Rotte A. Editorial: Emerging learnings in cell therapy: novel binding domains, universal CAR-T cells, and more. Front Oncol 2024; 14:1404376. [PMID: 38686191 PMCID: PMC11056576 DOI: 10.3389/fonc.2024.1404376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Affiliation(s)
- Anand Rotte
- Department of Clinical and Regulatory Affairs, Arcellx Inc, Redwood City, CA, United States
| |
Collapse
|
13
|
Chen Y, Liu C, Fang Y, Chen W, Qiu J, Zhu M, Wei W, Tu J. Developing CAR-immune cell therapy against SARS-CoV-2: Current status, challenges and prospects. Biochem Pharmacol 2024; 222:116066. [PMID: 38373592 DOI: 10.1016/j.bcp.2024.116066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Chimeric antigen receptor (CAR)-immune cell therapy has revolutionized the anti-tumor field, achieving efficient and precise tumor clearance by directly guiding immune cell activity to target tumors. In addition, the use of CAR-immune cells to influence the composition and function of the immune system and ultimately achieve virus clearance and immune system homeostasis has attracted the interest of researchers. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered a global pandemic of coronavirus disease 2019 (COVID-19). To date, the rapidly mutating SARS-CoV-2 continues to challenge existing therapies and has raised public concerns regarding reinfection. In patients with COVID-19, the interaction of SARS-CoV-2 with the immune system influences the course of the disease, and the coexistence of over-activated immune system components, such as macrophages, and severely compromised immune system components, such as natural killer cells, reveals a dysregulated immune system. Dysregulated immune-induced inflammation may impair viral clearance and T-cell responses, causing cytokine storms and ultimately leading to patient death. Here, we summarize the research progress on the use of CAR-immune cells against SARS-CoV-2 infection. Furthermore, we discuss the feasibility, challenges and prospect of CAR-immune cells as a new immune candidate therapy against SARS-CoV-2.
Collapse
Affiliation(s)
- Yizhao Chen
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Chong Liu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Yilong Fang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Weile Chen
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Jiaqi Qiu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Mengjuan Zhu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
| | - Jiajie Tu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
14
|
Chasov V, Zmievskaya E, Ganeeva I, Gilyazova E, Davletshin D, Khaliulin M, Kabwe E, Davidyuk YN, Valiullina A, Rizvanov A, Bulatov E. Immunotherapy Strategy for Systemic Autoimmune Diseases: Betting on CAR-T Cells and Antibodies. Antibodies (Basel) 2024; 13:10. [PMID: 38390871 PMCID: PMC10885098 DOI: 10.3390/antib13010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Systemic autoimmune diseases (SAIDs), such as systemic lupus erythematosus (SLE), systemic sclerosis (SSc) and rheumatoid arthritis (RA), are fully related to the unregulated innate and adaptive immune systems involved in their pathogenesis. They have similar pathogenic characteristics, including the interferon signature, loss of tolerance to self-nuclear antigens, and enhanced tissue damage like necrosis and fibrosis. Glucocorticoids and immunosuppressants, which have limited specificity and are prone to tolerance, are used as the first-line therapy. A plethora of novel immunotherapies have been developed, including monoclonal and bispecific antibodies, and other biological agents to target cellular and soluble factors involved in disease pathogenesis, such as B cells, co-stimulatory molecules, cytokines or their receptors, and signaling molecules. Many of these have shown encouraging results in clinical trials. CAR-T cell therapy is considered the most promising technique for curing autoimmune diseases, with recent successes in the treatment of SLE and SSc. Here, we overview novel therapeutic approaches based on CAR-T cells and antibodies for targeting systemic autoimmune diseases.
Collapse
Affiliation(s)
- Vitaly Chasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Elvina Gilyazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Damir Davletshin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Marat Khaliulin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Emmanuel Kabwe
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Yuriy N Davidyuk
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
15
|
Upreti A, Mukherjee S. Therapeutic Potential of CRISPR/Cas in Hashimoto's Thyroiditis: A Comprehensive Review. Curr Gene Ther 2024; 24:179-192. [PMID: 38310457 DOI: 10.2174/0115665232266508231210154930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/26/2023] [Accepted: 11/09/2023] [Indexed: 02/05/2024]
Abstract
Hashimoto's thyroiditis (HT) is a commonly occurring illness of autoimmune endocrine origin. It is usually present in the pediatric age group along with other well-known diseases, such as type 1 insulin-dependent diabetes. The defining feature of this disease is the immune-- mediated attack on the thyroid gland resulting in the destruction of thyroid tissues and cells. Given that HT frequently affects family members, it is well-recognized that individuals are genetically predisposed to this disease. Patients with HT also display a significantly increased risk for several different cancers, justifying the eminent need for the development of therapies for managing and treating HT. Gene editing has made several advancements in the field of molecular biology and has turned out to become a promising approach to correct several autoimmune diseases. Currently, CRISPR/Cas, a nuclease-based editing technique, is publicized as a promising tool for curing several genetic diseases and cancers. However, very limited research has been conducted as of now on autoimmune disease management and cure via CRISPR/Cas technique. This review provides an account of the potential candidate genes associated with Hashimoto's thyroiditis, and only a few animal and human models have been generated via the CRISPR/Cas gene editing technique. Mouse models of autoimmune thyroiditis generated through the CRISPR/Cas gene editing technique by targeting the candidate genes will provide us with a deeper insight into the pathophysiology of HT and further pave the way for the immunomodulation of HT via gene editing.
Collapse
Affiliation(s)
- Apoorva Upreti
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow 226028, Uttar Pradesh, India
| | - Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow 226028, Uttar Pradesh, India
| |
Collapse
|
16
|
Rotte A. Development of Cell and Gene Therapies for Clinical Use in the US and EU: Summary of Regulatory Guidelines. Curr Gene Ther 2024; 25:10-21. [PMID: 38676481 DOI: 10.2174/0115665232306205240419091414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Recent decades have seen advancements in the management and treatment of difficultto- treat diseases such as cancer. A special class of therapeutics called cell and gene therapy has been introduced in the past 10 years. Cell and gene therapy products have strengthened the treatment options for life-threatening diseases with unmet clinical needs and also provided the possibility of a potential cure for the disease in some of the patients. Cell and gene therapy products are gaining recognition, and the interest in clinical development of cell and gene therapy products is increasing. Moreover, as the class of cell and gene therapy products is relatively new, there is a limited regulatory experience in the development, and the developers of the cell and gene therapy products can often be puzzled with an array of questions on regulations. The current review intends to provide a basic understanding of regulatory guidelines from the FDA and EMA that are applicable to cell and gene therapy products. Essentials such as which office is responsible for the evaluation of applications, which regulatory class/pathway is appropriate for development, and what are the quality, nonclinical and clinical studies that are needed to support the application are discussed in the article. In addition, a summary of regulatory designations and the post-approval requirements, such as Risk Evaluation and Mitigation Strategies (REMS) and long-term follow- up, is included in the article. Developers (referred to as 'sponsors' in this article) of cell and gene therapies can use the respective guidance documents and other specific review articles cited in this review for detailed information on the topics.
Collapse
Affiliation(s)
- Anand Rotte
- Clinical and Regulatory Affairs, Arcellx Inc, Redwood City, California, CA, USA
| |
Collapse
|
17
|
Hamilton AG, Swingle KL, Joseph RA, Mai D, Gong N, Billingsley MM, Alameh MG, Weissman D, Sheppard NC, June CH, Mitchell MJ. Ionizable Lipid Nanoparticles with Integrated Immune Checkpoint Inhibition for mRNA CAR T Cell Engineering. Adv Healthc Mater 2023; 12:e2301515. [PMID: 37602495 DOI: 10.1002/adhm.202301515] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/13/2023] [Indexed: 08/22/2023]
Abstract
The programmed cell death protein 1 (PD-1) signaling pathway is a major source of dampened T cell activity in the tumor microenvironment. While clinical approaches to inhibiting the PD-1 pathway using antibody blockade have been broadly successful, these approaches lead to widespread PD-1 suppression, increasing the risk of autoimmune reactions. This study reports the development of an ionizable lipid nanoparticle (LNP) platform for simultaneous therapeutic gene expression and RNA interference (RNAi)-mediated transient gene knockdown in T cells. In developing this platform, interesting interactions are observed between the two RNA cargoes when co-encapsulated, leading to improved expression and knockdown characteristics compared to delivering either cargo alone. This messenger RNA (mRNA)/small interfering RNA (siRNA) co-delivery platform is adopted to deliver chimeric antigen receptor (CAR) mRNA and siRNA targeting PD-1 to primary human T cells ex vivo and strong CAR expression and PD-1 knockdown are observed without apparent changes to overall T cell activation state. This delivery platform shows great promise for transient immune gene modulation for a number of immunoengineering applications, including the development of improved cancer immunotherapies.
Collapse
Affiliation(s)
- Alex G Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kelsey L Swingle
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ryann A Joseph
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Mai
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Neil C Sheppard
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Carl H June
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
18
|
Kizerwetter M, Pietz K, Tomasovic LM, Spangler JB. Empowering gene delivery with protein engineering platforms. Gene Ther 2023; 30:775-782. [PMID: 36529795 PMCID: PMC10277311 DOI: 10.1038/s41434-022-00379-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
The repertoire of therapeutic proteins has been substantially augmented by molecular engineering approaches, which have seen remarkable advancement in recent years. In particular, advances in directed evolution technologies have empowered the development of custom-designed proteins with novel and disease-relevant functions. Whereas engineered proteins have typically been administered through systemic injection of the purified molecule, exciting progress in gene delivery affords the opportunity to elicit sustained production of the engineered proteins by targeted cells in the host organism. Combining developments at the leading edge of protein engineering and gene delivery has catapulted a new wave of molecular and cellular therapy approaches, which harbor great promise for personalized and precision medicine. This mini-review outlines currently used display platforms for protein evolution and describes recent examples of how the resulting engineered proteins have been incorporated into DNA- and cell-based therapeutic platforms, both in vitro and in vivo. Collectively, the strategies detailed herein provide a framework for synthesizing molecular engineering workflows with gene therapy systems for a breadth of applications in research and medicine.
Collapse
Affiliation(s)
- Monika Kizerwetter
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Kevin Pietz
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Luke M Tomasovic
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA.
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
19
|
Chen Z, Hu Y, Mei H. Advances in CAR-Engineered Immune Cell Generation: Engineering Approaches and Sourcing Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303215. [PMID: 37906032 PMCID: PMC10724421 DOI: 10.1002/advs.202303215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/03/2023] [Indexed: 11/02/2023]
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has emerged as a highly efficacious treatment modality for refractory and relapsed hematopoietic malignancies in recent years. Furthermore, CAR technologies for cancer immunotherapy have expanded from CAR-T to CAR-natural killer cell (CAR-NK), CAR-cytokine-induced killer cell (CAR-CIK), and CAR-macrophage (CAR-MΦ) therapy. Nevertheless, the high cost and complex manufacturing processes of ex vivo generation of autologous CAR products have hampered broader application. There is an urgent need to develop an efficient and economical paradigm shift for exploring new sourcing strategies and engineering approaches toward generating CAR-engineered immune cells to benefit cancer patients. Currently, researchers are actively investigating various strategies to optimize the preparation and sourcing of these potent immunotherapeutic agents. In this work, the latest research progress is summarized. Perspectives on the future of CAR-engineered immune cell manufacturing are provided, and the engineering approaches, and diverse sources used for their development are focused upon.
Collapse
Affiliation(s)
- Zhaozhao Chen
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei430022China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhan430022China
| | - Yu Hu
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei430022China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhan430022China
| | - Heng Mei
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei430022China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhan430022China
| |
Collapse
|
20
|
Liu L, Yoon CW, Yuan Z, Guo T, Qu Y, He P, Yu X, Zhu Z, Limsakul P, Wang Y. Cellular and molecular imaging of CAR-T cell-based immunotherapy. Adv Drug Deliv Rev 2023; 203:115135. [PMID: 37931847 PMCID: PMC11052581 DOI: 10.1016/j.addr.2023.115135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Chimeric Antigen Receptor T cell (CAR-T) therapy has emerged as a transformative therapeutic strategy for hematological malignancies. However, its efficacy in treating solid tumors remains limited. An in-depth and comprehensive understanding of CAR-T cell signaling pathways and the ability to track CAR-T cell biodistribution and activation in real-time within the tumor microenvironment will be instrumental in designing the next generation of CAR-T cells for solid tumor therapy. This review summarizes the signaling network and the cellular and molecular imaging tools and platforms that are utilized in CAR-T cell-based immune therapies, covering both in vitro and in vivo studies. Firstly, we provide an overview of the existing understanding of the activation and cytotoxic mechanisms of CAR-T cells, compared to the mechanism of T cell receptor (TCR) signaling pathways. We further describe the commonly employed tools for live cell imaging, coupled with recent research progress, with a focus on genetically encoded fluorescent proteins (FPs) and biosensors. We then discuss the utility of diverse in vivo imaging modalities, including fluorescence and bioluminescence imaging, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and photoacoustic (PA) imaging, for noninvasive monitoring of CAR-T cell dynamics within tumor tissues, thereby providing critical insights into therapy's strengths and weaknesses. Lastly, we discuss the current challenges and future directions of CAR-T cell therapy from the imaging perspective. We foresee that a comprehensive and integrative approach to CAR-T cell imaging will enable the development of more effective treatments for solid tumors in the future.
Collapse
Affiliation(s)
- Longwei Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Chi Woo Yoon
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhou Yuan
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Tianze Guo
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yunjia Qu
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Peixiang He
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xi Yu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ziyue Zhu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Praopim Limsakul
- Division of Physical Science, Faculty of Science and Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Yingxiao Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
21
|
Bauer AN, Majumdar N, Williams F, Rajput S, Pokhrel LR, Cook PP, Akula SM. MicroRNAs: Small but Key Players in Viral Infections and Immune Responses to Viral Pathogens. BIOLOGY 2023; 12:1334. [PMID: 37887044 PMCID: PMC10604607 DOI: 10.3390/biology12101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Since the discovery of microRNAs (miRNAs) in C. elegans in 1993, the field of miRNA research has grown steeply. These single-stranded non-coding RNA molecules canonically work at the post-transcriptional phase to regulate protein expression. miRNAs are known to regulate viral infection and the ensuing host immune response. Evolving research suggests miRNAs are assets in the discovery and investigation of therapeutics and diagnostics. In this review, we succinctly summarize the latest findings in (i) mechanisms underpinning miRNA regulation of viral infection, (ii) miRNA regulation of host immune response to viral pathogens, (iii) miRNA-based diagnostics and therapeutics targeting viral pathogens and challenges, and (iv) miRNA patents and the market landscape. Our findings show the differential expression of miRNA may serve as a prognostic biomarker for viral infections in regard to predicting the severity or adverse health effects associated with viral diseases. While there is huge market potential for miRNA technology, the novel approach of using miRNA mimics to enhance antiviral activity or antagonists to inhibit pro-viral miRNAs has been an ongoing research endeavor. Significant hurdles remain in terms of miRNA delivery, stability, efficacy, safety/tolerability, and specificity. Addressing these challenges may pave a path for harnessing the full potential of miRNAs in modern medicine.
Collapse
Affiliation(s)
- Anais N. Bauer
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (N.M.); (F.W.)
| | - Niska Majumdar
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (N.M.); (F.W.)
| | - Frank Williams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (N.M.); (F.W.)
| | - Smit Rajput
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Lok R. Pokhrel
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Paul P. Cook
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Shaw M. Akula
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (A.N.B.); (N.M.); (F.W.)
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| |
Collapse
|
22
|
Wu D, Jin Y, Xing Y, Abate MD, Abbasian M, Abbasi-Kangevari M, Abbasi-Kangevari Z, Abd-Allah F, Abdelmasseh M, Abdollahifar MA, Abdulah DM, Abedi A, Abedi V, Abidi H, Aboagye RG, Abolhassani H, Abuabara K, Abyadeh M, Addo IY, Adeniji KN, Adepoju AV, Adesina MA, Sakilah Adnani QE, Afarideh M, Aghamiri S, Agodi A, Agrawal A, Aguilera Arriagada CE, Ahmad A, Ahmad D, Ahmad S, Ahmad S, Ahmadi A, Ahmed A, Ahmed A, Aithala JP, Ajadi AA, Ajami M, Akbarzadeh-Khiavi M, Alahdab F, AlBataineh MT, Alemi S, Saeed Al-Gheethi AA, Ali L, Alif SM, Almazan JU, Almustanyir S, Alqahtani JS, Alqasmi I, Khan Altaf IU, Alvis-Guzman N, Alvis-Zakzuk NJ, Al-Worafi YM, Aly H, Amani R, Amu H, Amusa GA, Andrei CL, Ansar A, Ansariniya H, Anyasodor AE, Arabloo J, Arefnezhad R, Arulappan J, Asghari-Jafarabadi M, Ashraf T, Atata JA, Athari SS, Atlaw D, Wahbi Atout MM, Aujayeb A, Awan AT, Ayatollahi H, Azadnajafabad S, Azzam AY, Badawi A, Badiye AD, Bagherieh S, Baig AA, Bantie BB, Barchitta M, Bardhan M, Barker-Collo SL, Barone-Adesi F, Batra K, Bayileyegn NS, Behnoush AH, Belgaumi UI, Bemanalizadeh M, Bensenor IM, Beyene KA, Bhagavathula AS, Bhardwaj P, Bhaskar S, Bhat AN, Bitaraf S, Bitra VR, Boloor A, Bora K, Botelho JS, et alWu D, Jin Y, Xing Y, Abate MD, Abbasian M, Abbasi-Kangevari M, Abbasi-Kangevari Z, Abd-Allah F, Abdelmasseh M, Abdollahifar MA, Abdulah DM, Abedi A, Abedi V, Abidi H, Aboagye RG, Abolhassani H, Abuabara K, Abyadeh M, Addo IY, Adeniji KN, Adepoju AV, Adesina MA, Sakilah Adnani QE, Afarideh M, Aghamiri S, Agodi A, Agrawal A, Aguilera Arriagada CE, Ahmad A, Ahmad D, Ahmad S, Ahmad S, Ahmadi A, Ahmed A, Ahmed A, Aithala JP, Ajadi AA, Ajami M, Akbarzadeh-Khiavi M, Alahdab F, AlBataineh MT, Alemi S, Saeed Al-Gheethi AA, Ali L, Alif SM, Almazan JU, Almustanyir S, Alqahtani JS, Alqasmi I, Khan Altaf IU, Alvis-Guzman N, Alvis-Zakzuk NJ, Al-Worafi YM, Aly H, Amani R, Amu H, Amusa GA, Andrei CL, Ansar A, Ansariniya H, Anyasodor AE, Arabloo J, Arefnezhad R, Arulappan J, Asghari-Jafarabadi M, Ashraf T, Atata JA, Athari SS, Atlaw D, Wahbi Atout MM, Aujayeb A, Awan AT, Ayatollahi H, Azadnajafabad S, Azzam AY, Badawi A, Badiye AD, Bagherieh S, Baig AA, Bantie BB, Barchitta M, Bardhan M, Barker-Collo SL, Barone-Adesi F, Batra K, Bayileyegn NS, Behnoush AH, Belgaumi UI, Bemanalizadeh M, Bensenor IM, Beyene KA, Bhagavathula AS, Bhardwaj P, Bhaskar S, Bhat AN, Bitaraf S, Bitra VR, Boloor A, Bora K, Botelho JS, Buchbinder R, Calina D, Cámera LA, Carvalho AF, Kai Chan JS, Chattu VK, Abebe EC, Chichagi F, Choi S, Chou TC, Chu DT, Coberly K, Costa VM, Couto RA, Cruz-Martins N, Dadras O, Dai X, Damiani G, Dascalu AM, Dashti M, Debela SA, Dellavalle RP, Demetriades AK, Demlash AA, Deng X, Desai HD, Desai R, Rahman Dewan SM, Dey S, Dharmaratne SD, Diaz D, Dibas M, Dinis-Oliveira RJ, Diress M, Do TC, Doan DK, Dodangeh M, Dodangeh M, Dongarwar D, Dube J, Dziedzic AM, Ed-Dra A, Edinur HA, Eissazade N, Ekholuenetale M, Ekundayo TC, Elemam NM, Elhadi M, Elmehrath AO, Abdou Elmeligy OA, Emamverdi M, Emeto TI, Esayas HL, Eshetu HB, Etaee F, Fagbamigbe AF, Faghani S, Fakhradiyev IR, Fatehizadeh A, Fathi M, Feizkhah A, Fekadu G, Fereidouni M, Fereshtehnejad SM, Fernandes JC, Ferrara P, Fetensa G, Filip I, Fischer F, Foroutan B, Foroutan M, Fukumoto T, Ganesan B, Belete Gemeda BN, Ghamari SH, Ghasemi M, Gholamalizadeh M, Gill TK, Gillum RF, Goldust M, Golechha M, Goleij P, Golinelli D, Goudarzi H, Guan SY, Guo Y, Gupta B, Gupta VB, Gupta VK, Haddadi R, Hadi NR, Halwani R, Haque S, Hasan I, Hashempour R, Hassan A, Hassan TS, Hassanzadeh S, Hassen MB, Haubold J, Hayat K, Heidari G, Heidari M, Heidari-Soureshjani R, Herteliu C, Hessami K, Hezam K, Hiraike Y, Holla R, Hosseini MS, Huynh HH, Hwang BF, Ibitoye SE, Ilic IM, Ilic MD, Iranmehr A, Iravanpour F, Ismail NE, Iwagami M, Iwu CC, Jacob L, Jafarinia M, Jafarzadeh A, Jahankhani K, Jahrami H, Jakovljevic M, Jamshidi E, Jani CT, Janodia MD, Jayapal SK, Jayaram S, Jeganathan J, Jonas JB, Joseph A, Joseph N, Joshua CE, Vaishali K, Kaambwa B, Kabir A, Kabir Z, Kadashetti V, Kaliyadan F, Kalroozi F, Kamal VK, Kandel A, Kandel H, Kanungo S, Karami J, Karaye IM, Karimi H, Kasraei H, Kazemian S, Kebede SA, Keikavoosi-Arani L, Keykhaei M, Khader YS, Khajuria H, Khamesipour F, Khan EA, Khan IA, Khan M, Khan MJ, Khan MA, Khan MA, Khatatbeh H, Khatatbeh MM, Khateri S, Khayat Kashani HR, Kim MS, Kisa A, Kisa S, Koh HY, Kolkhir P, Korzh O, Kotnis AL, Koul PA, Koyanagi A, Krishan K, Kuddus M, Kulkarni VV, Kumar N, Kundu S, Kurmi OP, La Vecchia C, Lahariya C, Laksono T, Lám J, Latief K, Lauriola P, Lawal BK, Thu Le TT, Bich Le TT, Lee M, Lee SW, Lee WC, Lee YH, Lenzi J, Levi M, Li W, Ligade VS, Lim SS, Liu G, Liu X, Llanaj E, Lo CH, Machado VS, Maghazachi AA, Mahmoud MA, Mai TA, Majeed A, Sanaye PM, Makram OM, Rad EM, Malhotra K, Malik AA, Malik I, Mallhi TH, Malta DC, Mansournia MA, Mantovani LG, Martorell M, Masoudi S, Masoumi SZ, Mathangasinghe Y, Mathews E, Mathioudakis AG, Maugeri A, Mayeli M, Carabeo Medina JR, Meles GG, Mendes JJ, Menezes RG, Mestrovic T, Michalek IM, Micheletti Gomide Nogueira de Sá AC, Mihretie ET, Nhat Minh LH, Mirfakhraie R, Mirrakhimov EM, Misganaw A, Mohamadkhani A, Mohamed NS, Mohammadi F, Mohammadi S, Mohammed S, Mohammed S, Mohan S, Mohseni A, Mokdad AH, Momtazmanesh S, Monasta L, Moni MA, Moniruzzaman M, Moradi Y, Morovatdar N, Mostafavi E, Mousavi P, Mukoro GD, Mulita A, Mulu GB, Murillo-Zamora E, Musaigwa F, Mustafa G, Muthu S, Nainu F, Nangia V, Swamy SN, Natto ZS, Navaraj P, Nayak BP, Nazri-Panjaki A, Negash H, Nematollahi MH, Nguyen DH, Hien Nguyen HT, Nguyen HQ, Nguyen PT, Nguyen VT, Niazi RK, Nikolouzakis TK, Nnyanzi LA, Noreen M, Nzoputam CI, Nzoputam OJ, Oancea B, Oh IH, Okati-Aliabad H, Okonji OC, Okwute PG, Olagunju AT, Olatubi MI, Olufadewa II, Ordak M, Otstavnov N, Owolabi MO, Mahesh P, Padubidri JR, Pak A, Pakzad R, Palladino R, Pana A, Pantazopoulos I, Papadopoulou P, Pardhan S, Parthasarathi A, Pashaei A, Patel J, Pathan AR, Patil S, Paudel U, Pawar S, Pedersini P, Pensato U, Pereira DM, Pereira J, Pereira MO, Pereira RB, Peres MF, Perianayagam A, Perna S, Petcu IR, Pezeshki PS, Pham HT, Philip AK, Piradov MA, Podder I, Podder V, Poddighe D, Sady Prates EJ, Qattea I, Radfar A, Raee P, Rafiei A, Raggi A, Rahim F, Rahimi M, Rahimifard M, Rahimi-Movaghar V, Rahman MO, Ur Rahman MH, Rahman M, Rahman MA, Rahmani AM, Rahmani M, Rahmani S, Rahmanian V, Ramasubramani P, Rancic N, Rao IR, Rashedi S, Rashid AM, Ravikumar N, Rawaf S, Mohamed Redwan EM, Rezaei N, Rezaei N, Rezaei N, Rezaeian M, Ribeiro D, Rodrigues M, Buendia Rodriguez JA, Roever L, Romero-Rodríguez E, Saad AM, Saddik B, Sadeghian S, Saeed U, Safary A, Safdarian M, Safi SZ, Saghazadeh A, Sagoe D, Sharif-Askari FS, Sharif-Askari NS, Sahebkar A, Sahoo H, Sahraian MA, Sajid MR, Sakhamuri S, Sakshaug JW, Saleh MA, Salehi L, Salehi S, Farrokhi AS, Samadzadeh S, Samargandy S, Samieefar N, Samy AM, Sanadgol N, Sanjeev RK, Sawhney M, Saya GK, Schuermans A, Senthilkumaran S, Sepanlou SG, Sethi Y, Shafie M, Shah H, Shahid I, Shahid S, Shaikh MA, Sharfaei S, Sharma M, Shayan M, Shehata HS, Sheikh A, Shetty JK, Shin JI, Shirkoohi R, Shitaye NA, Shivakumar K, Shivarov V, Shobeiri P, Siabani S, Sibhat MM, Siddig EE, Simpson CR, Sinaei E, Singh H, Singh I, Singh JA, Singh P, Singh S, Siraj MS, Al Mamun Sohag A, Solanki R, Solikhah S, Solomon Y, Soltani-Zangbar MS, Sun J, Szeto MD, Tabarés-Seisdedos R, Tabatabaei SM, Tabish M, Taheri E, Tahvildari A, Talaat IM, Lukenze Tamuzi JJ, Tan KK, Tat NY, Oliaee RT, Tavasol A, Temsah MH, Thangaraju P, Tharwat S, Tibebu NS, Vera Ticoalu JH, Tillawi T, Tiruye TY, Tiyuri A, Tovani-Palone MR, Tripathi M, Tsegay GM, Tualeka AR, Ty SS, Ubah CS, Ullah S, Ullah S, Umair M, Umakanthan S, Upadhyay E, Vahabi SM, Vaithinathan AG, Tahbaz SV, Valizadeh R, Varthya SB, Vasankari TJ, Venketasubramanian N, Verras GI, Villafañe JH, Vlassov V, Vo DC, Waheed Y, Waris A, Welegebrial BG, Westerman R, Wickramasinghe DP, Wickramasinghe ND, Willekens B, Woldegeorgis BZ, Woldemariam M, Xiao H, Yada DY, Yahya G, Yang L, Yazdanpanah F, Yon DK, Yonemoto N, You Y, Zahir M, Zaidi SS, Zangiabadian M, Zare I, Zeineddine MA, Zemedikun DT, Zeru NG, Zhang C, Zhao H, Zhong C, Zielińska M, Zoladl M, Zumla A, Guo C, Tam LS. Global, regional, and national incidence of six major immune-mediated inflammatory diseases: findings from the global burden of disease study 2019. EClinicalMedicine 2023; 64:102193. [PMID: 37731935 PMCID: PMC10507198 DOI: 10.1016/j.eclinm.2023.102193] [Show More Authors] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND The causes for immune-mediated inflammatory diseases (IMIDs) are diverse and the incidence trends of IMIDs from specific causes are rarely studied. The study aims to investigate the pattern and trend of IMIDs from 1990 to 2019. METHODS We collected detailed information on six major causes of IMIDs, including asthma, inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, psoriasis, and atopic dermatitis, between 1990 and 2019, derived from the Global Burden of Disease study in 2019. The average annual percent change (AAPC) in number of incidents and age standardized incidence rate (ASR) on IMIDs, by sex, age, region, and causes, were calculated to quantify the temporal trends. FINDINGS In 2019, rheumatoid arthritis, atopic dermatitis, asthma, multiple sclerosis, psoriasis, inflammatory bowel disease accounted 1.59%, 36.17%, 54.71%, 0.09%, 6.84%, 0.60% of overall new IMIDs cases, respectively. The ASR of IMIDs showed substantial regional and global variation with the highest in High SDI region, High-income North America, and United States of America. Throughout human lifespan, the age distribution of incident cases from six IMIDs was quite different. Globally, incident cases of IMIDs increased with an AAPC of 0.68 and the ASR decreased with an AAPC of -0.34 from 1990 to 2019. The incident cases increased across six IMIDs, the ASR of rheumatoid arthritis increased (0.21, 95% CI 0.18, 0.25), while the ASR of asthma (AAPC = -0.41), inflammatory bowel disease (AAPC = -0.72), multiple sclerosis (AAPC = -0.26), psoriasis (AAPC = -0.77), and atopic dermatitis (AAPC = -0.15) decreased. The ASR of overall and six individual IMID increased with SDI at regional and global level. Countries with higher ASR in 1990 experienced a more rapid decrease in ASR. INTERPRETATION The incidence patterns of IMIDs varied considerably across the world. Innovative prevention and integrative management strategy are urgently needed to mitigate the increasing ASR of rheumatoid arthritis and upsurging new cases of other five IMIDs, respectively. FUNDING The Global Burden of Disease Study is funded by the Bill and Melinda Gates Foundation. The project funded by Scientific Research Fund of Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital (2022QN38).
Collapse
|
23
|
Zheng P, Liao B, Yang J, Cheng H, Cheng ZJ, Huang H, Luo W, Sun Y, Zhu Q, Deng Y, Yang L, Zhou Y, Wu W, Wu S, Cai W, Li Y, Mo X, Tan X, Li L, Ma H, Sun B. Utilizing Protein-Peptide Hybrid Microarray for Time-Resolved Diagnosis and Prognosis of COVID-19. Microorganisms 2023; 11:2436. [PMID: 37894092 PMCID: PMC10609375 DOI: 10.3390/microorganisms11102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
The COVID-19 pandemic has highlighted the urgent need for accurate, rapid, and cost-effective diagnostic methods to identify and track the disease. Traditional diagnostic methods, such as PCR and serological assays, have limitations in terms of sensitivity, specificity, and timeliness. To investigate the potential of using protein-peptide hybrid microarray (PPHM) technology to track the dynamic changes of antibodies in the serum of COVID-19 patients and evaluate the prognosis of patients over time. A discovery cohort of 20 patients with COVID-19 was assembled, and PPHM technology was used to track the dynamic changes of antibodies in the serum of these patients. The results were analyzed to classify the patients into different disease severity groups, and to predict the disease progression and prognosis of the patients. PPHM technology was found to be highly effective in detecting the dynamic changes of antibodies in the serum of COVID-19 patients. Four polypeptide antibodies were found to be particularly useful for reflecting the actual status of the patient's recovery process and for accurately predicting the disease progression and prognosis of the patients. The findings of this study emphasize the multi-dimensional space of peptides to analyze the high-volume signals in the serum samples of COVID-19 patients and monitor the prognosis of patients over time. PPHM technology has the potential to be a powerful tool for tracking the dynamic changes of antibodies in the serum of COVID-19 patients and for improving the diagnosis and prognosis of the disease.
Collapse
Affiliation(s)
- Peiyan Zheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (P.Z.); (Z.J.C.); (H.H.); (W.L.); (S.W.)
| | - Baolin Liao
- Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China; (B.L.); (W.C.); (Y.L.); (X.M.); (X.T.); (L.L.)
| | - Jiao Yang
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (J.Y.); (H.C.); (Y.S.); (Y.D.); (L.Y.); (Y.Z.); (W.W.)
| | - Hu Cheng
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (J.Y.); (H.C.); (Y.S.); (Y.D.); (L.Y.); (Y.Z.); (W.W.)
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Zhangkai J. Cheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (P.Z.); (Z.J.C.); (H.H.); (W.L.); (S.W.)
| | - Huimin Huang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (P.Z.); (Z.J.C.); (H.H.); (W.L.); (S.W.)
| | - Wenting Luo
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (P.Z.); (Z.J.C.); (H.H.); (W.L.); (S.W.)
| | - Yiyue Sun
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (J.Y.); (H.C.); (Y.S.); (Y.D.); (L.Y.); (Y.Z.); (W.W.)
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences, Guangzhou 510530, China;
| | - Yi Deng
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (J.Y.); (H.C.); (Y.S.); (Y.D.); (L.Y.); (Y.Z.); (W.W.)
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Lan Yang
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (J.Y.); (H.C.); (Y.S.); (Y.D.); (L.Y.); (Y.Z.); (W.W.)
| | - Yuxi Zhou
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (J.Y.); (H.C.); (Y.S.); (Y.D.); (L.Y.); (Y.Z.); (W.W.)
| | - Wenya Wu
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (J.Y.); (H.C.); (Y.S.); (Y.D.); (L.Y.); (Y.Z.); (W.W.)
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Shanhui Wu
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (P.Z.); (Z.J.C.); (H.H.); (W.L.); (S.W.)
| | - Weiping Cai
- Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China; (B.L.); (W.C.); (Y.L.); (X.M.); (X.T.); (L.L.)
| | - Yueping Li
- Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China; (B.L.); (W.C.); (Y.L.); (X.M.); (X.T.); (L.L.)
| | - Xiaoneng Mo
- Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China; (B.L.); (W.C.); (Y.L.); (X.M.); (X.T.); (L.L.)
| | - Xinghua Tan
- Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China; (B.L.); (W.C.); (Y.L.); (X.M.); (X.T.); (L.L.)
| | - Linghua Li
- Guangzhou Institute of Clinical Medicine of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China; (B.L.); (W.C.); (Y.L.); (X.M.); (X.T.); (L.L.)
| | - Hongwei Ma
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (J.Y.); (H.C.); (Y.S.); (Y.D.); (L.Y.); (Y.Z.); (W.W.)
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (P.Z.); (Z.J.C.); (H.H.); (W.L.); (S.W.)
| |
Collapse
|
24
|
Silva AJD, de Moura IA, da Gama MATM, Leal LRS, de Pinho SS, Espinoza BCF, dos Santos DL, Santos VEP, Sena MGAMD, Invenção MDCV, de Macêdo LS, de França Neto PL, de Freitas AC. Advancing Immunotherapies for HPV-Related Cancers: Exploring Novel Vaccine Strategies and the Influence of Tumor Microenvironment. Vaccines (Basel) 2023; 11:1354. [PMID: 37631922 PMCID: PMC10458729 DOI: 10.3390/vaccines11081354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
The understanding of the relationship between immunological responses and cancers, especially those related to HPV, has allowed for the study and development of therapeutic vaccines against these neoplasias. There is a growing number of studies about the composition and influence of the tumor microenvironment (TME) in the progression or establishment of the most varied types of cancer. Hence, it has been possible to structure immunotherapy approaches based on therapeutic vaccines that are even more specific and directed to components of TME and the immune response associated with tumors. Among these components are dendritic cells (DCs), which are the main professional antigen-presenting cells (APCs) already studied in therapy strategies for HPV-related cancers. On the other hand, tumor-associated macrophages are also potential targets since the profile present in tumor infiltrates, M1 or M2, influences the prognosis of some types of cancer. These two cell types can be targets for therapy or immunomodulation. In this context, our review aims to provide an overview of immunotherapy strategies for HPV-positive tumors, such as cervical and head and neck cancers, pointing to TME immune cells as promising targets for these approaches. This review also explores the potential of immunotherapy in cancer treatment, including checkpoint inhibitors, cytokine immunotherapies, immunotherapy vaccines, and cell therapies. Furthermore, it highlights the importance of understanding the TME and its effect on the design and achievement of immunotherapeutic methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (A.J.D.S.); (I.A.d.M.); (M.A.T.M.d.G.); (L.R.S.L.); (S.S.d.P.); (B.C.F.E.); (D.L.d.S.); (V.E.P.S.); (M.G.A.M.D.S.); (M.D.C.V.I.); (L.S.d.M.); (P.L.d.F.N.)
| |
Collapse
|
25
|
Zhang T, Tian W, Wei S, Lu X, An J, He S, Zhao J, Gao Z, Li L, Lian K, Zhou Q, Zhang H, Wang L, Su L, Kang H, Niu T, Zhao A, Pan J, Cai Q, Xu Z, Chen W, Jing H, Li P, Zhao W, Cao Y, Mi J, Chen T, Chen Y, Zou P, Lukacs-Kornek V, Kurts C, Li J, Liu X, Mei Q, Zhang Y, Wei J. Multidisciplinary recommendations for the management of CAR-T recipients in the post-COVID-19 pandemic era. Exp Hematol Oncol 2023; 12:66. [PMID: 37501090 PMCID: PMC10375673 DOI: 10.1186/s40164-023-00426-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) posed an unprecedented challenge on public health systems. Despite the measures put in place to contain it, COVID-19 is likely to continue experiencing sporadic outbreaks for some time, and individuals will remain susceptible to recurrent infections. Chimeric antigen receptor (CAR)-T recipients are characterized by durable B-cell aplasia, hypogammaglobulinemia and loss of T-cell diversity, which lead to an increased proportion of severe/critical cases and a high mortality rate after COVID-19 infection. Thus, treatment decisions have become much more complex and require greater caution when considering CAR T-cell immunotherapy. Hence, we reviewed the current understanding of COVID-19 and reported clinical experience in the management of COVID-19 and CAR-T therapy. After a panel discussion, we proposed a rational procedure pertaining to CAR-T recipients with the aim of maximizing the benefit of CAR-T therapy in the post COVID-19 pandemic era.
Collapse
Affiliation(s)
- Tingting Zhang
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Weiwei Tian
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Respiratory and Critical Care Medicine, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Xinyi Lu
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Jing An
- School of Public Health, Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Shaolong He
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Jie Zhao
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Zhilin Gao
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Li Li
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Ke Lian
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Qiang Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Cardiovascular Medicine, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Liang Wang
- Department of Hematology, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, China
| | - Liping Su
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Huicong Kang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Neurology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jing Pan
- State Key Laboratory of Experimental Hematology, Boren Biotherapy Translational Laboratory, Boren Clinical Translational Center, Beijing GoBroad Boren Hospital, Beijing, 100070, China
| | - Qingqing Cai
- Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Zhenshu Xu
- Hematology Department, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fuzhou, 350001, Fujian, China
| | - Wenming Chen
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Hongmei Jing
- Department of Hematology, Peking University Third Hospital, Beijing, 100191, China
| | - Peng Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510535, Guangdong, China
| | - Wanhong Zhao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China
| | - Jianqing Mi
- Shanghai Institute of Hematology, Ruijin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tao Chen
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yuan Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Geriatrics, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Ping Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Veronika Lukacs-Kornek
- Institute of Molecular Medicine and Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, 53111, Bonn, Germany
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, 53111, Bonn, Germany
| | - Jian Li
- Institute of Molecular Medicine and Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, 53111, Bonn, Germany
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Department of Respiratory and Critical Care Medicine, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China.
| | - Qi Mei
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China.
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| | - Jia Wei
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China.
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China.
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| |
Collapse
|
26
|
Giorgioni L, Ambrosone A, Cometa MF, Salvati AL, Magrelli A. CAR-T State of the Art and Future Challenges, A Regulatory Perspective. Int J Mol Sci 2023; 24:11803. [PMID: 37511562 PMCID: PMC10380644 DOI: 10.3390/ijms241411803] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
This review is an outlook on CAR-T development up to the beginning of 2023, with a special focus on the European landscape and its regulatory field, highlighting the main features and limitations affecting this innovative therapy in cancer treatment. We analysed the current state of the art in the EU and set out a showcase of the field's potential advancements in the coming years. For this analysis, the data used came from the available scientific literature as well as from the European Medicines Agency and from clinical trial databases. The latter were investigated to query the studies on CAR-Ts that are active and/or relevant to the review process. As of this writing, CAR-Ts have started to move past the "ceiling" of third-line treatment with positive results in comparison trials with the Standard of Care (SoC). One such example is the trial Zuma-7 (NCT03391466), which resulted in approval of CAR-T products (Yescarta™) for second-line treatment, a crucial achievement for the field which can increase the use of this type of therapy. Despite exciting results in clinical trials, limitations are still many: they regard access, production, duration of response, resistance, safety, overall efficacy, and cost mitigation strategies. Nonetheless, CAR-T constructs are becoming more diverse, and the technology is starting to produce some remarkable results in treating diseases other than cancer.
Collapse
Affiliation(s)
- Lorenzo Giorgioni
- Faculty of Physiology and Pharmacology "V. Erspamer", Sapienza Università di Roma, 00185 Rome, Italy
| | - Alessandra Ambrosone
- Faculty of Medicine and Pharmacy, Sapienza Università di Roma, 00185 Rome, Italy
| | - Maria Francesca Cometa
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | - Armando Magrelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
27
|
Leung WY, Wu HHL, Floyd L, Ponnusamy A, Chinnadurai R. COVID-19 Infection and Vaccination and Its Relation to Amyloidosis: What Do We Know Currently? Vaccines (Basel) 2023; 11:1139. [PMID: 37514955 PMCID: PMC10383215 DOI: 10.3390/vaccines11071139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Amyloidosis is a complex disorder characterized by deposited insoluble fibrillar proteins which misfold into β-pleated sheets. The pathogenesis of amyloidosis can vary but can be the result of immune dysregulation that occurs from sustained high inflammatory states, often known as AA amyloidosis. Multi-organ involvement including hepatic, gastrointestinal, renal, cardiac and immunological pathological manifestations has been observed amongst individuals presenting with amyloidosis. The recent global pandemic of severe acute respiratory syndrome coronavirus 2, also referred to as coronavirus 2019 (COVID-19), has been shown to be associated with multiple health complications, many of which are similar to those seen in amyloidosis. Though COVID-19 is recognized primarily as a respiratory disease, it has since been found to have a range of extra-pulmonary manifestations, many of which are observed in patients with amyloidosis. These include features of oxidative stress, chronic inflammation and thrombotic risks. It is well known that viral illnesses have been associated with the triggering of autoimmune conditions of which amyloidosis is no different. Over the recent months, reports of new-onset and relapsed disease following COVID-19 infection and vaccination have been published. Despite this, the exact pathophysiological associations of COVID-19 and amyloidosis remain unclear. We present a scoping review based on our systematic search of available evidence relating to amyloidosis, COVID-19 infection and COVID-19 vaccination, evaluating current perspectives and providing insight into knowledge gaps that still needs to be addressed going forward.
Collapse
Affiliation(s)
- Wing-Yin Leung
- Department of Renal Medicine, Lancashire Teaching Hospitals NHS Foundation Trust, Preston PR2 9HT, UK
| | - Henry H L Wu
- Renal Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital & The University of Sydney, Sydney, NSW 2065, Australia
| | - Lauren Floyd
- Department of Renal Medicine, Lancashire Teaching Hospitals NHS Foundation Trust, Preston PR2 9HT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PG, UK
| | - Arvind Ponnusamy
- Department of Renal Medicine, Lancashire Teaching Hospitals NHS Foundation Trust, Preston PR2 9HT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PG, UK
| | - Rajkumar Chinnadurai
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PG, UK
- Department of Renal Medicine, Salford Royal Hospital, Northern Care Alliance Foundation Trust, Salford M6 8HD, UK
| |
Collapse
|
28
|
Serra N, Andriolo M, Butera I, Mazzola G, Sergi CM, Fasciana TMA, Giammanco A, Gagliano MC, Cascio A, Di Carlo P. A Serological Analysis of the Humoral Immune Responses of Anti-RBD IgG, Anti-S1 IgG, and Anti-S2 IgG Levels Correlated to Anti-N IgG Positivity and Negativity in Sicilian Healthcare Workers (HCWs) with Third Doses of the mRNA-Based SARS-CoV-2 Vaccine: A Retrospective Cohort Study. Vaccines (Basel) 2023; 11:1136. [PMID: 37514952 PMCID: PMC10384738 DOI: 10.3390/vaccines11071136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND With SARS-CoV-2 antibody tests on the market, healthcare providers must be confident that they can use the results to provide actionable information to understand the characteristics and dynamics of the humoral response and antibodies (abs) in SARS-CoV-2-vaccinated patients. In this way, the study of the antibody responses of healthcare workers (HCWs), a population that is immunocompetent, adherent to vaccination, and continuously exposed to different virus variants, can help us understand immune protection and determine vaccine design goals. METHODS We retrospectively evaluated antibody responses via multiplex assays in a sample of 538 asymptomatic HCWs with a documented complete vaccination cycle of 3 doses of mRNA vaccination and no previous history of infection. Our sample was composed of 49.44% males and 50.56% females, with an age ranging from 21 to 71 years, and a mean age of 46.73 years. All of the HCWs' sera were collected from April to July 2022 at the Sant'Elia Hospital of Caltanissetta to investigate the immunologic responses against anti-RBD, anti-S1, anti-S2, and anti-N IgG abs. RESULTS A significant difference in age between HCWs who were positive and negative for anti-N IgG was observed. For anti-S2 IgG, a significant difference between HCWs who were negative and positive compared to anti-N IgG was observed only for positive HCWs, with values including 10 (U/mL)-100 (U/mL); meanwhile, for anti-RBD IgG and anti-S1 IgG levels, there was only a significant difference observed for positive HCWs with diluted titers. For the negative values of anti-N IgG, among the titer dilution levels of anti-RBD, anti-S1, and anti-S2 IgG, the anti-S2 IgG levels were significantly lower than the anti-RBD and anti-S1 levels; in addition, the anti-S1 IgG levels were significantly lower than the anti-RBD IgG levels. For the anti-N IgG positive levels, only the anti-S2 IgG levels were significantly lower than the anti-RBD IgG and anti-S1 IgG levels. Finally, a logistic regression analysis showed that age and anti-S2 IgG were negative and positive predictors of anti-N IgG levels, respectively. The analysis between the vaccine type and mixed mRNA combination showed higher levels of antibodies in mixed vaccinated HCWs. This finding disappeared in the anti-N positive group. CONCLUSIONS Most anti-N positive HCWs showed antibodies against the S2 domain and were young subjects. Therefore, the authors suggest that including the anti-SARS-CoV-2-S2 in antibody profiles can serve as a complementary testing approach to qRT-PCR for the early identification of asymptomatic infections in order to reduce the impact of potential new SARS-CoV-2 variants. Our serological investigation on the type of mRNA vaccine and mixed mRNA vaccines shows that future investigations on the serological responses in vaccinated asymptomatic patients exposed to previous infection or reinfection are warranted for updated vaccine boosters.
Collapse
Affiliation(s)
- Nicola Serra
- Department of Public Health, University Federico II of Naples, 80131 Napoli, Italy
| | - Maria Andriolo
- Clinical Pathology Laboratory, Provincial Health Authority of Caltanissetta, 93100 Caltanissetta, Italy
| | - Ignazio Butera
- Degree Course in Medicine and Surgery, Medical Scholl of Hypatia, University of Palermo, 93100 Caltanissetta, Italy
| | - Giovanni Mazzola
- Infectious Disease Unit, Provincial Health Authority of Caltanissetta, 93100 Caltanissetta, Italy
| | - Consolato Maria Sergi
- Department of Pathology and Laboratory Medicine, University of Ottawa, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Teresa Maria Assunta Fasciana
- Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Anna Giammanco
- Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Maria Chiara Gagliano
- Infectious Disease Unit, Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Antonio Cascio
- Infectious Disease Unit, Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Paola Di Carlo
- Infectious Disease Unit, Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
29
|
Műzes G, Sipos F. CAR-Based Therapy for Autoimmune Diseases: A Novel Powerful Option. Cells 2023; 12:1534. [PMID: 37296654 PMCID: PMC10252902 DOI: 10.3390/cells12111534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The pervasive application of chimeric antigen receptor (CAR)-based cellular therapies in the treatment of oncological diseases has long been recognized. However, CAR T cells can target and eliminate autoreactive cells in autoimmune and immune-mediated diseases. By doing so, they can contribute to an effective and relatively long-lasting remission. In turn, CAR Treg interventions may have a highly effective and durable immunomodulatory effect via a direct or bystander effect, which may have a positive impact on the course and prognosis of autoimmune diseases. CAR-based cellular techniques have a complex theoretical foundation and are difficult to implement in practice, but they have a remarkable capacity to suppress the destructive functions of the immune system. This article provides an overview of the numerous CAR-based therapeutic options developed for the treatment of immune-mediated and autoimmune diseases. We believe that well-designed, rigorously tested cellular therapies could provide a promising new personalized treatment strategy for a significant number of patients with immune-mediated disorders.
Collapse
Affiliation(s)
- Györgyi Műzes
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary;
| | | |
Collapse
|
30
|
Li TT, Lin CL, Chiang M, He JT, Hung CH, Hsieh CC. Cytokine-Induced Myeloid-Derived Suppressor Cells Demonstrate Their Immunoregulatory Functions to Prolong the Survival of Diabetic Mice. Cells 2023; 12:1507. [PMID: 37296628 PMCID: PMC10253032 DOI: 10.3390/cells12111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Type 1 diabetes is an inflammatory state. Myeloid-derived suppressive cells (MDSCs) originate from immature myeloid cells and quickly expand to control host immunity during infection, inflammation, trauma, and cancer. This study presents an ex vivo procedure to develop MDSCs from bone marrow cells propagated from granulocyte-macrophage-colony-stimulating factor (GM-CSF), interleukin (IL)-6, and IL-1β cytokines expressing immature morphology and high immunosuppression of T-cell proliferation. The adoptive transfer of cytokine-induced MDSCs (cMDSCs) improved the hyperglycemic state and prolonged the diabetes-free survival of nonobese diabetic (NOD) mice with severe combined immune deficiency (SCID) induced by reactive splenic T cells harvested from NOD mice. In addition, the application of cMDSCs reduced fibronectin production in the renal glomeruli and improved renal function and proteinuria in diabetic mice. Moreover, cMDSCs use mitigated pancreatic insulitis to restore insulin production and reduce the levels of HbA1c. In conclusion, administering cMDSCs propagated from GM-CSF, IL-6, and IL-1β cytokines provides an alternative immunotherapy protocol for treating diabetic pancreatic insulitis and renal nephropathy.
Collapse
Affiliation(s)
- Tung-Teng Li
- Division of General Surgery, Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan; (T.-T.L.)
| | - Chun-Liang Lin
- Department of Nephrology, Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan;
- Kidney and Diabetic Complications Research Team (KDCRT), Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
| | - Meihua Chiang
- Division of General Surgery, Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan; (T.-T.L.)
| | - Jie-Teng He
- Division of General Surgery, Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan; (T.-T.L.)
| | - Chien-Hui Hung
- College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
- Division of Infectious Diseases, Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan
| | - Ching-Chuan Hsieh
- Division of General Surgery, Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan; (T.-T.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang-Gung Memorial Hospital, Chiayi 61302, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
31
|
Gerardi V, Rohaim MA, Naggar RFE, Atasoy MO, Munir M. Deep Structural Analysis of Myriads of Omicron Sub-Variants Revealed Hotspot for Vaccine Escape Immunity. Vaccines (Basel) 2023; 11:668. [PMID: 36992252 PMCID: PMC10059128 DOI: 10.3390/vaccines11030668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
The emergence of the Omicron variant has reinforced the importance of continued SARS-CoV-2 evolution and its possible impact on vaccine effectiveness. Specifically, mutations in the receptor-binding domain (RBD) are critical to comprehend the flexibility and dynamicity of the viral interaction with the human agniotensin-converting enzyme 2 (hACE2) receptor. To this end, we have applied a string of deep structural and genetic analysis tools to map the substitution patterns in the S protein of major Omicron sub-variants (n = 51) with a primary focus on the RBD mutations. This head-to-head comparison of Omicron sub-variants revealed multiple simultaneous mutations that are attributed to antibody escape, and increased affinity and binding to hACE2. Our deep mapping of the substitution matrix indicated a high level of diversity at the N-terminal and RBD domains compared with other regions of the S protein, highlighting the importance of these two domains in a matched vaccination approach. Structural mapping identified highly variable mutations in the up confirmation of the S protein and at sites that critically define the function of the S protein in the virus pathobiology. These substitutional trends offer support in tracking mutations along the evolutionary trajectories of SAR-CoV-2. Collectively, the findings highlight critical areas of mutations across the major Omicron sub-variants and propose several hotspots in the S proteins of SARS-CoV-2 sub-variants to train the future design and development of COVID-19 vaccines.
Collapse
Affiliation(s)
- Valeria Gerardi
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Mohammed A. Rohaim
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Rania F. El Naggar
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt
| | - Mustafa O. Atasoy
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| |
Collapse
|
32
|
Frigault MJ, Bishop MR, Rosenblatt J, O’Donnell EK, Raje N, Cook D, Yee AJ, Logan E, Avigan DE, Jakubowiak A, Shaw K, Daley H, Nikiforow S, Griffin F, Cornwell C, Shen A, Heery C, Maus MV. Phase 1 study of CART-ddBCMA for the treatment of subjects with relapsed and refractory multiple myeloma. Blood Adv 2023; 7:768-777. [PMID: 35468618 PMCID: PMC9989524 DOI: 10.1182/bloodadvances.2022007210] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022] Open
Abstract
Relapsed and refractory multiple myeloma (RRMM) is a plasma cell neoplasm defined by progressively refractory disease necessitating chronic and increasingly intensive therapy. Despite recent advances, limited treatment options exist for RRMM. This single-arm, open label phase 1 study aimed to evaluate the safety of novel B-cell maturation antigen (BCMA)-targeting chimeric antigen receptor (CAR) T construct that leverages a completely synthetic antigen-binding domain (CART-ddBCMA), which was specifically engineered to reduce immunogenicity and improve CAR cell surface stability. Thirteen patients ≥18 years with RRMM who received at least 3 prior regimens of systemic therapy were enrolled in the study. Patients received a single dose of 100 × 106 CART-ddBCMA (DL1) or 300 × 106 CART-ddBCMA (DL2) following standard lymphodepleting chemotherapy. The primary endpoints of the study were to evaluate the incidence of treatment emergent adverse events, including dose-limiting toxicities, and establish a recommended phase 2 dose. Results showed that CART-ddBCMA was well tolerated and demonstrated a favorable toxicity profile. Only 1 case of grade ≥3 cytokine release syndrome and 1 case of immune effector cell-associated neurotoxicity were reported; both were at DL2 and were manageable with standard treatment. No atypical neurological toxicities and Parkinson disease-like movement disorders were observed. The maximum tolerated dose was not reached. All infused patients responded to CART-ddBCMA, and 9/12 (75%) patients achieved complete response/stringent complete response. Responses deepened over time, and at the time of last data-cut (median follow-up 56 weeks), 8/9 (89%) evaluable patients achieved minimal residual disease negativity. In conclusion, the findings demonstrate the safety of CART-ddBCMA cells and document durable responses to CART-ddBCMA in patients with RRMM. This trial was registered at www.clinicaltrials.gov as #NCT04155749.
Collapse
Affiliation(s)
- Matthew J. Frigault
- Massachusetts General Hospital Cancer Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Michael R. Bishop
- David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL
| | | | - Elizabeth K. O’Donnell
- Massachusetts General Hospital Cancer Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Noopur Raje
- Massachusetts General Hospital Cancer Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Daniella Cook
- Massachusetts General Hospital Cancer Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Andrew J. Yee
- Massachusetts General Hospital Cancer Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Emma Logan
- Beth Israel Deaconess Medical Center, Boston, MA
| | | | - Andrzej Jakubowiak
- David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL
| | - Kit Shaw
- Dana Farber Cancer Institute, Cell Manipulation Core Facility, Brookline, MA
| | - Heather Daley
- Dana Farber Cancer Institute, Cell Manipulation Core Facility, Brookline, MA
| | - Sarah Nikiforow
- Dana Farber Cancer Institute, Cell Manipulation Core Facility, Brookline, MA
| | | | | | | | | | - Marcela V. Maus
- Massachusetts General Hospital Cancer Center, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
33
|
Guo C, Chen H, Yu J, Lu H, Xia Q, Li X, Guo X, Wang T, Zhi L, Niu Z, Zhu W. Engagement of an optimized lentiviral vector enhances the expression and cytotoxicity of CAR in human NK cells. Mol Immunol 2023; 155:91-99. [PMID: 36736195 DOI: 10.1016/j.molimm.2023.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Adoptive chimeric antigen receptor (CAR)-modified T or NK cells (CAR-T/NK) have emerged as a novel form of disease treatment. Lentiviral vectors (LVs) are commonly employed to engineer NK cells for the efficient expression of CARs. This study reported the influence of single-promoter and dual-promoter LVs on the CAR expression and cytotoxicity of engineered NK cells. We constructed a third-generation NKG2D-based CAR that kills cancer cells by targeting up to eight stress-induced ligands (NKG2DLs). Our results demonstrated that the CAR exhibits both a higher expression level and a higher coexpression concordance with the GFP reporter in HEK-293T or NK92 cells by utilizing the optimized single-promoter pCDHsp rather than the original dual-promoter pCDHdp. After puromycin selection, the pCDHsp produces robust CAR expression and enhanced in vitro cytotoxicity of engineered NK cells. Therefore, infection with a single-promoter pCDHsp lentivector is recommended to prepare CAR-engineered NK cells. This research helps to optimize the production of CAR-NK cells and enhance their functional activity, to provide CAR-NK cell products with better and more uniform quality.
Collapse
Affiliation(s)
- Changjiang Guo
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China.
| | - Han Chen
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Jie Yu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Hui Lu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Qing Xia
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Xiaojuan Li
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Xiali Guo
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Tong Wang
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Lingtong Zhi
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Zhiyuan Niu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Wuling Zhu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China.
| |
Collapse
|
34
|
The Third Dose of BNT162b2 COVID-19 Vaccine Does Not “Boost” Disease Flares and Adverse Events in Patients with Rheumatoid Arthritis. Biomedicines 2023; 11:biomedicines11030687. [PMID: 36979666 PMCID: PMC10045021 DOI: 10.3390/biomedicines11030687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Data on the risk of adverse events (AEs) and disease flares in autoimmune rheumatic diseases (ARDs) after the third dose of COVID-19 vaccine are scarce. The aim of this multicenter, prospective study is to analyze the clinical and immunological safety of BNT162b2 vaccine in a cohort of rheumatoid arthritis (RA) patients followed-up from the first vaccine cycle to the third dose. The vaccine showed an overall good safety profile with no patient reporting serious AEs, and a low percentage of total AEs at both doses (40/78 (51.3%) and 13/47 (27.7%) patients after the second and third dose, respectively (p < 0.002). Flares were observed in 10.3% of patients after the end of the vaccination cycle and 12.8% after the third dose. Being vaccinated for influenza was inversely associated with the onset of AEs after the second dose, at both univariable (p = 0.013) and multivariable analysis (p = 0.027). This result could allow identification of a predictive factor of vaccine tolerance, if confirmed in larger patient populations. A higher disease activity at baseline was not associated with a higher incidence of AEs or disease flares. Effectiveness was excellent after the second dose, with only 1/78 (1.3%) mild breakthrough infection (BI) and worsened after the third dose, with 9/47 (19.2%) BI (p < 0.002), as a probable expression of the higher capacity of the Omicron variants to escape vaccine recognition.
Collapse
|
35
|
Comparison of Two Commercially Available Interferon-γ Release Assays for T-Cell-Mediated Immunity and Evaluation of Humoral Immunity against SARS-CoV-2 in Healthcare Workers. Diagnostics (Basel) 2023; 13:diagnostics13040637. [PMID: 36832126 PMCID: PMC9955378 DOI: 10.3390/diagnostics13040637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Cellular immunity against SARS-CoV-2 is an important component of the immune response to the virus. At present, two such tests based on interferon-gamma release (interferon-γ release assays, IGRAs) are available-Quan-T-Cell SARS-CoV-2 by EUROIMMUN and T-SPOT.COVID by Oxford Immunotec. In this paper, we compared the results of these two tests in 90 subjects employed at the Public Health Institute Ostrava who had previously undergone COVID-19 infection or were vaccinated against that disease. To the best of our knowledge, this is the first head-to-head comparison of these two tests evaluating T-cell-mediated immunity against SARS-CoV-2. In addition, we also evaluated humoral immunity in the same individuals using the in-house virus neutralization test and IgG ELISA assay. The evaluation yielded similar results for both IGRAs, with Quan-T-Cell appearing to be insignificantly (p = 0.08) more sensitive (all 90 individuals were at least borderline positive) than T-SPOT.COVID (negative results found in five patients). The overall qualitative (presence/absence of immune response) agreement of both tests with virus neutralization test and anti-S IgG was also excellent (close or equal to 100% in all subgroups, with the exception of unvaccinated Omicron convalescents, a large proportion of whom, i.e., four out of six subjects, were IgG negative while at least borderline positive for T-cell-mediated immunity measured by Quan-T). This implies that the evaluation of T-cell-mediated immunity is a more sensitive indicator of immune response than the evaluation of IgG seropositivity. This is true at least for unvaccinated patients with a history of being infected only by the Omicron variant, but also likely for other groups of patients.
Collapse
|
36
|
Schaible P, Bethge W, Lengerke C, Haraszti RA. RNA Therapeutics for Improving CAR T-cell Safety and Efficacy. Cancer Res 2023; 83:354-362. [PMID: 36512627 PMCID: PMC7614194 DOI: 10.1158/0008-5472.can-22-2155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Autologous chimeric antigen receptor (CAR) T cells have recently emerged as potent tools in the fight against cancer, with promising therapeutic efficacy against hematological malignancies. However, several limitations hamper their widespread clinical use, including availability of target antigen, severe toxic effects, primary and secondary resistance, heterogeneous quality of autologous T cells, variable persistence, and low activity against solid tumors. Development of allogeneic off-the-shelf CAR T cells could help address some of these limitations but is impeded by alloimmunity with either rejection and limited expansion of allo-CAR T cells or CAR T cells versus host reactions. RNA therapeutics, such as small interfering RNAs, microRNAs, and antisense oligonucleotides, are able to silence transcripts in a sequence-specific and proliferation-sensitive way, which may offer a way to overcome some of the challenges facing CAR T-cell development and clinical utility. Here, we review how different RNA therapeutics or a combination of RNA therapeutics and genetic engineering could be harnessed to improve the safety and efficacy of autologous and allogeneic CAR T-cell therapy.
Collapse
Affiliation(s)
- Philipp Schaible
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Wolfgang Bethge
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Claudia Lengerke
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Reka Agnes Haraszti
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
37
|
Chen J, Huang B, Deng Y, Wang W, Zhai C, Han D, Wang N, Zhao Y, Zhai D, Tan W. Synergistic Immunity and Protection in Mice by Co-Immunization with DNA Vaccines Encoding the Spike Protein and Other Structural Proteins of SARS-CoV-2. Vaccines (Basel) 2023; 11:243. [PMID: 36851120 PMCID: PMC9967269 DOI: 10.3390/vaccines11020243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
The emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has generated recurring worldwide infection outbreaks. These highly mutated variants reduce the effectiveness of current coronavirus disease 2019 (COVID-19) vaccines, which are designed to target only the spike (S) protein of the original virus. Except for the S of SARS-CoV-2, the immunoprotective potential of other structural proteins (nucleocapsid, N; envelope, E; membrane, M) as vaccine target antigens is still unclear and worthy of investigation. In this study, synthetic DNA vaccines encoding four SARS-CoV-2 structural proteins (pS, pN, pE, and pM) were developed, and mice were immunized with three doses via intramuscular injection and electroporation. Notably, co-immunization with two DNA vaccines that expressed the S and N proteins induced higher neutralizing antibodies and was more effective in reducing the SARS-CoV-2 viral load than the S protein alone in mice. In addition, pS co-immunization with either pN or pE + pM induced a higher S protein-specific cellular immunity after three immunizations and caused milder histopathological changes than pS alone post-challenge. The role of the conserved structural proteins of SARS-CoV-2, including the N/E/M proteins, should be investigated further for their applications in vaccine design, such as mRNA vaccines.
Collapse
Affiliation(s)
- Jinni Chen
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Baoying Huang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Yao Deng
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Wen Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Chengcheng Zhai
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Di Han
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Na Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Ying Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Desheng Zhai
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Wenjie Tan
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| |
Collapse
|
38
|
Gong X, Chi H, Strohmer DF, Teichmann AT, Xia Z, Wang Q. Exosomes: A potential tool for immunotherapy of ovarian cancer. Front Immunol 2023; 13:1089410. [PMID: 36741380 PMCID: PMC9889675 DOI: 10.3389/fimmu.2022.1089410] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Ovarian cancer is a malignant tumor of the female reproductive system, with a very poor prognosis and high mortality rates. Chemotherapy and radiotherapy are the most common treatments for ovarian cancer, with unsatisfactory results. Exosomes are a subpopulation of extracellular vesicles, which have a diameter of approximately 30-100 nm and are secreted by many different types of cells in various body fluids. Exosomes are highly stable and are effective carriers of immunotherapeutic drugs. Recent studies have shown that exosomes are involved in various cellular responses in the tumor microenvironment, influencing the development and therapeutic efficacy of ovarian cancer, and exhibiting dual roles in inhibiting and promoting tumor development. Exosomes also contain a variety of genes related to ovarian cancer immunotherapy that could be potential biomarkers for ovarian cancer diagnosis and prognosis. Undoubtedly, exosomes have great therapeutic potential in the field of ovarian cancer immunotherapy. However, translation of this idea to the clinic has not occurred. Therefore, it is important to understand how exosomes could be used in ovarian cancer immunotherapy to regulate tumor progression. In this review, we summarize the biomarkers of exosomes in different body fluids related to immunotherapy in ovarian cancer and the potential mechanisms by which exosomes influence immunotherapeutic response. We also discuss the prospects for clinical application of exosome-based immunotherapy in ovarian cancer.
Collapse
Affiliation(s)
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Dorothee Franziska Strohmer
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander Tobias Teichmann
- Sichuan Provincial Center for Gynecology and Breast Diseases (Gynecology), Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Qin Wang
- Sichuan Provincial Center for Gynecology and Breast Diseases (Gynecology), Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
39
|
Vaccine-Related Autoimmune Hepatitis: Emerging Association with SARS-CoV-2 Vaccination or Coincidence? Vaccines (Basel) 2022; 10:vaccines10122073. [PMID: 36560483 PMCID: PMC9783100 DOI: 10.3390/vaccines10122073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND There is an increasing number of liver injury cases resembling autoimmune hepatitis (AIH) following SARS-CoV-2 vaccination; however, an association has not yet been established. METHODS/MATERIALS A literature review was performed to identify articles regarding the association of AIH with vaccination, emphasizing on SARS-CoV-2 vaccines, and the proposed mechanisms. We then performed a literature search for AIH-like cases following SARS-CoV-2 vaccination, and we evaluated the included cases for AIH diagnosis using simplified diagnostic criteria (SDC), and for vaccination causality using the Naranjo score for adverse drug reactions. RESULTS We identified 51 AIH-like cases following SARS-CoV-2 vaccination. Forty cases (80%) were characterized as "probable", "at least probable", or "definite" for AIH diagnosis according to SDC. Forty cases (78.4%) were characterized as "probable", four (7.8%) as "possible", and three (5.8%) as "definite" for vaccine-related AIH according to the Naranjo score. CONCLUSION SARS-CoV-2 vaccine-related AIH carries several phenotypes and, although most cases resolve, immunosuppressive therapy seems to be necessary. Early diagnosis is mandatory and should be considered in any patient with acute or chronic hepatitis after SARS-CoV-2 vaccination, especially in those with pre-existing liver disease.
Collapse
|
40
|
Telli Dizman G, Aguado JM, Fernández-Ruiz M. Risk of infection in patients with hematological malignancies receiving CAR T-cell therapy: systematic review and meta-analysis. Expert Rev Anti Infect Ther 2022; 20:1455-1476. [PMID: 36148506 DOI: 10.1080/14787210.2022.2128762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cell therapy has emerged as a promising treatment option for relapsed or refractory B-cell malignancies and multiple myeloma. Underlying and treatment-related variables may contribute to the development of infectious complications. RESEARCH DESIGN AND METHODS We conducted a systematic review and meta-analysis on the incidence of overall and severe (grade ≥3) infection in patients with hematological malignancies receiving CAR T-cells. Secondary outcomes included the specific rates of bacterial, viral and invasive fungal infection (IFI), and infection-related mortality. PubMed, Embase and Web of Science databases were searched from inception to 27 May 2022. Sensitivity analysis were performed according to the type of malignancy and study design (randomized clinical trials [RCTs] or observational studies). RESULTS Forty-five studies (34 RCTs) comprising 3,591 patients were included. The pooled incidence rates of overall and severe infection were 33.8% (I2 = 96.31%) and 16.2% (I2 = 74.41%). The respiratory tract was the most common site of infection. Most events were bacterial or viral, whereas the occurrence of IFI was rare. The pooled attributable mortality was 1.8% (I2 = 43.44%). CONCLUSIONS Infection is a frequent adverse event in patients receiving CAR T-cell therapy. Further research should address specific risk factors in this population.
Collapse
Affiliation(s)
- Gülçin Telli Dizman
- Department of Infectious Disease and Clinical Microbiology, Hacettepe University School of Medicine, Ankara, Turkey
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
41
|
Engineering off-the-shelf universal CAR T cells: A silver lining in the cloud. Cytokine 2022; 156:155920. [DOI: 10.1016/j.cyto.2022.155920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
|
42
|
Kumar M, James MM, Kumawat M, Nabi B, Sharma P, Pal N, Shubham S, Tiwari RR, Sarma DK, Nagpal R. Aging and Microbiome in the Modulation of Vaccine Efficacy. Biomedicines 2022; 10:biomedicines10071545. [PMID: 35884849 PMCID: PMC9313064 DOI: 10.3390/biomedicines10071545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/29/2022] Open
Abstract
From infancy through to old age, the microbiome plays an important role in modulating the host-immune system. As we age, our immune system and our gut microbiota change significantly in composition and function, which is linked to an increased vulnerability to infectious diseases and a decrease in vaccine responses. Our microbiome remains largely stable throughout adulthood; however, aging causes a major shift in the composition and function of the gut microbiome, as well as a decrease in diversity. Considering the critical role of the gut microbiome in the host-immune system, it is important to address, prevent, and ameliorate age-related dysbiosis, which could be an effective strategy for preventing/restoring functional deficits in immune responses as we grow older. Several factors, such as the host’s genetics and nutritional state, along with the gut microbiome, can influence vaccine efficacy or reaction. Emerging evidence suggests that the microbiome could be a significant determinant of vaccine immunity. Physiological mechanisms such as senescence, or the steady loss of cellular functions, which affect the aging process and vaccination responses, have yet to be comprehended. Recent studies on several COVID-19 vaccines worldwide have provided a considerable amount of data to support the hypothesis that aging plays a crucial role in modulating COVID-19 vaccination efficacy across different populations.
Collapse
Affiliation(s)
- Manoj Kumar
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Meenu Mariya James
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Manoj Kumawat
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Bilkees Nabi
- Department of Biochemistry and Biochemical Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad 211007, India;
| | - Poonam Sharma
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Namrata Pal
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Swasti Shubham
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Rajnarayan R. Tiwari
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Devojit Kumar Sarma
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
- Correspondence: (D.K.S.); (R.N.)
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32302, USA
- Correspondence: (D.K.S.); (R.N.)
| |
Collapse
|
43
|
Alternative CAR Therapies: Recent Approaches in Engineering Chimeric Antigen Receptor Immune Cells to Combat Cancer. Biomedicines 2022; 10:biomedicines10071493. [PMID: 35884798 PMCID: PMC9313317 DOI: 10.3390/biomedicines10071493] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/08/2023] Open
Abstract
For nearly three decades, chimeric antigen receptors (CARs) have captivated the interest of researchers seeking to find novel immunotherapies to treat cancer. CARs were first designed to work with T cells, and the first CAR T cell therapy was approved to treat B cell lymphoma in 2017. Recent advancements in CAR technology have led to the development of modified CARs, including multi-specific CARs and logic gated CARs. Other immune cell types, including natural killer (NK) cells and macrophages, have also been engineered to express CARs to treat cancer. Additionally, CAR technology has been adapted in novel approaches to treating autoimmune disease and other conditions and diseases. In this article, we review these recent advancements in alternative CAR therapies and design, as well as their mechanisms of action, challenges in application, and potential future directions.
Collapse
|
44
|
Garcinuño S, Gil-Etayo FJ, Mancebo E, López-Nevado M, Lalueza A, Díaz-Simón R, Pleguezuelo DE, Serrano M, Cabrera-Marante O, Allende LM, Paz-Artal E, Serrano A. Effective Natural Killer Cell Degranulation Is an Essential Key in COVID-19 Evolution. Int J Mol Sci 2022; 23:ijms23126577. [PMID: 35743021 PMCID: PMC9224310 DOI: 10.3390/ijms23126577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023] Open
Abstract
NK degranulation plays an important role in the cytotoxic activity of innate immunity in the clearance of intracellular infections and is an important factor in the outcome of the disease. This work has studied NK degranulation and innate immunological profiles and functionalities in COVID-19 patients and its association with the severity of the disease. A prospective observational study with 99 COVID-19 patients was conducted. Patients were grouped according to hospital requirements and severity. Innate immune cell subpopulations and functionalities were analyzed. The profile and functionality of innate immune cells differ between healthy controls and severe patients; CD56dim NK cells increased and MAIT cells and NK degranulation rates decreased in the COVID-19 subjects. Higher degranulation rates were observed in the non-severe patients and in the healthy controls compared to the severe patients. Benign forms of the disease had a higher granzymeA/granzymeB ratio than complex forms. In a multivariate analysis, the degranulation capacity resulted in a protective factor against severe forms of the disease (OR: 0.86), whereas the permanent expression of NKG2D in NKT cells was an independent risk factor (OR: 3.81; AUC: 0.84). In conclusion, a prompt and efficient degranulation functionality in the early stages of infection could be used as a tool to identify patients who will have a better evolution.
Collapse
Affiliation(s)
- Sara Garcinuño
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
| | - Francisco Javier Gil-Etayo
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Esther Mancebo
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Marta López-Nevado
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
| | - Antonio Lalueza
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
| | - Raquel Díaz-Simón
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
| | - Daniel Enrique Pleguezuelo
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Manuel Serrano
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Oscar Cabrera-Marante
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Luis M. Allende
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Department of Immunology, Ophthalmology and Otorhinolaryngology, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Department of Immunology, Ophthalmology and Otorhinolaryngology, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Antonio Serrano
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.G.); (F.J.G.-E.); (E.M.); (M.L.-N.); (A.L.); (D.E.P.); (M.S.); (O.C.-M.); (L.M.A.); (E.P.-A.)
- Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Biomedical Research Centre Network for Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-652-085-293
| |
Collapse
|
45
|
Issa F, Bilici M, McCallion O. Research Highlights. Transplantation 2022; 106:1096-1097. [PMID: 37779283 DOI: 10.1097/tp.0000000000004184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
46
|
Li YJ, Chen Z. Cell-based therapies for rheumatoid arthritis: opportunities and challenges. Ther Adv Musculoskelet Dis 2022; 14:1759720X221100294. [PMID: 35634355 PMCID: PMC9131381 DOI: 10.1177/1759720x221100294] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is the most common immune-mediated inflammatory disease characterized by chronic synovitis that hardly resolves spontaneously. The current treatment of RA consists of nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, conventional disease-modifying antirheumatic drugs (cDMARDs), biologic and targeted synthetic DMARDs. Although the treat-to-target strategy has been intensively applied in the past decade, clinical unmet needs still exist since a substantial proportion of patients are refractory or even develop severe adverse effects to current therapies. In recent years, with the deeper understanding of immunopathogenesis of the disease, cell-based therapies have exhibited effective and promising interventions to RA. Several cell-based therapies, such as mesenchymal stem cells (MSC), adoptive transfer of regulatory T cells (Treg), and chimeric antigen receptor (CAR)-T cell therapy as well as their beneficial effects have been documented and verified so far. In this review, we summarize the current evidence and discuss the prospect as well as challenges for these three types of cellular therapies in RA.
Collapse
Affiliation(s)
- Yu-Jing Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Second Clinical Medical School, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | | |
Collapse
|
47
|
Loconsole D, Centrone F, Sallustio A, Accogli M, Casulli D, Sacco D, Zagaria R, Morcavallo C, Chironna M. Characteristics of the First 284 Patients Infected with the SARS-CoV-2 Omicron BA.2 Subvariant at a Single Center in the Apulia Region of Italy, January-March 2022. Vaccines (Basel) 2022; 10:674. [PMID: 35632430 PMCID: PMC9146056 DOI: 10.3390/vaccines10050674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/05/2023] Open
Abstract
Since its initial detection, the SARS-CoV-2 Omicron sublineage BA.2 has been spreading rapidly worldwide. The aims of this study were to describe the first 284 patients infected with the Omicron BA.2 variant of concern (VOC) in the Apulia region of southern Italy and to assess the differences in the demographic and clinical characteristics of patients infected with the SARS-CoV-2 BA.1 and BA.2 variants. The demographic characteristics of patients, as well as information about symptoms, vaccinations and hospitalizations for COVID-19, were collected. A subset of samples from patients infected with the BA.2 variant was subjected to whole-genome sequencing. The characteristics of the first 284 patients infected with Omicron BA.2 and the first 175 patients infected with Omicron BA.1 were compared. The proportion of patients infected with the BA.2 variant rapidly increased, from 0.5% during the third week of 2022 to 29.6% during the tenth week of 2022. Ten isolates (out of 34 BA.2 isolates) contain the substitutional mutation, H78K in ORF3a, and four isolates include two mutations, A2909V in ORF1a and L140F in ORDF3a. Compared with patients infected with BA.1, those infected with BA.2 were more likely to be symptomatic and booster-vaccinated, and showed a shorter time from the last dose of vaccine to infection. The high transmissibility and immune-evasive properties of Omicron BA.2, which will become the leading SARS-CoV-2 VOC, suggest that short-term public health measures should not be discontinued in Italy.
Collapse
Affiliation(s)
- Daniela Loconsole
- Hygiene Section, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (D.L.); (D.S.); (R.Z.)
| | - Francesca Centrone
- Hygiene Section, Department of Biomedical Sciences and Human Oncology-Hygiene Section, University of Bari, 70124 Bari, Italy; (F.C.); (M.A.); (C.M.)
| | - Anna Sallustio
- Hygiene Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, 70124 Bari, Italy; (A.S.); (D.C.)
| | - Marisa Accogli
- Hygiene Section, Department of Biomedical Sciences and Human Oncology-Hygiene Section, University of Bari, 70124 Bari, Italy; (F.C.); (M.A.); (C.M.)
| | - Daniele Casulli
- Hygiene Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, 70124 Bari, Italy; (A.S.); (D.C.)
| | - Davide Sacco
- Hygiene Section, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (D.L.); (D.S.); (R.Z.)
| | - Riccardo Zagaria
- Hygiene Section, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (D.L.); (D.S.); (R.Z.)
| | - Caterina Morcavallo
- Hygiene Section, Department of Biomedical Sciences and Human Oncology-Hygiene Section, University of Bari, 70124 Bari, Italy; (F.C.); (M.A.); (C.M.)
| | - Maria Chironna
- Hygiene Section, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (D.L.); (D.S.); (R.Z.)
| |
Collapse
|
48
|
Short S, Issa F. Research Highlights. Transplantation 2022; 106:685-686. [PMID: 37934949 DOI: 10.1097/tp.0000000000004111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Sarah Short
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
49
|
Pan K, Farrukh H, Chittepu VCSR, Xu H, Pan CX, Zhu Z. CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy. J Exp Clin Cancer Res 2022; 41:119. [PMID: 35361234 PMCID: PMC8969382 DOI: 10.1186/s13046-022-02327-z] [Citation(s) in RCA: 345] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/11/2021] [Indexed: 12/13/2022] Open
Abstract
Adoptive cell therapy with chimeric antigen receptor (CAR) immunotherapy has made tremendous progress with five CAR T therapies approved by the US Food and Drug Administration for hematological malignancies. However, CAR immunotherapy in solid tumors lags significantly behind. Some of the major hurdles for CAR immunotherapy in solid tumors include CAR T cell manufacturing, lack of tumor-specific antigens, inefficient CAR T cell trafficking and infiltration into tumor sites, immunosuppressive tumor microenvironment (TME), therapy-associated toxicity, and antigen escape. CAR Natural Killer (NK) cells have several advantages over CAR T cells as the NK cells can be manufactured from pre-existing cell lines or allogeneic NK cells with unmatched major histocompatibility complex (MHC); can kill cancer cells through both CAR-dependent and CAR-independent pathways; and have less toxicity, especially cytokine-release syndrome and neurotoxicity. At least one clinical trial showed the efficacy and tolerability of CAR NK cell therapy. Macrophages can efficiently infiltrate into tumors, are major immune regulators and abundantly present in TME. The immunosuppressive M2 macrophages are at least as efficient as the proinflammatory M1 macrophages in phagocytosis of target cells; and M2 macrophages can be induced to differentiate to the M1 phenotype. Consequently, there is significant interest in developing CAR macrophages for cancer immunotherapy to overcome some major hurdles associated with CAR T/NK therapy, especially in solid tumors. Nevertheless, both CAR NK and CAR macrophages have their own limitations. This comprehensive review article will discuss the current status and the major hurdles associated with CAR T and CAR NK therapy, followed by the structure and cutting-edge research of developing CAR macrophages as cancer-specific phagocytes, antigen presenters, immunostimulators, and TME modifiers.
Collapse
Affiliation(s)
- Kevin Pan
- Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - Hizra Farrukh
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Huihong Xu
- Boston University, Boston, MA, USA.,VA Boston Healthcare System, West Roxbury, MA, USA
| | - Chong-Xian Pan
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,VA Boston Healthcare System, West Roxbury, MA, USA. .,Harvard Medical School, 1400 VFW Parkway Building 3, Room 2B-110, West Roxbury, MA, 02132, USA.
| | - Zheng Zhu
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Harvard Medical School, 1400 VFW Parkway Building 3, Room 2B-110, West Roxbury, MA, 02132, USA.
| |
Collapse
|
50
|
Gumber D, Wang LD. Improving CAR-T immunotherapy: Overcoming the challenges of T cell exhaustion. EBioMedicine 2022; 77:103941. [PMID: 35301179 PMCID: PMC8927848 DOI: 10.1016/j.ebiom.2022.103941] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a cancer treatment with enormous potential, demonstrating impressive antitumor activity in the treatment of hematological malignancies. However, CAR T cell exhaustion is a major limitation to their efficacy, particularly in the application of CAR T cells to solid tumors. CAR T cell exhaustion is thought to be due to persistent antigen stimulation, as well as an immunosuppressive tumor microenvironment, and mitigating exhaustion to maintain CAR T cell effector function and persistence and achieve clinical potency remains a central challenge. Here, we review the underlying mechanisms of exhaustion and discuss emerging strategies to prevent or reverse exhaustion through modifications of the CAR receptor or CAR independent pathways. Additionally, we discuss the potential of these strategies for improving clinical outcomes of CAR T cell therapy.
Collapse
Affiliation(s)
- Diana Gumber
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Beckman Research Institute, Duarte CA, United States; Department of Immunooncology, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA, United States
| | - Leo D Wang
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Beckman Research Institute, Duarte CA, United States; Department of Immunooncology, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA, United States; Department of Pediatrics, City of Hope National Medical Center, Duarte, CA, United States.
| |
Collapse
|