1
|
Bæk R, Sloth JK, Hasan MM, Midekessa G, Jørgensen MM. Analysis of small extracellular vesicles from dried blood spots. FRONTIERS IN MEDICAL TECHNOLOGY 2025; 7:1494239. [PMID: 39931421 PMCID: PMC11808138 DOI: 10.3389/fmedt.2025.1494239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
This protocol paper describes how to extract small extracellular vesicles (sEVs) from dried blood spots (DBS). The methodology is described in detail and offers further evidence that the extracted particles are sEVs using western blotting (anti-CD9, CD63 and CD81) and fluorescence nanoparticle tracking analysis (fNTA). In addition, we present evidence that approximately 40% of the sEVs were recovered from DBS compared with EVs analyzed from plasma directly. The protocol proves to be robust, reliable and displays very interesting performances even after several weeks (up to 3 weeks) of storage of the DBS when analyzing the sEVs using protein microarray for the presence of the markers CD9, CD63, CD81, EpCAM, Flotilin-1, CD62E/P, CD142 and CD235a. These findings have important implications for using sEVs as future potential diagnostic tools by supporting the validity of less-invasive methods that can be implemented within vulnerable populations or in the field.
Collapse
Affiliation(s)
- Rikke Bæk
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Jenni Kathrine Sloth
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Mohammad Mehedi Hasan
- Research Department of Maternal and Fetal Medicine, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom
| | - Getnet Midekessa
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Malene Møller Jørgensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
2
|
Korenjak B, Tratenšek A, Arko M, Romolo A, Hočevar M, Kisovec M, Berry M, Bedina Zavec A, Drobne D, Vovk T, Iglič A, Nemec Svete A, Erjavec V, Kralj-Iglič V. Assessment of Extracellular Particles Directly in Diluted Plasma and Blood by Interferometric Light Microscopy. A Study of 613 Human and 163 Canine Samples. Cells 2024; 13:2054. [PMID: 39768146 PMCID: PMC11674815 DOI: 10.3390/cells13242054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 01/11/2025] Open
Abstract
Extracellular nanoparticles (EPs) are a subject of increasing interest for their biological role as mediators in cell-cell communication; however, their harvesting and assessment from bodily fluids are challenging, as processing can significantly affect samples. With the aim of minimizing processing artifacts, we assessed the number density (n) and hydrodynamic diameter (Dh) of EPs directly in diluted plasma and blood using the following recently developed technique: interferometric light microscopy (ILM). We analyzed 613 blood and plasma samples from human patients with inflammatory bowel disease (IBD), collected in trisodium citrate and ethylenediaminetetraacetic acid (EDTA) anticoagulants, and 163 blood and plasma samples from canine patients with brachycephalic obstructive airway syndrome (BOAS). We found a highly statistically significant correlation between n in the plasma and n in the blood only in the human (i.e., but not canine) blood samples, between the samples with trisodium citrate and EDTA, and between the respective Dh for both species (all p < 10-3). In the human plasma, the average was 139 ± 31 nm; in the human blood, was 158 ± 11 nm; in the canine plasma, was 155 ± 32 nm; and in the canine blood, was 171 ± 33 nm. The differences within species were statistically significant (p < 10-2), with sufficient statistical power (P > 0.8). For , we found no statistically significant differences between the human plasma and blood samples or between the samples with trisodium citrate and EDTA. Our results prove that measuring n and Dh of EPs in minimally processed fresh blood and in diluted fresh plasma by means of ILM is feasible for large populations of samples.
Collapse
Affiliation(s)
- Boštjan Korenjak
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia; (B.K.); (M.A.); (A.R.); (M.B.)
| | - Armando Tratenšek
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (A.T.); (T.V.)
| | - Matevž Arko
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia; (B.K.); (M.A.); (A.R.); (M.B.)
| | - Anna Romolo
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia; (B.K.); (M.A.); (A.R.); (M.B.)
| | - Matej Hočevar
- Institute of Metals and Technology, SI-1000 Ljubljana, Slovenia;
| | - Matic Kisovec
- National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (A.B.Z.)
| | - Maxence Berry
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia; (B.K.); (M.A.); (A.R.); (M.B.)
- College for Basic and Applied Sciences, University of Poitiers, 86000 Poitiers, France
| | | | - David Drobne
- Department of Gastroenterology, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia;
- University of Ljubljana, Faculty of Medicine, SI-1000 Ljubljana, Slovenia
| | - Tomaž Vovk
- University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (A.T.); (T.V.)
| | - Aleš Iglič
- University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Physics, SI-1000 Ljubljana, Slovenia;
| | - Alenka Nemec Svete
- University of Ljubljana, Veterinary Faculty, Small Animal Clinic, SI-1000 Ljubljana, Slovenia; (A.N.S.); (V.E.)
| | - Vladimira Erjavec
- University of Ljubljana, Veterinary Faculty, Small Animal Clinic, SI-1000 Ljubljana, Slovenia; (A.N.S.); (V.E.)
| | - Veronika Kralj-Iglič
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia; (B.K.); (M.A.); (A.R.); (M.B.)
| |
Collapse
|
3
|
Malysheva DO, Dymova MA, Richter VA. Analyzing aptamer structure and interactions: in silico modelling and instrumental methods. Biophys Rev 2024; 16:685-700. [PMID: 39830127 PMCID: PMC11735759 DOI: 10.1007/s12551-024-01252-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/31/2024] [Indexed: 01/22/2025] Open
Abstract
Aptamers are short oligonucleotides that bind specifically to various ligands and are characterized by their low immunogenicity, thermostability, and ease of labeling. Many biomedical applications of aptamers as biosensors and drug delivery agents are currently being actively researched. Selective affinity selection with exponential ligand enrichment (SELEX) allows to discover aptamers for a specific target, but it only provides information about the sequence of aptamers; hence other approaches are used for determining aptamer structure, aptamer-ligand interactions and the mechanism of action. The first one is in silico modelling that allows to infer likely secondary and tertiary structures and model their interactions with a ligand. The second approach is to use instrumental methods to study structure and aptamer-ligand interaction. In silico modelling and instrumental methods are complimentary and their combined use allows to eliminate some ambiguity in their respective results. This review examines both the advantages and limitations of in silico modelling and instrumental approaches currently used to study aptamers, which will allow researchers to develop optimal study designs for analyzing aptamer structure and ligand interactions.
Collapse
Affiliation(s)
- Daria O. Malysheva
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
- Physics Department, Novosibirsk State University, Novosibirsk, Russia
| | - Maya A. Dymova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - Vladimir A. Richter
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| |
Collapse
|
4
|
Taylor ML, Alle M, Wilson R, Rodriguez-Nieves A, Lutey MA, Slavney WF, Stewart J, Williams H, Amrhein K, Zhang H, Wang Y, Hoang TB, Huang X. Single Vesicle Surface Protein Profiling and Machine Learning-Based Dual Image Analysis for Breast Cancer Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1739. [PMID: 39513819 PMCID: PMC11548014 DOI: 10.3390/nano14211739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Single-vesicle molecular profiling of cancer-associated extracellular vesicles (EVs) is increasingly being recognized as a powerful tool for cancer detection and monitoring. Mask and target dual imaging is a facile method to quantify the fraction of the molecularly targeted population of EVs in biofluids at the single-vesicle level. However, accurate and efficient dual imaging vesicle analysis has been challenging due to the interference of false signals on the mask images and the need to analyze a large number of images in clinical samples. In this work, we report a fully automatic dual imaging analysis method based on machine learning and use it with dual imaging single-vesicle technology (DISVT) to detect breast cancer at different stages. The convolutional neural network Resnet34 was used along with transfer learning to produce a suitable machine learning model that could accurately identify areas of interest in experimental data. A combination of experimental and synthetic data were used to train the model. Using DISVT and our machine learning-assisted image analysis platform, we determined the fractions of EpCAM-positive EVs and CD24-positive EVs over captured plasma EVs with CD81 marker in the blood plasma of pilot HER2-positive breast cancer patients and compared to those from healthy donors. The amount of both EpCAM-positive and CD24-positive EVs was found negligible for both healthy donors and Stage I patients. The amount of EpCAM-positive EVs (also CD81-positive) increased from 18% to 29% as the cancer progressed from Stage II to III. No significant increase was found with further progression to Stage IV. A similar trend was found for the CD24-positive EVs. Statistical analysis showed that both EpCAM and CD24 markers can detect HER2-positive breast cancer at Stages II, III, or IV. They can also differentiate individual cancer stages except those between Stage III and Stage IV. Due to the simplicity, high sensitivity, and high efficiency, the DISVT with the AI-assisted dual imaging analysis can be widely used for both basic research and clinical applications to quantitatively characterize molecularly targeted EV subtypes in biofluids.
Collapse
Affiliation(s)
- Mitchell Lee Taylor
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA; (M.L.T.); (M.A.); (R.W.J.); (A.R.-N.); (M.A.L.); (W.F.S.); (K.A.); (Y.W.)
| | - Madhusudhan Alle
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA; (M.L.T.); (M.A.); (R.W.J.); (A.R.-N.); (M.A.L.); (W.F.S.); (K.A.); (Y.W.)
| | - Raymond Wilson
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA; (M.L.T.); (M.A.); (R.W.J.); (A.R.-N.); (M.A.L.); (W.F.S.); (K.A.); (Y.W.)
| | - Alberto Rodriguez-Nieves
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA; (M.L.T.); (M.A.); (R.W.J.); (A.R.-N.); (M.A.L.); (W.F.S.); (K.A.); (Y.W.)
| | - Mitchell A. Lutey
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA; (M.L.T.); (M.A.); (R.W.J.); (A.R.-N.); (M.A.L.); (W.F.S.); (K.A.); (Y.W.)
| | - William F. Slavney
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA; (M.L.T.); (M.A.); (R.W.J.); (A.R.-N.); (M.A.L.); (W.F.S.); (K.A.); (Y.W.)
| | - Jacob Stewart
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA; (J.S.); (H.W.); (T.B.H.)
| | - Hiyab Williams
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA; (J.S.); (H.W.); (T.B.H.)
| | - Kristopher Amrhein
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA; (M.L.T.); (M.A.); (R.W.J.); (A.R.-N.); (M.A.L.); (W.F.S.); (K.A.); (Y.W.)
| | - Hongmei Zhang
- School of Public Health, The University of Memphis, Memphis, TN 38152, USA;
| | - Yongmei Wang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA; (M.L.T.); (M.A.); (R.W.J.); (A.R.-N.); (M.A.L.); (W.F.S.); (K.A.); (Y.W.)
| | - Thang Ba Hoang
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA; (J.S.); (H.W.); (T.B.H.)
| | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA; (M.L.T.); (M.A.); (R.W.J.); (A.R.-N.); (M.A.L.); (W.F.S.); (K.A.); (Y.W.)
| |
Collapse
|
5
|
Dlugolecka M, Czystowska-Kuzmicz M. Factors to consider before choosing EV labeling method for fluorescence-based techniques. Front Bioeng Biotechnol 2024; 12:1479516. [PMID: 39359260 PMCID: PMC11445045 DOI: 10.3389/fbioe.2024.1479516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
A well-designed fluorescence-based analysis of extracellular vesicles (EV) can provide insights into the size, morphology, and biological function of EVs, which can be used in medical applications. Fluorescent nanoparticle tracking analysis with appropriate controls can provide reliable data for size and concentration measurements, while nanoscale flow cytometry is the most appropriate tool for characterizing molecular cargoes. Label selection is a crucial element in all fluorescence methods. The most comprehensive data can be obtained if several labeling approaches for a given marker are used, as they would provide complementary information about EV populations and interactions with the cells. In all EV-related experiments, the influence of lipoproteins and protein corona on the results should be considered. By reviewing and considering all the factors affecting EV labeling methods used in fluorescence-based techniques, we can assert that the data will provide as accurate as possible information about true EV biology and offer precise, clinically applicable information for future EV-based diagnostic or therapeutic applications.
Collapse
|
6
|
Pham CV, Chowdhury R, Patel S, Jaysawal SK, Hou Y, Xu H, Jia L, Zhang Y, Wang X, Duan W, Xiang D. An aptamer-guided fluorescence polarisation platform for extracellular vesicle liquid biopsy. J Extracell Vesicles 2024; 13:e12502. [PMID: 39221546 PMCID: PMC11367152 DOI: 10.1002/jev2.12502] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The translation of discoveries on extracellular vesicle (EV) based cancer biomarkers to personalised precision oncology requires the development of robust, sensitive and specific assays that are amenable to adoption in the clinical laboratory. Whilst a variety of elegant approaches for EV liquid biopsy have been developed, most of them remain as research prototypes due to the requirement of a high level of microfabrication and/or sophisticated instruments. Hence, this study is set to develop a simple DNA aptamer-enabled and fluorescence polarisation-based homogenous assay that eliminates the need to separate unbound detection ligands from the bound species for EV detection. High specificity is achieved by immobilising EVs with one set of antibodies and subsequently detecting them with a DNA aptamer targeting a distinct EV biomarker. This two-pronged strategy ensures the removal of most, if not all, non-EV substances in the input biofluids, including soluble proteins, protein aggregates or non-vesicular particles, prior to quantifying biomarker-positive EVs. A limit of detection of 5.0 × 106 EVs/mL was achieved with a linear quantification range of 5.0 × 108 to 2.0 × 1010 EVs/mL. Facilitated by a multiple parametric analysis strategy, this aptamer-guided fluorescence polarisation assay was capable of distinguishing EVs from three different types of solid cancer cells based on quantitative differences in the levels of the same sets of biomarkers on EVs. Given the simplicity of the method and its ease of implementation in automated clinical biochemistry analysers, this assay could be exploited for future EV-based continuous and real-time monitoring of the emergence of new macro- or micro-metastasis, cancer progression as well as the response to treatment throughout different stages of cancer management in the clinic.
Collapse
Affiliation(s)
- Cuong Viet Pham
- School of MedicineDeakin UniversityWaurn PondsVICAustralia
- Molecular Imaging and Theranostics LaboratoryBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | | | - Shweta Patel
- School of MedicineDeakin UniversityWaurn PondsVICAustralia
| | | | - Yingchu Hou
- Laboratory of Tumor Molecular and Cellular Biology College of Life SciencesShaanxi Normal UniversityXi'anShaanxiChina
| | - Huo Xu
- College of Materials and Chemical EngineeringMinjiang UniversityFuzhouFujianChina
| | - Lee Jia
- College of Materials and Chemical EngineeringMinjiang UniversityFuzhouFujianChina
| | - Yu‐mei Zhang
- School of MedicineDeakin UniversityWaurn PondsVICAustralia
| | - Xiaowei Wang
- Molecular Imaging and Theranostics LaboratoryBaker Heart and Diabetes InstituteMelbourneVICAustralia
- Department of Cardiometabolic HealthUniversity of MelbourneVICAustralia
| | - Wei Duan
- School of MedicineDeakin UniversityWaurn PondsVICAustralia
| | - Dongxi Xiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer InstituteShanghai Jiaotong UniversityShanghaiChina
- Department of Biliary‐Pancreatic Surgerythe Renji Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
7
|
Guo Z, Tian C, Shi Y, Song XR, Yin W, Tao QQ, Liu J, Peng GP, Wu ZY, Wang YJ, Zhang ZX, Zhang J. Blood-based CNS regionally and neuronally enriched extracellular vesicles carrying pTau217 for Alzheimer's disease diagnosis and differential diagnosis. Acta Neuropathol Commun 2024; 12:38. [PMID: 38444036 PMCID: PMC10913681 DOI: 10.1186/s40478-024-01727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 03/07/2024] Open
Abstract
Accurate differential diagnosis among various dementias is crucial for effective treatment of Alzheimer's disease (AD). The study began with searching for novel blood-based neuronal extracellular vesicles (EVs) that are more enriched in the brain regions vulnerable to AD development and progression. With extensive proteomic profiling, GABRD and GPR162 were identified as novel brain regionally enriched plasma EVs markers. The performance of GABRD and GPR162, along with the AD molecule pTau217, was tested using the self-developed and optimized nanoflow cytometry-based technology, which not only detected the positive ratio of EVs but also concurrently presented the corresponding particle size of the EVs, in discovery (n = 310) and validation (n = 213) cohorts. Plasma GABRD+- or GPR162+-carrying pTau217-EVs were significantly reduced in AD compared with healthy control (HC). Additionally, the size distribution of GABRD+- and GPR162+-carrying pTau217-EVs were significantly different between AD and non-AD dementia (NAD). An integrative model, combining age, the number and corresponding size of the distribution of GABRD+- or GPR162+-carrying pTau217-EVs, accurately and sensitively discriminated AD from HC [discovery cohort, area under the curve (AUC) = 0.96; validation cohort, AUC = 0.93] and effectively differentiated AD from NAD (discovery cohort, AUC = 0.91; validation cohort, AUC = 0.90). This study showed that brain regionally enriched neuronal EVs carrying pTau217 in plasma may serve as a robust diagnostic and differential diagnostic tool in both clinical practice and trials for AD.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Chen Tian
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Yang Shi
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xue-Ru Song
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Wei Yin
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, 310011, China
| | - Qing-Qing Tao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Jie Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Guo-Ping Peng
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Zhen-Xin Zhang
- Department of Neurology and Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jing Zhang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Hangzhou, 310012, China.
- Liangzhu Laboratory, Zhejiang University, 311121, Hangzhou, China.
| |
Collapse
|
8
|
Garcia NA, Gonzalez-King H, Mellergaard M, Nair S, Salomon C, Handberg A. Comprehensive strategy for identifying extracellular vesicle surface proteins as biomarkers for chronic kidney disease. Front Physiol 2024; 15:1328362. [PMID: 38379702 PMCID: PMC10877036 DOI: 10.3389/fphys.2024.1328362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Chronic kidney disease (CKD) poses a significant health burden worldwide. Especially, obesity-induced chronic kidney disease (OCKD) is associated with a lack of accuracy in disease diagnostic methods. The identification of reliable biomarkers for the early diagnosis and monitoring of CKD and OCKD is crucial for improving patient outcomes. Extracellular vesicles (EVs) have emerged as potential biomarkers in the context of CKD. In this review, we focused on the role of EVs as potential biomarkers in CKD and OCKD and developed a comprehensive list of EV membrane proteins that could aid in the diagnosis and monitoring of the disease. To assemble our list, we employed a multi-step strategy. Initially, we conducted a thorough review of the literature on EV protein biomarkers in kidney diseases. Additionally, we explored papers investigating circulating proteins as biomarkers in kidney diseases. To further refine our list, we utilized the EV database Vesiclepedia.org to evaluate the qualifications of each identified protein. Furthermore, we consulted the Human Protein Atlas to assess the localization of these candidates, with a particular focus on membrane proteins. By integrating the information from the reviewed literature, Vesiclepedia.org, and the Human Protein Atlas, we compiled a comprehensive list of potential EV membrane protein biomarkers for CKD and OCKD. Overall, our review underscores the potential of EVs as biomarkers in the field of CKD research, providing a foundation for future studies aimed at improving CKD and OCKD diagnosis and treatment.
Collapse
Affiliation(s)
| | - Hernan Gonzalez-King
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maiken Mellergaard
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Soumyalekshmi Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland, Brisbane, QLD, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland, Brisbane, QLD, Australia
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
9
|
Sharma M, Sheth M, Poling HM, Kuhnell D, Langevin SM, Esfandiari L. Rapid purification and multiparametric characterization of circulating small extracellular vesicles utilizing a label-free lab-on-a-chip device. Sci Rep 2023; 13:18293. [PMID: 37880299 PMCID: PMC10600140 DOI: 10.1038/s41598-023-45409-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023] Open
Abstract
Nano-scale extracellular vesicles are lipid-bilayer delimited particles that are naturally secreted by all cells and have emerged as valuable biomarkers for a wide range of diseases. Efficient isolation of small extracellular vesicles while maintaining yield and purity is crucial to harvest their potential in diagnostic, prognostic, and therapeutic applications. Most conventional methods of isolation suffer from significant shortcomings, including low purity or yield, long duration, need for large sample volumes, specialized equipment, trained personnel, and high costs. To address some of these challenges, our group has reported a novel insulator-based dielectrophoretic device for rapid isolation of small extracellular vesicles from biofluids and cell culture media based on their size and dielectric properties. In this study, we report a comprehensive characterization of small extracellular vesicles isolated from cancer-patients' biofluids at a twofold enrichment using the device. The three-fold characterization that was performed using conventional flow cytometry, advanced imaging flow cytometry, and microRNA sequencing indicated high yield and purity of the isolated small extracellular vesicles. The device thus offers an efficient platform for rapid isolation while maintaining biomolecular integrity.
Collapse
Affiliation(s)
- Manju Sharma
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Maulee Sheth
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Holly M Poling
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Damaris Kuhnell
- Department of Environmental and Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Scott M Langevin
- Larner College of Medicine, University of Vermont, Burlington, VT, USA
- University of Vermont Cancer Center, Burlington, VT, USA
| | - Leyla Esfandiari
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA.
- Department of Environmental and Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA.
- University of Cincinnati Cancer Center, Cincinnati, OH, USA.
| |
Collapse
|
10
|
Haddad M, Frickenstein A, Wilhelm S. High-Throughput Single-Cell Analysis of Nanoparticle-Cell Interactions. Trends Analyt Chem 2023; 166:117172. [PMID: 37520860 PMCID: PMC10373476 DOI: 10.1016/j.trac.2023.117172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Understanding nanoparticle-cell interactions at single-nanoparticle and single-cell resolutions is crucial to improving the design of next-generation nanoparticles for safer, more effective, and more efficient applications in nanomedicine. This review focuses on recent advances in the continuous high-throughput analysis of nanoparticle-cell interactions at the single-cell level. We highlight and discuss the current trends in continual flow high-throughput methods for analyzing single cells, such as advanced flow cytometry techniques and inductively coupled plasma mass spectrometry methods, as well as their intersection in the form of mass cytometry. This review further discusses the challenges and opportunities with current single-cell analysis approaches and provides proposed directions for innovation in the high-throughput analysis of nanoparticle-cell interactions.
Collapse
Affiliation(s)
- Majood Haddad
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alex Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma, Norman, Oklahoma, 73019, USA
| |
Collapse
|
11
|
Garcia NA, Mellergaard M, Gonzalez-King H, Salomon C, Handberg A. Comprehensive Strategy for Identifying Extracellular Vesicle Surface Proteins as Biomarkers for Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:13326. [PMID: 37686134 PMCID: PMC10487973 DOI: 10.3390/ijms241713326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver disorder that has become a global health concern due to its increasing prevalence. There is a need for reliable biomarkers to aid in the diagnosis and prognosis of NAFLD. Extracellular vesicles (EVs) are promising candidates in biomarker discovery, as they carry proteins that reflect the pathophysiological state of the liver. In this review, we developed a list of EV proteins that could be used as diagnostic biomarkers for NAFLD. We employed a multi-step strategy that involved reviewing and comparing various sources of information. Firstly, we reviewed papers that have studied EVs proteins as biomarkers in NAFLD and papers that have studied circulating proteins as biomarkers in NAFLD. To further identify potential candidates, we utilized the EV database Vesiclepedia.org to qualify each protein. Finally, we consulted the Human Protein Atlas to search for candidates' localization, focusing on membrane proteins. By integrating these sources of information, we developed a comprehensive list of potential EVs membrane protein biomarkers that could aid in diagnosing and monitoring NAFLD. In conclusion, our multi-step strategy for identifying EV-based protein biomarkers for NAFLD provides a comprehensive approach that can also be applied to other diseases. The protein candidates identified through this approach could have significant implications for the development of non-invasive diagnostic tests for NAFLD and improve the management and treatment of this prevalent liver disorder.
Collapse
Affiliation(s)
| | - Maiken Mellergaard
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg Hobrovej 18-22, 9000 Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, 9000 Aalborg, Denmark
| | - Hernan Gonzalez-King
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland, Brisbane, QLD 4029, Australia
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg Hobrovej 18-22, 9000 Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, 9000 Aalborg, Denmark
| |
Collapse
|
12
|
Mermans F, Mattelin V, Van den Eeckhoudt R, García-Timermans C, Van Landuyt J, Guo Y, Taurino I, Tavernier F, Kraft M, Khan H, Boon N. Opportunities in optical and electrical single-cell technologies to study microbial ecosystems. Front Microbiol 2023; 14:1233705. [PMID: 37692384 PMCID: PMC10486927 DOI: 10.3389/fmicb.2023.1233705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
New techniques are revolutionizing single-cell research, allowing us to study microbes at unprecedented scales and in unparalleled depth. This review highlights the state-of-the-art technologies in single-cell analysis in microbial ecology applications, with particular attention to both optical tools, i.e., specialized use of flow cytometry and Raman spectroscopy and emerging electrical techniques. The objectives of this review include showcasing the diversity of single-cell optical approaches for studying microbiological phenomena, highlighting successful applications in understanding microbial systems, discussing emerging techniques, and encouraging the combination of established and novel approaches to address research questions. The review aims to answer key questions such as how single-cell approaches have advanced our understanding of individual and interacting cells, how they have been used to study uncultured microbes, which new analysis tools will become widespread, and how they contribute to our knowledge of ecological interactions.
Collapse
Affiliation(s)
- Fabian Mermans
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
- Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - Valérie Mattelin
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Ruben Van den Eeckhoudt
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| | - Cristina García-Timermans
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Josefien Van Landuyt
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Yuting Guo
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Irene Taurino
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
- Semiconductor Physics, Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
| | - Filip Tavernier
- MICAS, Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| | - Michael Kraft
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
- Leuven Institute of Micro- and Nanoscale Integration (LIMNI), KU Leuven, Leuven, Belgium
| | - Hira Khan
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Merkher Y, Kontareva E, Bogdan E, Achkasov K, Maximova K, Grolman JM, Leonov S. Encapsulation and adhesion of nanoparticles as a potential biomarker for TNBC cells metastatic propensity. Sci Rep 2023; 13:12289. [PMID: 37516753 PMCID: PMC10387085 DOI: 10.1038/s41598-023-33540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 04/14/2023] [Indexed: 07/31/2023] Open
Abstract
Metastasis is the main cause of cancer-related mortality; therefore, the ability to predict its propensity can remarkably affect survival rate. Metastasis development is predicted nowadays by lymph-node status, tumor size, histopathology, and genetic testing. However, all these methods may have inaccuracies, and some require weeks to complete. Identifying novel prognostic markers will open an essential source for risk prediction, possibly guiding to elevated patient treatment by personalized strategies. Cancer cell invasion is a critical step in metastasis. The cytoskeletal mechanisms used by metastatic cells for the invasion process are very similar to the utilization of actin cytoskeleton in the endocytosis process. In the current study, the adhesion and encapsulation efficiency of low-cost carboxylate-modified fluorescent nanoparticles by breast cancer cells with high (HM) and low metastatic potential (LM) have been evaluated; benign cells were used as control. Using high-content fluorescence imaging and analysis, we have revealed (within a short time of 1 h), that efficiency of nanoparticles adherence and encapsulation is sufficiently higher in HM cells compared to LM cells, while benign cells are not encapsulating or adhering the particles during experiment time at all. We have utilized custom-made automatic image analysis algorithms to find quantitative co-localization (Pearson's coefficients) of the nanoparticles with the imaged cells. The method proposed here is straightforward; it does not require especial equipment or expensive materials nor complicated cell manipulations, it may be potentially applicable for various cells, including patient-derived cells. Effortless and quantitative determination of the metastatic likelihood has the potential to be performed using patient-specific biopsy/surgery sample, which will directly influence the choice of protocols for cancer patient's treatment and, as a result, increase their life expectancy.
Collapse
Affiliation(s)
- Yulia Merkher
- Laboratory of Innovative Medicine and Agrobiotechnology, Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Moscow Region, Russia.
| | - Elizaveta Kontareva
- Laboratory of Innovative Medicine and Agrobiotechnology, Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Moscow Region, Russia
| | - Elizaveta Bogdan
- Laboratory of Innovative Medicine and Agrobiotechnology, Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Moscow Region, Russia
| | - Konstantin Achkasov
- Laboratory of Innovative Medicine and Agrobiotechnology, Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Moscow Region, Russia
| | - Ksenia Maximova
- Laboratory of Innovative Medicine and Agrobiotechnology, Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Moscow Region, Russia
| | - Joshua M Grolman
- The Biomechanic Materials Lab, Technion Israel Institute of Technology, Haifa, Israel
| | - Sergey Leonov
- Laboratory of Innovative Medicine and Agrobiotechnology, Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Moscow Region, Russia.
| |
Collapse
|
14
|
Choi YY, Kim A, Lee Y, Lee YH, Park M, Shin E, Park S, Youn B, Seong KM. The miR-126-5p and miR-212-3p in the extracellular vesicles activate monocytes in the early stage of radiation-induced vascular inflammation implicated in atherosclerosis. J Extracell Vesicles 2023; 12:e12325. [PMID: 37140946 PMCID: PMC10158827 DOI: 10.1002/jev2.12325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 05/05/2023] Open
Abstract
People exposed to radiation in cancer therapy and nuclear accidents are at increased risk of cardiovascular outcomes in long-term survivors. Extracellular vesicles (EVs) are involved in radiation-induced endothelial dysfunction, but their role in the early stage of vascular inflammation after radiation exposure remains to be fully understood. Herein, we demonstrate that endothelial cell-derived EVs containing miRNAs initiate monocyte activation in radiation-induced vascular inflammation. In vitro co-culture and in vivo experimental data showed that endothelial EVs can be sensitively increased by radiation exposure in a dose-dependent manner, and stimulate monocytes releasing monocytic EVs and adhesion to endothelial cells together with an increase in the expression of genes encoding specific ligands for cell-cell interaction. Small RNA sequencing and transfection using mimics and inhibitors explained that miR-126-5p and miR-212-3p enriched in endothelial EVs initiate vascular inflammation by monocyte activation after radiation exposure. Moreover, miR-126-5p could be detected in the circulating endothelial EVs of radiation-induced atherosclerosis model mice, which was found to be tightly correlated with the atherogenic index of plasma. In summary, our study showed that miR-126-5p and miR-212-3p present in the endothelial EVs mediate the inflammatory signals to activate monocytes in radiation-induced vascular injury. A better understanding of the circulating endothelial EVs content can promote their use as diagnostic and prognostic biomarkers for atherosclerosis after radiation exposure.
Collapse
Affiliation(s)
- You Yeon Choi
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul, Republic of Korea
| | - Areumnuri Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, KIRAMS, Seoul, Republic of Korea
| | - Younghyun Lee
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul, Republic of Korea
| | - Yang Hee Lee
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul, Republic of Korea
| | - Mineon Park
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul, Republic of Korea
| | - Eunguk Shin
- Department of Biological Sciences, Pusan National University, Busan, Republic of Korea
| | - Sunhoo Park
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul, Republic of Korea
| | - BuHyun Youn
- Department of Biological Sciences, Pusan National University, Busan, Republic of Korea
| | - Ki Moon Seong
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul, Republic of Korea
| |
Collapse
|
15
|
Franco C, Ghirardello A, Bertazza L, Gasparotto M, Zanatta E, Iaccarino L, Valadi H, Doria A, Gatto M. Size-Exclusion Chromatography Combined with Ultrafiltration Efficiently Isolates Extracellular Vesicles from Human Blood Samples in Health and Disease. Int J Mol Sci 2023; 24:ijms24043663. [PMID: 36835073 PMCID: PMC9963337 DOI: 10.3390/ijms24043663] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/22/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
There is still a need for an efficient method for the isolation of extracellular vesicles (EVs) from human blood that provides a reliable yield with acceptable purity. Blood is a source of circulating EVs, but soluble proteins and lipoproteins hamper their concentration, isolation, and detection. This study aims to investigate the efficiency of EV isolation and characterization methods not defined as "gold standard". EVs were isolated from human platelet-free plasma (PFP) of patients and healthy donors through size-exclusion chromatography (SEC) combined with ultrafiltration (UF). Then, EVs were characterized using transmission electron microscopy (TEM), imaging flow cytometry (IFC), and nanoparticle tracking analysis (NTA). TEM images showed intact and roundish nanoparticles in pure samples. IFC analysis detected a prevalence of CD63+ EVs compared to CD9+, CD81+, and CD11c+ EVs. NTA confirmed the presence of small EVs with a concentration of ~1010 EVs/mL that were comparable when stratifying the subjects by baseline demographics; conversely, concentration differed according to the health status across healthy donors and patients affected with autoimmune diseases (130 subjects in total, with 65 healthy donors and 65 idiopathic inflammatory myopathy (IIM) patients). Altogether, our data show that a combined EV isolation method, i.e., SEC followed by UF, is a reliable approach to isolate intact EVs with a significant yield from complex fluids, which might characterize disease conditions early.
Collapse
Affiliation(s)
- Chiara Franco
- Unit of Rheumatology, Department of Medicine (DIMED), University of Padova, 35128 Padova, Italy
| | - Anna Ghirardello
- Unit of Rheumatology, Department of Medicine (DIMED), University of Padova, 35128 Padova, Italy
| | - Loris Bertazza
- Unit of Endocrinology, Department of Medicine (DIMED), University of Padova, 35128 Padova, Italy
| | - Michela Gasparotto
- Unit of Rheumatology, Department of Medicine (DIMED), University of Padova, 35128 Padova, Italy
| | - Elisabetta Zanatta
- Unit of Rheumatology, Department of Medicine (DIMED), University of Padova, 35128 Padova, Italy
| | - Luca Iaccarino
- Unit of Rheumatology, Department of Medicine (DIMED), University of Padova, 35128 Padova, Italy
| | - Hadi Valadi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10A, 413 46 Gothenburg, Sweden
| | - Andrea Doria
- Unit of Rheumatology, Department of Medicine (DIMED), University of Padova, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-0498212190
| | - Mariele Gatto
- Unit of Rheumatology, Department of Medicine (DIMED), University of Padova, 35128 Padova, Italy
| |
Collapse
|
16
|
Isolation-free measurement of single urinary extracellular vesicles by imaging flow cytometry. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102638. [PMID: 36549551 DOI: 10.1016/j.nano.2022.102638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Urinary extracellular vesicles (uEVs) are promising biomarkers for various diseases. However, many tools measuring uEVs rely on time-consuming uEV isolation methods, which could induce sample bias. This study demonstrates the detection of single uEVs without isolation using imaging flow cytometry (IFCM). Unstained urine samples contained auto-fluorescent (A-F) particles when characterized with IFCM. Centrifugation successfully removed A-F particles from the unprocessed urine. Based on the disappearance of A-F particles, a gate was defined to distinguish uEVs from A-F particles. The final readouts of IFCM were verified as single EVs based on detergent treatment and serial dilutions. When developing this protocol to measure urine samples with abnormally high protein levels, 25 mg/mL dithiothreitol (DTT) showed improved uEV recovery over 200 mg/mL DTT. This study provides an isolation-free protocol using IFCM to quantify and phenotype single uEVs, eliminating the hindrance and influence of A-F particles, protein aggregates, and coincidence events.
Collapse
|
17
|
Luo T, Chen SY, Qiu ZX, Miao YR, Ding Y, Pan XY, Li Y, Lei Q, Guo AY. Transcriptomic Features in a Single Extracellular Vesicle via Single-Cell RNA Sequencing. SMALL METHODS 2022; 6:e2200881. [PMID: 36068167 DOI: 10.1002/smtd.202200881] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Although many studies have investigated functional molecules in extracellular vesicles (EVs), the exact number of ribonucleic acid molecules in a single-EV is unknown. Therefore, it is critical to explore the transcriptomic features and heterogeneity at the level of a single-EV. Here, using the 10x Genomics platform, the RNA cargos are profiled in single EVs derived from human K562 and mesenchymal stem cells. The key steps are labeling intact EVs using calcein-AM, detecting the EV concentration via flow cytometry, and using the CB2 algorithm with adaptive thresholds to effectively distinguish real EVs from background. The gene number in a single-EV varied from 6 to 148, with a mean of 52. Ribosomal genes, mitochondrial genes, and eukaryotic translation elongation factor 1 alpha has a high EV percentage in all EV samples. Hemoglobin genes are uniquely highly expressed in K562-EVs, and cytoskeleton genes are enriched in MSC-EVs. Ten or more clusters with different marker genes in each single-EV dataset demonstrated EV heterogeneity. Moreover, integrating EVs and their parental cells reveal both EVs and cells in each cluster, indicating different cell origins of various EVs. To the best of the author's knowledge, this study provides the first high-throughput transcriptome at the single-EV level and improves the understanding of EVs.
Collapse
Affiliation(s)
- Tao Luo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Artificial Intelligence Biology, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Si-Yi Chen
- Center for Artificial Intelligence Biology, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | - Ya-Ru Miao
- Center for Artificial Intelligence Biology, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yue Ding
- Wuhan Biobank, Wuhan, 430000, China
| | | | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qian Lei
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - An-Yuan Guo
- Center for Artificial Intelligence Biology, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
18
|
Clegg LAM, Sloth JK, Bæk R, Jørgensen MM. Photometric method for dual targeting of surface and surface-associated proteins on extracellular vesicles in the multiparametric test. Front Mol Biosci 2022; 9:917487. [DOI: 10.3389/fmolb.2022.917487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) have become a topic of interest within the field of diagnostic biomarkers; however, recent developments in the study of EVs have increased the need for simpler but still comprehensive methods for characterization. Here, we describe how to simultaneously measure several surface or surface-associated proteins on EVs using a multiparametric microarray-based analysis termed Extracellular Vesicle Array (EV Array), which is developed to catch and phenotypically characterize small EVs. Previously, this analysis has been limited to measuring only one fluorescent signal per analysis. The analysis relies on antibodies printed onto a solid surface, for catching the EVs carrying the specific surface or surface-associated proteins, and on the subsequent fluorescent detection. For the optimization of detection, two antibodies with attached Cy3 or Cy5 were added to various combinations of the EV surface or surface-associated proteins: CD9, CD63, CD81, flotillin-1, and HSP90. In this study, the EV surface or surface-associated proteins were analyzed in human plasma from six healthy subjects. Changes observed in signal intensities from Cy3 and Cy5 related specifically to these combinations and allowed for a comparison of the two different fluorescent signals. When comparing the results, it was observed that it is possible to measure the EV surface or surface-associated proteins at both 532 nm (Cy3) and 635 nm (Cy5) simultaneously without a significant change in signals from the detection molecules. This allows us to measure multiple EV marker proteins in a single analysis, thereby more quickly finding complex biomarker patterns in a sample.
Collapse
|
19
|
Beckner ME, Conkright WR, Mi Q, Martin BJ, Sahu A, Flanagan SD, Ledford AK, Wright M, Susmarski A, Ambrosio F, Nindl BC. Neuroendocrine, Inflammatory, and Extracellular Vesicle Responses During the Navy Special Warfare Screener Selection Course. Physiol Genomics 2022; 54:283-295. [PMID: 35695270 PMCID: PMC9291410 DOI: 10.1152/physiolgenomics.00184.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Military operational stress is known to increase adrenal hormones and inflammatory cytokines, while decreasing hormones associated with the anabolic milieu and neuroendocrine system. Less is known about the role of extracellular vesicles (EVs), a form of cell-to-cell communication, in military operational stress and their relationship to circulating hormones. PURPOSE To characterize the neuroendocrine, cytokine, and EV response to an intense, 24-h selection course known as the Naval Special Warfare (NSW) Screener and identify associations between EVs and cytokines. METHODS Blood samples were collected the morning of and following the NSW Screener in 29 men (18 - 26 years). Samples were analyzed for concentrations of cortisol, insulin-like growth factor I (IGF-I), neuropeptide-Y (NPY), brain-derived neurotrophic factor (BDNF), α-klotho, tumor necrosis factor- α (TNFα), and interleukins (IL) -1β, -6, and -10. EVs stained with markers associated with exosomes (CD63), microvesicles (VAMP3), and apoptotic bodies (THSD1) were characterized using imaging flow cytometry and vesicle flow cytometry. RESULTS The selection event induced significant changes in circulating BDNF (-43.2%), IGF-I (-24.56%), TNFα (+17.7%), IL-6 (+13.6%), accompanied by increases in intensities of THSD1+ and VAMP3+ EVs (all p<0.05). Higher concentrations of IL-1β and IL-10 were positively associated with THSD1+ EVs (p<0.05). CONCLUSION Military operational stress altered the EV profile. Surface markers associated with apoptotic bodies were positively correlated with an inflammatory response. Future studies should consider a multi-omics assessment of EV cargo to discern canonical pathways that may be mediated by EVs during military stress.
Collapse
Affiliation(s)
- Meaghan E Beckner
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - William R Conkright
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qi Mi
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brian J Martin
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Amrita Sahu
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shawn D Flanagan
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew K Ledford
- Department of Leadership, Ethics, and Law, U.S. Naval Academy, Annapolis, MD, United States
| | - Martin Wright
- Human Performance Lab, Physical Education Department, U.S. Naval Academy, Annapolis, MD, United States
| | - Adam Susmarski
- Brigade Orthopedics and Sports Medicine, U.S. Navy Academy, Annapolis, MD, United States
| | - Fabrisia Ambrosio
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bradley C Nindl
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
20
|
Rother N, Yanginlar C, Pieterse E, Hilbrands L, van der Vlag J. Microparticles in Autoimmunity: Cause or Consequence of Disease? Front Immunol 2022; 13:822995. [PMID: 35514984 PMCID: PMC9065258 DOI: 10.3389/fimmu.2022.822995] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/25/2022] [Indexed: 12/15/2022] Open
Abstract
Microparticles (MPs) are small (100 nm - 1 um) extracellular vesicles derived from the plasma membrane of dying or activated cells. MPs are important mediators of intercellular communication, transporting proteins, nucleic acids and lipids from the parent cell to other cells. MPs resemble the state of their parent cells and are easily accessible when released into the blood or urine. MPs also play a role in the pathogenesis of different diseases and are considered as potential biomarkers. MP isolation and characterization is technically challenging and results in different studies are contradictory. Therefore, uniform guidelines to isolate and characterize MPs should be developed. Our understanding of MP biology and how MPs play a role in different pathological mechanisms has greatly advanced in recent years. MPs, especially if derived from apoptotic cells, possess strong immunogenic properties due to the presence of modified proteins and nucleic acids. MPs are often found in patients with autoimmune diseases where MPs for example play a role in the break of immunological tolerance and/or induction of inflammatory conditions. In this review, we describe the main techniques to isolate and characterize MPs, define the characteristics of MPs generated during cell death, illustrate different mechanism of intercellular communication via MPs and summarize the role of MPs in pathological mechanisms with a particular focus on autoimmune diseases.
Collapse
Affiliation(s)
- Nils Rother
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cansu Yanginlar
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Elmar Pieterse
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Luuk Hilbrands
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
21
|
Loch-Neckel G, Matos AT, Vaz AR, Brites D. Challenges in the Development of Drug Delivery Systems Based on Small Extracellular Vesicles for Therapy of Brain Diseases. Front Pharmacol 2022; 13:839790. [PMID: 35422699 PMCID: PMC9002061 DOI: 10.3389/fphar.2022.839790] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Small extracellular vesicles (sEVs) have ∼30–200 nm diameter size and may act as carriers of different cargoes, depending on the cell of origin or on the physiological/pathological condition. As endogenous nanovesicles, sEVs are important in intercellular communication and have many of the desirable features of an ideal drug delivery system. sEVs are naturally biocompatible, with superior targeting capability, safety profile, nanometric size, and can be loaded with both lipophilic and hydrophilic agents. Because of their biochemical and physical properties, sEVs are considered a promising strategy over other delivery vehicles in the central nervous system (CNS) since they freely cross the blood-brain barrier and they can be directed to specific nerve cells, potentiating a more precise targeting of their cargo. In addition, sEVs remain stable in the peripheral circulation, making them attractive nanocarrier systems to promote neuroregeneration. This review focuses on the recent progress in methods for manufacturing, isolating, and engineering sEVs that can be used as a therapeutic strategy to overcome neurodegeneration associated with pathologies of the CNS, with particular emphasis on Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis diseases, as well as on brain tumors.
Collapse
Affiliation(s)
- Gecioni Loch-Neckel
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Teresa Matos
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Rita Vaz
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
22
|
Newman LA, Muller K, Rowland A. Circulating cell-specific extracellular vesicles as biomarkers for the diagnosis and monitoring of chronic liver diseases. Cell Mol Life Sci 2022; 79:232. [PMID: 35397694 PMCID: PMC8995281 DOI: 10.1007/s00018-022-04256-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 11/30/2022]
Abstract
AbstractChronic liver diseases represent a burgeoning health problem affecting billions of people worldwide. The insufficient performance of current minimally invasive tools is recognised as a significant barrier to the clinical management of these conditions. Extracellular vesicles (EVs) have emerged as a rich source of circulating biomarkers closely linked to pathological processes in originating tissues. Here, we summarise the contribution of EVs to normal liver function and to chronic liver pathologies; and explore the use of circulating EV biomarkers, with a particular focus on techniques to isolate and analyse cell- or tissue-specific EVs. Such approaches present a novel strategy to inform disease status and monitor changes in response to treatment in a minimally invasive manner. Emerging technologies that support the selective isolation and analysis of circulating EVs derived only from hepatic cells, have driven recent advancements in EV-based biomarker platforms for chronic liver diseases and show promise to bring these techniques to clinical settings.
Collapse
Affiliation(s)
- Lauren A Newman
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Kate Muller
- Department of Gastroenterology and Hepatology, College of Medicine and Public Health, Flinders Medical Centre, Adelaide, SA, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
23
|
Botha J, Handberg A, Simonsen JB. Lipid-based strategies used to identify extracellular vesicles in flow cytometry can be confounded by lipoproteins: Evaluations of annexin V, lactadherin, and detergent lysis. J Extracell Vesicles 2022; 11:e12200. [PMID: 35362259 PMCID: PMC8971177 DOI: 10.1002/jev2.12200] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 11/12/2022] Open
Abstract
Flow cytometry (FCM) is a popular method used in characterisation of extracellular vesicles (EVs). Circulating EVs are often identified by FCM by exploiting the lipid nature of EVs by staining with Annexin V (Anx5) or lactadherin against the membrane phospholipid phosphatidylserine (PS) and evaluating the specificity of the labels by detergent lysis of EVs. Here, we investigate whether PS labelling and detergent lysis approaches are confounded by lipoproteins, another family of lipid-based nanoparticles found in blood, in both frozen and fresh blood plasma. We demonstrated that Anx5 and lactadherin in addition to EVs stained ApoB-containing lipoproteins, identified by the use of fluorophore-labelled polyclonal ApoB-antibody, and that Anx5 had a significantly larger tendency for labelling lipoprotein-bound PS than lactadherin. Furthermore, detergent lysis resulted in a decrease in both EV and lipoprotein events and especially lipoproteins positive for either Anx5 or lactadherin. Taken together, our findings pose concerns to the use of lipid-based strategies in identifying EVs by FCM and support the use of transmembrane proteins such as tetraspannins to distinguish EVs from lipoproteins.
Collapse
Affiliation(s)
- Jaco Botha
- Department of Clinical BiochemistryAalborg University Hospital, North Denmark RegionAalborgDenmark
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDenmark
| | - Aase Handberg
- Department of Clinical BiochemistryAalborg University Hospital, North Denmark RegionAalborgDenmark
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
| | - Jens B. Simonsen
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDenmark
| |
Collapse
|