1
|
Pontes JGDM, Nani JVS, Correia BSB, Carneiro Costa TBB, Stanisic D, Hayashi MAF, Tasic L. An Investigation of the Sodium Nitroprusside Effects on Serum Lipids in an Animal Model of Schizophrenia by the Magnetic Resonance Study. ACS OMEGA 2024; 9:48480-48487. [PMID: 39676991 PMCID: PMC11635526 DOI: 10.1021/acsomega.4c07072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/10/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Schizophrenia (SCZ) is a multifactorial mental illness with limited knowledge concerning pathogenesis, contributing to the lack of effective therapies. More recently, the use of a nitric oxide donor named sodium nitroprusside (sNP) was suggested as a potential therapeutic drug for the treatment of SCZ. Despite the mixed results regarding the effectiveness of the sNP in reducing SCZ symptoms, successful trials on sNP in treatment-resistant SCZ were published. We have also demonstrated the power of evaluating the lipidic profiles of human clinical and animal model samples to identify the biomarkers of the pharmacological response to the diagnosis of mental disorders. Aim of this work is to evaluate the sNP effects in an animal model for SCZ studies through lipidomic profiles assessed by magnetic resonance spectroscopy (NMR). Lipidic profiling of serum from these animals indicated a more pronounced effect of sNP on lipids in the 0.50-6.00 ppm spectral region. Chemometric analysis also indicated an approximation of the lipidic profiling of SCZ animal model rats treated with sNP compared to that of the control group. In addition, we have compared the sNP treatment with other antipsychotics classically used in the clinic, such as haloperidol and clozapine, and the sNP treatment evaluated herein confirms the potential of sNP for the treatment of SCZ.
Collapse
Affiliation(s)
- João Guilherme de Moraes Pontes
- Laboratório de Química Biológica (LQB), Departamento de Química Orgânica, Instituto de Química, and INCT-Bio (CNPq), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - João Victor Silva Nani
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM, CNPq), Ribeirão Preto 14026, Brazil
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04044-020, Brazil
| | - Banny Silva Barbosa Correia
- Laboratório de Química Biológica (LQB), Departamento de Química Orgânica, Instituto de Química, and INCT-Bio (CNPq), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Tássia Brena Barroso Carneiro Costa
- Laboratório de Química Biológica (LQB), Departamento de Química Orgânica, Instituto de Química, and INCT-Bio (CNPq), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Danijela Stanisic
- Laboratório de Química Biológica (LQB), Departamento de Química Orgânica, Instituto de Química, and INCT-Bio (CNPq), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Mirian A F Hayashi
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM, CNPq), Ribeirão Preto 14026, Brazil
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04044-020, Brazil
| | - Ljubica Tasic
- Laboratório de Química Biológica (LQB), Departamento de Química Orgânica, Instituto de Química, and INCT-Bio (CNPq), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| |
Collapse
|
2
|
Panov G, Dyulgerova S, Panova P, Stefanova S. Untangling Depression in Schizophrenia: The Role of Disorganized and Obsessive-Compulsive Symptoms and the Duration of Untreated Psychosis. Biomedicines 2024; 12:2646. [PMID: 39595210 PMCID: PMC11592192 DOI: 10.3390/biomedicines12112646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Schizophrenia is a complex disorder characterized by positive symptoms (e.g., hallucinations), negative symptoms (e.g., social withdrawal), and disorganized symptoms (e.g., thought disorder). Alongside these, cognitive and depressive symptoms often emerge, with depressive symptoms sometimes dominating the clinical picture. Understanding the factors that influence the development of depressive symptoms in schizophrenia could clarify the dynamics between depressive and psychotic symptoms and guide clinical interventions. Methods: A total of 105 patients with schizophrenia (66 women, 39 men) were assessed using several clinical scales: PANSS, BPRS, DOCS, DES, HAM-D, and the Luria-Nebraska Neuropsychological Battery for cognitive evaluation. Statistical analyses, including correlation and regression, were conducted using SPSS to determine the significance of associations. Results: Disorganized and obsessive-compulsive symptoms were identified as primary factors associated with depressive symptoms in patients with schizophrenia. Conversely, a longer duration of untreated psychosis was linked to a lower severity of depressive symptoms, suggesting that early intervention may alter the depressive symptom trajectory. Conclusions: Here, we suggest a complex interaction between psychotic and depressive symptoms, possibly indicating a biological antagonism. The association of depressive symptoms with disorganized and obsessive-compulsive features may reflect an adaptive psychological response, attempting to stabilize amidst the disintegration of schizophrenia. These insights support a more integrated approach to treatment, addressing both psychotic and depressive symptoms to improve patient outcomes.
Collapse
Affiliation(s)
- Georgi Panov
- Psychiatric Clinic, University Hospital for Active Treatment “Prof. Dr. Stoyan Kirkovich”, Trakia University, 6000 Stara Zagora, Bulgaria
- Medical Faculty, University “Prof. Dr. Asen Zlatarov”, 8000 Burgas, Bulgaria
| | - Silvana Dyulgerova
- Psychiatric Clinic, University Hospital for Active Treatment “Prof. Dr. Stoyan Kirkovich”, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Presyana Panova
- Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Sonia Stefanova
- Medical Faculty, University “Prof. Dr. Asen Zlatarov”, 8000 Burgas, Bulgaria
| |
Collapse
|
3
|
Tanaka M, Szabó Á, Körtési T, Szok D, Tajti J, Vécsei L. From CGRP to PACAP, VIP, and Beyond: Unraveling the Next Chapters in Migraine Treatment. Cells 2023; 12:2649. [PMID: 37998384 PMCID: PMC10670698 DOI: 10.3390/cells12222649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Migraine is a neurovascular disorder that can be debilitating for individuals and society. Current research focuses on finding effective analgesics and management strategies for migraines by targeting specific receptors and neuropeptides. Nonetheless, newly approved calcitonin gene-related peptide (CGRP) monoclonal antibodies (mAbs) have a 50% responder rate ranging from 27 to 71.0%, whereas CGRP receptor inhibitors have a 50% responder rate ranging from 56 to 71%. To address the need for novel therapeutic targets, researchers are exploring the potential of another secretin family peptide, pituitary adenylate cyclase-activating polypeptide (PACAP), as a ground-breaking treatment avenue for migraine. Preclinical models have revealed how PACAP affects the trigeminal system, which is implicated in headache disorders. Clinical studies have demonstrated the significance of PACAP in migraine pathophysiology; however, a few clinical trials remain inconclusive: the pituitary adenylate cyclase-activating peptide 1 receptor mAb, AMG 301 showed no benefit for migraine prevention, while the PACAP ligand mAb, Lu AG09222 significantly reduced the number of monthly migraine days over placebo in a phase 2 clinical trial. Meanwhile, another secretin family peptide vasoactive intestinal peptide (VIP) is gaining interest as a potential new target. In light of recent advances in PACAP research, we emphasize the potential of PACAP as a promising target for migraine treatment, highlighting the significance of exploring PACAP as a member of the antimigraine armamentarium, especially for patients who do not respond to or contraindicated to anti-CGRP therapies. By updating our knowledge of PACAP and its unique contribution to migraine pathophysiology, we can pave the way for reinforcing PACAP and other secretin peptides, including VIP, as a novel treatment option for migraines.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (Á.S.); (D.S.); (J.T.)
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Tamás Körtési
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31, H-6726 Szeged, Hungary;
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6720 Szeged, Hungary
| | - Délia Szok
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (Á.S.); (D.S.); (J.T.)
| | - János Tajti
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (Á.S.); (D.S.); (J.T.)
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (Á.S.); (D.S.); (J.T.)
| |
Collapse
|
4
|
Jimenez H, Carrion J, Adrien L, Wolin A, Eun J, Cinamon E, Chang EH, Davies P, Vo A, Koppel J. The Impact of Muscarinic Antagonism on Psychosis-Relevant Behaviors and Striatal [ 11C] Raclopride Binding in Tau Mouse Models of Alzheimer's Disease. Biomedicines 2023; 11:2091. [PMID: 37626588 PMCID: PMC10452133 DOI: 10.3390/biomedicines11082091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 08/27/2023] Open
Abstract
Psychosis that occurs over the course of Alzheimer's disease (AD) is associated with increased caregiver burden and a more rapid cognitive and functional decline. To find new treatment targets, studies modeling psychotic conditions traditionally employ agents known to induce psychosis, utilizing outcomes with cross-species relevance, such as locomotive activity and sensorimotor gating, in rodents. In AD, increased burdens of tau pathology (a diagnostic hallmark of the disease) and treatment with anticholinergic medications have, separately, been reported to increase the risk of psychosis. Recent evidence suggests that muscarinic antagonists may increase extracellular tau. Preclinical studies in AD models have not previously utilized muscarinic cholinergic antagonists as psychotomimetic agents. In this report, we utilize a human-mutant-tau model (P301L/COMTKO) and an over-expressed non-mutant human tau model (htau) in order to compare the impact of antimuscarinic (scopolamine 10 mg/kg/day) treatment with dopaminergic (reboxetine 20 mg/kg/day) treatment, for 7 days, on locomotion and sensorimotor gating. Scopolamine increased spontaneous locomotion, while reboxetine reduced it; neither treatment impacted sensorimotor gating. In the P301L/COMTKO, scopolamine treatment was associated with decreased muscarinic M4 receptor expression, as quantified with RNA-seq, as well as increased dopamine receptor D2 signaling, as estimated with Micro-PET [11C] raclopride binding. Scopolamine also increased soluble tau in the striatum, an effect that partially mediated the observed increases in locomotion. Studies of muscarinic agonists in preclinical tau models are warranted to determine the impact of treatment-on both tau and behavior-that may have relevance to AD and other tauopathies.
Collapse
Affiliation(s)
- Heidy Jimenez
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Joseph Carrion
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Leslie Adrien
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Adam Wolin
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - John Eun
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Ezra Cinamon
- Department of Biochemistry, Queens College, Flushing, NY 11355, USA;
| | - Eric H. Chang
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Peter Davies
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - An Vo
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| | - Jeremy Koppel
- The Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (H.J.); (J.C.); (L.A.); (A.W.); (J.E.); (E.H.C.); (P.D.); (A.V.)
| |
Collapse
|
5
|
Kuvarzin SR, Sukhanov I, Onokhin K, Zakharov K, Gainetdinov RR. Unlocking the Therapeutic Potential of Ulotaront as a Trace Amine-Associated Receptor 1 Agonist for Neuropsychiatric Disorders. Biomedicines 2023; 11:1977. [PMID: 37509616 PMCID: PMC10377193 DOI: 10.3390/biomedicines11071977] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
All antipsychotics currently used in clinic block D2 dopamine receptors. Trace amine-associated receptor 1 is emerging as a new therapeutic target for schizophrenia and several other neuropsychiatric disorders. SEP-363856 (International Nonproprietary Name: Ulotaront) is an investigational antipsychotic drug with a novel mechanism of action that does not involve antagonism of dopamine D2 receptors. Ulotaront is an agonist of trace amine-associated receptor 1 and serotonin 5-HT1A receptors, but can modulate dopamine neurotransmission indirectly. In 2019, the United States Food and Drug Administration granted Breakthrough Therapy Designation for ulotaront for the treatment of schizophrenia. Phase 2 clinical studies indicated that ulotaront can reduce both positive and negative symptoms of schizophrenia without causing the extrapyramidal or metabolic side effects that are inherent to most currently used antipsychotics. At present, it is in phase 3 clinical development for the treatment of schizophrenia and is expected to be introduced into clinical practice in 2023-2024. Clinical studies evaluating the potential efficacy of ulotaront in Parkinson's disease psychosis, generalized anxiety disorder, and major depressive disorder have also been started. The aim of this scoping review is to summarize all currently available preclinical and clinical evidence on the utility of ulotaront in the treatment of schizophrenia. Here, we show the main characteristics and distinctive features of this drug. Perspectives and limitations on the potential use of ulotaront in the pharmacotherapy of several other neuropsychiatric disorders are also discussed.
Collapse
Affiliation(s)
- Savelii R Kuvarzin
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Ilya Sukhanov
- Valdman Institute of Pharmacology, Pavlov Medical University, 197022 Saint Petersburg, Russia
| | - Kirill Onokhin
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Accellena Research and Development Inc., 199106 Saint Petersburg, Russia
| | | | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Saint Petersburg University Hospital, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
6
|
Panov G, Panova P. Obsessive-compulsive symptoms in patient with schizophrenia: The influence of disorganized symptoms, duration of schizophrenia, and drug resistance. Front Psychiatry 2023; 14:1120974. [PMID: 36923524 PMCID: PMC10008879 DOI: 10.3389/fpsyt.2023.1120974] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/08/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Schizophrenia is a chronic mental disorder with a many-faced clinical presentation. Obsessive-compulsive symptoms are often part of it. The characteristics of the clinical picture and the course of schizophrenia are factors related to both the resistance and the manifestation of obsessive-compulsive symptoms. Our study aims to establish the relationship between the peculiarities of the schizophrenia process and the influence of resistance on the expression of obsessive-compulsive symptoms. METHODS A study was conducted on 105 patients with schizophrenia. Of them, 39 are men and 66 are women. The evaluation of the effectiveness of the treatment showed that 45 were resistant to the applied therapy, while the remaining 60 responded. Clinical assessment of patients was performed using the Positive and Negative Syndrome Scale (PANSS) and Brief Psychiatric Rating Scale (BPRS). Assessment of obsessive-compulsive symptoms (OCS) was conducted with the Dimensional obsessive-compulsive symptoms scale (DOCS). RESULTS In 34% of all patients, we found clinically expressed obsessive-compulsive symptoms. In 40% of the patients with resistance, we found clinically expressed obsessive-compulsive symptoms, which are within the range of moderately expressed. In 30% of the patients in clinical remission, we found obsessive-compulsive symptoms, but mildly expressed. We found a statistically significant relationship between the severity of OCS and the disorganized symptoms and the duration of the schizophrenia process. No differences were found in the expression of OCS in patients of both sexes. CONCLUSION We registered both an increased frequency and an increased expression of obsessive-compulsive symptoms in patients with resistant schizophrenia. These symptoms were positively associated with disorganized symptoms and duration of schizophrenia. No relationship was established with the positive, negative symptoms, as well as with the gender distribution.
Collapse
Affiliation(s)
- Georgi Panov
- Psychiatric Clinic, University Hospital for Active Treatment "Prof. Dr. Stoyan Kirkovich", Trakia University, Stara Zagora, Bulgaria.,Department of Psychiatry and Psychology, University "Prof. Dr. Asen Zlatarov" Medical Faculty, Burgas, Bulgaria
| | | |
Collapse
|
7
|
Tanaka M, Szabó Á, Vécsei L. Integrating Armchair, Bench, and Bedside Research for Behavioral Neurology and Neuropsychiatry: Editorial. Biomedicines 2022; 10:2999. [PMID: 36551755 PMCID: PMC9775182 DOI: 10.3390/biomedicines10122999] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
"To learning much inclined, who went to see the Elephant (though all of them were blind) that each by observation might satisfy the mind" [...].
Collapse
Affiliation(s)
- Masaru Tanaka
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi Fasor 6, H-6720 Szeged, Hungary
| | - László Vécsei
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
8
|
Yan L, Kang C, Wang X, Yang L, Zhao N, Zhang X. Association of serum lipid levels with psychotic symptoms in young, first-episode and drug naïve outpatients with major depressive disorder: A large-scale cross-sectional study. Psychiatry Res 2022; 317:114864. [PMID: 36179590 DOI: 10.1016/j.psychres.2022.114864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/03/2022] [Accepted: 09/24/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) patients with psychotic symptoms have more complex clinical symptoms and higher relapse rates. The purpose of this study was to compare serum lipid differences between psychotic major depressive disorder (PMD) and non-psychotic major depressive disorder (NPMD) in a large sample of young first-episode drug naïve (FEDN) patients. METHODS We recruited 1289 young MDD patients. Socio-demographic information, clinical data, and lipid parameters were collected. The Hamilton Depression Rating Scale, the Hamilton Anxiety Rating Scale, and the positive symptom subscale of the Positive and Negative Syndrome Scale were used to assess patients' depressive, anxiety and psychotic symptoms, respectively. RESULTS Compared with the NPMD group, the PMD group had higher HAMD, HAMA scores, and higher TC, TG, and LDL-C levels. Correlation analysis showed that psychotic symptoms were significantly associated with the total score of HAMD and HAMA, and the levels of serum lipid. In addition, logistic regression analysis found that TC was associated with psychotic symptoms in young FEDN MDD patients. CONCLUSION Our results suggest TC levels may be associated with psychotic symptoms in young MDD patients. The importance of regular psychotic symptom assessment in young MDD patients with high TC levels should be taken into account.
Collapse
Affiliation(s)
- Lijuan Yan
- Department of Psychiatry and Psychology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chuanyi Kang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiaohong Wang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Liying Yang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Na Zhao
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Aminopeptidase Activities Interact Asymmetrically between Brain, Plasma and Systolic Blood Pressure in Hypertensive Rats Unilaterally Depleted of Dopamine. Biomedicines 2022; 10:biomedicines10102457. [PMID: 36289718 PMCID: PMC9598709 DOI: 10.3390/biomedicines10102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Brain dopamine, in relation to the limbic system, is involved in cognition and emotion. These functions are asymmetrically processed. Hypertension not only alters such functions but also their asymmetric brain pattern as well as their bilateral pattern of neurovisceral integration. The central and peripheral renin-angiotensin systems, particularly the aminopeptidases involved in its enzymatic cascade, play an important role in blood pressure control. In the present study, we report how these aminopeptidases from left and right cortico-limbic locations, plasma and systolic blood pressure interact among them in spontaneously hypertensive rats (SHR) unilaterally depleted of dopamine. The study comprises left and right sham and left and right lesioned (dopamine-depleted) rats as research groups. Results revealed important differences in the bilateral behavior comparing sham left versus sham right, lesioned left versus lesioned right, and sham versus lesioned animals. Results also suggest an important role for the asymmetrical functioning of the amygdala in cardiovascular control and an asymmetrical behavior in the interaction between the medial prefrontal cortex, hippocampus and amygdala with plasma, depending on the left or right depletion of dopamine. Compared with previous results of a similar study in Wistar-Kyoto (WKY) normotensive rats, the asymmetrical behaviors differ significantly between both WKY and SHR strains.
Collapse
|
10
|
Yoon JH, Seo Y, Jo YS, Lee S, Cho E, Cazenave-Gassiot A, Shin YS, Moon MH, An HJ, Wenk MR, Suh PG. Brain lipidomics: From functional landscape to clinical significance. SCIENCE ADVANCES 2022; 8:eadc9317. [PMID: 36112688 PMCID: PMC9481132 DOI: 10.1126/sciadv.adc9317] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/01/2022] [Indexed: 05/23/2023]
Abstract
Lipids are crucial components of cellular function owing to their role in membrane formation, intercellular signaling, energy storage, and homeostasis maintenance. In the brain, lipid dysregulations have been associated with the etiology and progression of neurodegeneration and other neurological pathologies. Hence, brain lipids are emerging as important potential targets for the early diagnosis and prognosis of neurological diseases. This review aims to highlight the significance and usefulness of lipidomics in diagnosing and treating brain diseases. We explored lipid alterations associated with brain diseases, paying attention to organ-specific characteristics and the functions of brain lipids. As the recent advances in brain lipidomics would have been impossible without advances in analytical techniques, we provide up-to-date information on mass spectrometric approaches and integrative analysis with other omic approaches. Last, we present the potential applications of lipidomics combined with artificial intelligence techniques and interdisciplinary collaborative research for treating brain diseases with clinical heterogeneities.
Collapse
Affiliation(s)
- Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Youngsuk Seo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Yeon Suk Jo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
- Department of Brain Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Seulah Lee
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Eunji Cho
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Yong-Seung Shin
- Laboratory Solutions Sales, Agilent Technologies Korea Ltd., Seoul, 06621, Republic of Korea
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Markus R. Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu 41062, Republic of Korea
| |
Collapse
|
11
|
Tanaka M, Szabó Á, Spekker E, Polyák H, Tóth F, Vécsei L. Mitochondrial Impairment: A Common Motif in Neuropsychiatric Presentation? The Link to the Tryptophan-Kynurenine Metabolic System. Cells 2022; 11:2607. [PMID: 36010683 PMCID: PMC9406499 DOI: 10.3390/cells11162607] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 02/07/2023] Open
Abstract
Nearly half a century has passed since the discovery of cytoplasmic inheritance of human chloramphenicol resistance. The inheritance was then revealed to take place maternally by mitochondrial DNA (mtDNA). Later, a number of mutations in mtDNA were identified as a cause of severe inheritable metabolic diseases with neurological manifestation, and the impairment of mitochondrial functions has been probed in the pathogenesis of a wide range of illnesses including neurodegenerative diseases. Recently, a growing number of preclinical studies have revealed that animal behaviors are influenced by the impairment of mitochondrial functions and possibly by the loss of mitochondrial stress resilience. Indeed, as high as 54% of patients with one of the most common primary mitochondrial diseases, mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome, present psychiatric symptoms including cognitive impairment, mood disorder, anxiety, and psychosis. Mitochondria are multifunctional organelles which produce cellular energy and play a major role in other cellular functions including homeostasis, cellular signaling, and gene expression, among others. Mitochondrial functions are observed to be compromised and to become less resilient under continuous stress. Meanwhile, stress and inflammation have been linked to the activation of the tryptophan (Trp)-kynurenine (KYN) metabolic system, which observably contributes to the development of pathological conditions including neurological and psychiatric disorders. This review discusses the functions of mitochondria and the Trp-KYN system, the interaction of the Trp-KYN system with mitochondria, and the current understanding of the involvement of mitochondria and the Trp-KYN system in preclinical and clinical studies of major neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Masaru Tanaka
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Eleonóra Spekker
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Helga Polyák
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Fanni Tóth
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - László Vécsei
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
12
|
Tanaka M, Vécsei L. Editorial of Special Issue ‘Dissecting Neurological and Neuropsychiatric Diseases: Neurodegeneration and Neuroprotection’. Int J Mol Sci 2022; 23:ijms23136991. [PMID: 35805990 PMCID: PMC9266548 DOI: 10.3390/ijms23136991] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Masaru Tanaka
- ELKH-SZTE Neuroscience Research Group, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Semmelweis u. 6, H-6725 Szeged, Hungary
| | - László Vécsei
- ELKH-SZTE Neuroscience Research Group, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Semmelweis u. 6, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
13
|
The Interplay between Vitamin D, Exposure of Anticholinergic Antipsychotics and Cognition in Schizophrenia. Biomedicines 2022; 10:biomedicines10051096. [PMID: 35625833 PMCID: PMC9138360 DOI: 10.3390/biomedicines10051096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 01/21/2023] Open
Abstract
Vitamin D deficiency is a frequent finding in schizophrenia and may contribute to neurocognitive dysfunction, a core element of the disease. However, there is limited knowledge about the neuropsychological profile of vitamin D deficiency-related cognitive deficits and their underlying molecular mechanisms. As an inductor of cytochrome P450 3A4, a lack of vitamin D might aggravate cognitive deficits by increased exposure to anticholinergic antipsychotics. This cross-sectional study aims to assess the relationship between 25-OH-vitamin D-serum concentrations, anticholinergic drug exposure and neurocognitive functioning (Brief Assessment of Cognition in Schizophrenia, BACS, and Trail Making Test, TMT) in 141 patients with schizophrenia. The anticholinergic drug exposure was estimated by adjusting the concentration of each drug for its individual muscarinic receptor affinity. Using regression analysis, we observed a positive relationship between vitamin D levels and processing speed (TMT-A and BACS Symbol Coding) as well as executive functioning (TMT-B and BACS Tower of London). Moreover, a negative impact of vitamin D on anticholinergic drug exposure emerged, but the latter did not significantly affect cognition. When other cognitive items were included as regressors, the impact of vitamin D remained only significant for the TMT-A. Among the different cognitive impairments in schizophrenia, vitamin D deficiency may most directly affect processing speed, which in turn may aggravate deficits in executive functioning. This finding is not explained by a cytochrome P450-mediated increased exposure to anticholinergic antipsychotics.
Collapse
|
14
|
Martos D, Tuka B, Tanaka M, Vécsei L, Telegdy G. Memory Enhancement with Kynurenic Acid and Its Mechanisms in Neurotransmission. Biomedicines 2022; 10:biomedicines10040849. [PMID: 35453599 PMCID: PMC9027307 DOI: 10.3390/biomedicines10040849] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
Kynurenic acid (KYNA) is an endogenous tryptophan (Trp) metabolite known to possess neuroprotective property. KYNA plays critical roles in nociception, neurodegeneration, and neuroinflammation. A lower level of KYNA is observed in patients with neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases or psychiatric disorders such as depression and autism spectrum disorders, whereas a higher level of KYNA is associated with the pathogenesis of schizophrenia. Little is known about the optimal concentration for neuroprotection and the threshold for neurotoxicity. In this study the effects of KYNA on memory functions were investigated by passive avoidance test in mice. Six different doses of KYNA were administered intracerebroventricularly to previously trained CFLP mice and they were observed for 24 h. High doses of KYNA (i.e., 20–40 μg/2 μL) significantly decreased the avoidance latency, whereas a low dose of KYNA (0.5 μg/2 μL) significantly elevated it compared with controls, suggesting that the low dose of KYNA enhanced memory function. Furthermore, six different receptor blockers were applied to reveal the mechanisms underlying the memory enhancement induced by KYNA. The series of tests revealed the possible involvement of the serotonergic, dopaminergic, α and β adrenergic, and opiate systems in the nootropic effect. This study confirmed that a low dose of KYNA improved a memory component of cognitive domain, which was mediated by, at least in part, four systems of neurotransmission in an animal model of learning and memory.
Collapse
Affiliation(s)
- Diána Martos
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, H-6725 Szeged, Hungary; (D.M.); (B.T.); (M.T.)
| | - Bernadett Tuka
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, H-6725 Szeged, Hungary; (D.M.); (B.T.); (M.T.)
| | - Masaru Tanaka
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, H-6725 Szeged, Hungary; (D.M.); (B.T.); (M.T.)
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, H-6725 Szeged, Hungary; (D.M.); (B.T.); (M.T.)
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-342-361
| | - Gyula Telegdy
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 5, H-6725 Szeged, Hungary;
| |
Collapse
|
15
|
Early Markers in Resistant Schizophrenia: Effect of the First Antipsychotic Drug. Diagnostics (Basel) 2022; 12:diagnostics12040803. [PMID: 35453850 PMCID: PMC9030295 DOI: 10.3390/diagnostics12040803] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/23/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Schizophrenia is a mental illness with a multifactorial etiology and clinical presentation. Treatment is mainly with antipsychotic drugs. Despite the increasing number of antipsychotic drugs, there has been no significant change in the percentage of resistant cases. These data gave us reason to look for a link between the effect of the first individually selected antipsychotic drug and the established resistance to therapy. Method: An assessment has been made of 105 patients with chronic schizophrenia with consecutive psychotic episodes. The choice of antipsychotic has been made on the basis of clinical features, history of efficacy of previously used neuroleptics, anthropometric features, as well as somatic comorbidities. Accidental use of benzodiazepines in anxiety conditions as well as correctors in indications for extrapyramidal problems have been reported. Assessment was made based on clinical observation as well as on changes in PANSS score. Results: Of the 105 observed patients, the effectiveness of the first antipsychotic effect was found in 46.7% of patients. Follow-up of patients for a period of 12 weeks revealed that 45 (42.8%) of them had resistant schizophrenia, while the remaining 60 (57.2%) achieved clinical remission and initial functional recovery. The effect of the first antipsychotic drug was established in 9 (20%) of the patients with resistant schizophrenia and in 40 (66.57%) of the patients in clinical remission. Conclusion: The evaluation of the first antipsychotic medication is significant for the prognosis of patients with schizophrenia. Its lack of effectiveness indicates a high probability of resistance and can be a good indicator of earlier change and a possible search for more “aggressive” measures to prevent future resistance and possible disability.
Collapse
|
16
|
Abstract
BACKGROUND Schizophrenia is a severe mental illness in which, despite the growing number of antipsychotics from 30 to 50% of patients remain resistant to treatment. Many resistance factors have been identified. Dissociation as a clinical phenomenon is associated with a loss of integrity between memories and perceptions of reality. Dissociative symptoms have also been found in patients with schizophrenia of varying severity. The established dispersion of the degree of dissociation in patients with schizophrenia gave us reason to look for the connection between the degree of dissociation and resistance to therapy. METHODS The type of study is correlation analysis. 106 patients with schizophrenia were evaluated. Of these, 45 with resistant schizophrenia and 60 with clinical remission. The Positive and Negative Syndrome Scale (PANSS) and Brief Psychiatric Rating Scale (BPRS) scales were used to assess clinical symptoms. The assessment of dissociative symptoms was made with the scale for dissociative experiences (DES). Statistical methods were used to analyze the differences in results between the two groups of patients. RESULTS Patients with resistant schizophrenia have a higher level of dissociation than patients in remission. This difference is significant and demonstrative with more than twice the level of dissociation in patients with resistant schizophrenia.The level of dissociation measured in patients with resistant schizophrenia is as high as the points on the DES in dissociative personality disorder. CONCLUSION Patients with resistant schizophrenia have a much higher level of dissociation than patients in clinical remission. The established difference between the two groups support to assume that resistance to the administered antipsychotics is associated with the presence of high dissociation in the group of resistant patients. These results give us explanation to think about therapeutic options outside the field of antipsychotic drugs as well as to consider different strategies earlier in the diagnostic process.
Collapse
Affiliation(s)
- Georgi Panov
- Psychiatric Clinic, University Hospital for Active Treatment "Prof. D-R Stoian Kirkovic", Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
17
|
Panov G. Gender-associated role in patients with schizophrenia. Is there a connection with the resistance? Front Psychiatry 2022; 13:995455. [PMID: 36032251 PMCID: PMC9399619 DOI: 10.3389/fpsyt.2022.995455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
UNLABELLED Schizophrenia is a chronic mental illness observed with equal prevalence in different cultures and ethnic groups. The clinical picture relates to behavior and social adaptation. A significant percentage of patients, despite the implementation of various therapeutic interventions, remain resistant to the ongoing treatment. Occupying a certain gender role depends both on biological belonging and on the way of self-perception characteristic of the given person. Self-perception reflects gender identification, which in social aspect is determined by the choice of social activities performed. Changes in behavior and social adaptation in patients with schizophrenia led us to conduct a study to analyze the perceived gender role in patients with schizophrenia, looking for differences between patients with treatment resistance and those in clinical remission. MATERIALS AND METHODS A total of 105 patients with schizophrenia were analyzed. Of them, 45 were with resistant symptoms and 60 in clinical remission. The clinical analysis of the patients was carried out using the PANSS and BPRS scales. The evaluation of the choice of social activity related to a particular gender was done with the Bem Sex-Role Inventory (BSRI). RESULTS Out of all 105 patients with schizophrenia, in 80/76.19%/we found a higher identification with the female role, 17/16.19%/made an association with the male role and in 8/7.61%/patients we found the same results, i.e., with both the male and female roles. Among the patients with treatment resistant schizophrenia (TRS)-45, 34/75.56%/identified more with the female gender role, 6/13.33/perceived the male gender role as active, and in 5/11.11%/the identification was equal both with the male and with the female roles. Among the patients in clinical remission (CR)-60, 46/76.67%/accepted the female role as active, 11/18.33/identified with the male one, and three/5%/accepted both roles equally. When assessing the relationship between biological sex and perceived gender role, it was found that among men/a total of 39/half identified with the female gender role and half with the male gender role. Among women/a total of 66/, 90% perceived the female gender role, 7%-the male and 3% equally the male and the female gender role. No relationship was found between the choice of a certain gender role and the onset of psychosis and its duration in the observed patients. CONCLUSION We found a higher percentage of schizophrenic patients who showed higher identification with the female gender role. Approximately half of the males identified with the female gender role. Resistance had no influence on the choice of sex-associated social activity. Factors related to the course of the schizophrenia process such as age of onset of psychosis and duration of psychosis was not associated with an influence on identification with sex-associated social activity. Our research suggests that identification with a particular sex associative social activity is most likely established earlier in the prodromal period.
Collapse
Affiliation(s)
- Georgi Panov
- Psychiatric Clinic, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
18
|
Optimization of Neurite Tracing and Further Characterization of Human Monocyte-Derived-Neuronal-like Cells. Brain Sci 2021; 11:brainsci11111372. [PMID: 34827371 PMCID: PMC8615477 DOI: 10.3390/brainsci11111372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
Deficits in neuronal structure are consistently associated with neurodevelopmental illnesses such as autism and schizophrenia. Nonetheless, the inability to access neurons from clinical patients has limited the study of early neurostructural changes directly in patients’ cells. This obstacle has been circumvented by differentiating stem cells into neurons, although the most used methodologies are time consuming. Therefore, we recently developed a relatively rapid (~20 days) protocol for transdifferentiating human circulating monocytes into neuronal-like cells. These monocyte-derived-neuronal-like cells (MDNCs) express several genes and proteins considered neuronal markers, such as MAP-2 and PSD-95. In addition, these cells conduct electrical activity. We have also previously shown that the structure of MDNCs is comparable with that of human developing neurons (HDNs) after 5 days in culture. Moreover, the neurostructure of MDNCs responds similarly to that of HDNs when exposed to colchicine and dopamine. In this manuscript, we expanded our characterization of MDNCs to include the expression of 12 neuronal genes, including tau. Following, we compared three different tracing approaches (two semi-automated and one automated) that enable tracing using photographs of live cells. This comparison is imperative for determining which neurite tracing method is more efficient in extracting neurostructural data from MDNCs and thus allowing researchers to take advantage of the faster yield provided by these neuronal-like cells. Surprisingly, it was one of the semi-automated methods that was the fastest, consisting of tracing only the longest primary and the longest secondary neurite. This tracing technique also detected more structural deficits. The only automated method tested, Volocity, detected MDNCs but failed to trace the entire neuritic length. Other advantages and disadvantages of the three tracing approaches are also presented and discussed.
Collapse
|
19
|
Varga TG, de Toledo Simões JG, Siena A, Henrique E, da Silva RCB, Dos Santos Bioni V, Ramos AC, Rosenstock TR. Haloperidol rescues the schizophrenia-like phenotype in adulthood after rotenone administration in neonatal rats. Psychopharmacology (Berl) 2021; 238:2569-2585. [PMID: 34089344 DOI: 10.1007/s00213-021-05880-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Neuropsychiatric disorders are multifactorial disturbances that encompass several hypotheses, including changes in neurodevelopment. It is known that brain development disturbances during early life can predict psychosis in adulthood. As we have previously demonstrated, rotenone, a mitochondrial complex I inhibitor, could induce psychiatric-like behavior in 60-day-old rats after intraperitoneal injections from the 5th to the 11th postnatal day. Because mitochondrial deregulation is related to psychiatric disorders and the establishment of animal models is a high-value preclinical tool, we investigated the responsiveness of the rotenone (Rot)-treated newborn rats to pharmacological agents used in clinical practice, haloperidol (Hal), and methylphenidate (MPD). Taken together, our data show that Rot-treated animals exhibit hyperlocomotion, decreased social interaction, and diminished contextual fear conditioning response at P60, consistent with positive, negative, and cognitive deficits of schizophrenia (SZ), respectively, that were reverted by Hal, but not MPD. Rot-treated rodents also display a prodromal-related phenotype at P35. Overall, our results seem to present a new SZ animal model as a consequence of mitochondrial inhibition during a critical neurodevelopmental period. Therefore, our study is crucial not only to elucidate the relevance of mitochondrial function in the etiology of SZ but also to fulfill the need for new and trustworthy experimentation models and, likewise, provide possibilities to new therapeutic avenues for this burdensome disorder.
Collapse
Affiliation(s)
- Thiago Garcia Varga
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | | | - Amanda Siena
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524 - Ed. Biomédicas I, 2º andar, São Paulo, SP, 05508-900, Brazil
| | - Elisandra Henrique
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | | | | | - Aline Camargo Ramos
- Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Tatiana Rosado Rosenstock
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524 - Ed. Biomédicas I, 2º andar, São Paulo, SP, 05508-900, Brazil. .,Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|