1
|
Schliefsteiner C, Wadsack C, Allerkamp HH. Exploring the Lifeline: Unpacking the Complexities of Placental Vascular Function in Normal and Preeclamptic Pregnancies. Compr Physiol 2024; 14:5763-5787. [PMID: 39699084 DOI: 10.1002/cphy.c230020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The proper development and function of the placenta are essential for the success of pregnancy and the well-being of both the fetus and the mother. Placental vascular function facilitates efficient fetal development during pregnancy by ensuring adequate gas exchange with low vascular resistance. This review focuses on how placental vascular function can be compromised in the pregnancy pathology preeclampsia, and conversely, how placental vascular dysfunction might contribute to this condition. While the maternal endothelium is widely recognized as a key focus in preeclampsia research, this review emphasizes the importance of understanding how this condition affects the development and function of the fetal placental vasculature. The placental vascular bed, consisting of microvasculature and macrovasculature, is discussed in detail, as well as structural and functional changes associated with preeclampsia. The complexity of placental vascular reactivity and function, its mediators, its impact on placental exchange and blood distribution, and how these factors are most affected in early-onset preeclampsia are further explored. These factors include foremost lipoproteins and their cargo, oxygen levels and oxidative stress, biomechanics, and shear stress. Challenges in studying placental pathophysiology are discussed, highlighting the necessity of innovative research methodologies, including ex vivo experiments, in vivo imaging tools, and computational modeling. Finally, an outlook on the potential of drug interventions targeting the placental endothelium to improve placental vascular function in preeclampsia is provided. Overall, this review highlights the need for further research and the development of models and tools to better understand and address the challenges posed by preeclampsia and its effects on placental vascular function to improve short- and long-term outcomes for the offspring of preeclamptic pregnancies. © 2024 American Physiological Society. Compr Physiol 14:5763-5787, 2024.
Collapse
Affiliation(s)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Hanna H Allerkamp
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
2
|
Pisek A, McKinney CM, Muktabhant B, Pitiphat W. Maternal Metabolic Status and Orofacial Cleft Risk: A Case-Control Study in Thailand. Int Dent J 2024; 74:1413-1423. [PMID: 38614877 PMCID: PMC11551577 DOI: 10.1016/j.identj.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 04/15/2024] Open
Abstract
OBJECTIVES Metabolic syndrome (MetS) has been suggested to play a role in congenital defects. This study investigated the association of MetS and its components with orofacial clefts (OFCs). METHODS We conducted a case-control study in Northeast Thailand. Ninety-four cases with cleft lip, with or without cleft palate, were frequency matched with 94 controls on the infant's age and mother's education. We administered a mother's health questionnaire and collected anthropometric measurements and blood samples. Multiple logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Subgroup analyses were performed among infants without a family history of OFCs, mothers who were not currently breastfeeding, and mothers who were >6 months postpartum. RESULTS When compared to mothers of normal weight, the OR associated with OFCs were 2.44 (95% CI, 1.04-5.76, P = .04) in overweight mothers, and 3.30 (95% CI, 1.14-9.57, P = .03) in obese mothers. Low HDL-C raised the risk of OFCs 2.95 times (95% CI, 1.41-6.14, P = .004) compared to normal HDL-C levels. Mothers with 4 or 5 features of MetS were 2.77 times as likely to have the affected child than those who did not (95% CI, 0.43-17.76), but this difference was not statistically significant (P = .28). Subgroup analyses showed similar results, uncovering an additional significant association between underweight mothers and OFCs. CONCLUSIONS The results indicate a robust association between underweight and overweight/obese maternal body mass index and increased OFC risk. Additionally, low HDL-C in mothers is linked to an elevated risk of OFCs. Further research is needed to evaluate if promoting strategies to maintain optimal body weight and enhance HDL-C levels in reproductive-age and pregnant women icould contribute to a reduction of the risk of OFCs in their progeny.
Collapse
Affiliation(s)
- Araya Pisek
- Division of Dental Public Health, Department of Preventive Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Christy M McKinney
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, and Seattle Children's Research Institute, Seattle, Washington, USA
| | - Benja Muktabhant
- Department of Public Health Administration, Health Promotion and Nutrition, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
| | - Waranuch Pitiphat
- Division of Dental Public Health, Department of Preventive Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
3
|
Lichtwald A, Ittermann T, Friedrich N, Lange AE, Winter T, Kolbe C, Allenberg H, Nauck M, Heckmann M. Impact of Maternal Pre-Pregnancy Underweight on Cord Blood Metabolome: An Analysis of the Population-Based Survey of Neonates in Pomerania (SNiP). Int J Mol Sci 2024; 25:7552. [PMID: 39062795 PMCID: PMC11276627 DOI: 10.3390/ijms25147552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Intrauterine growth restriction leads to an altered lipid and amino acid profile in the cord blood at the end of pregnancy. Pre-pregnancy underweight is an early risk factor for impaired fetal growth. The aim of this study was to investigate whether a pre-pregnancy body mass index (ppBMI) of <18.5 kg/m2, as early as at the beginning of pregnancy, is associated with changes in the umbilical cord metabolome. In a sample of the Survey of Neonates in Pomerania (SNIP) birth cohort, the cord blood metabolome of n = 240 newborns of mothers with a ppBMI of <18.5 kg/m2 with n = 208 controls (ppBMI of 18.5-24.9 kg/m2) was measured by NMR spectrometry. A maternal ppBMI of <18.5 kg/m2 was associated with increased concentrations of HDL4 cholesterol, HDL4 phospholipids, VLDL5 cholesterol, HDL 2, and HDL4 Apo-A1, as well as decreased VLDL triglycerides and HDL2 free cholesterol. A ppBMI of <18.5 kg/m2 combined with poor intrauterine growth (a gestational weight gain (GWG) < 25th percentile) was associated with decreased concentrations of total cholesterol; cholesterol transporting lipoproteins (LDL4, LDL6, LDL free cholesterol, and HDL2 free cholesterol); LDL4 Apo-B; total Apo-A2; and HDL3 Apo-A2. In conclusion, maternal underweight at the beginning of pregnancy already results in metabolic changes in the lipid profile in the cord blood, but the pattern changes when poor GWG is followed by pre-pregnancy underweight.
Collapse
Affiliation(s)
- Alexander Lichtwald
- Department of Neonatology and Pediatric Intensive Care, University Medicine Greifswald, 17475 Greifswald, Germany; (A.E.L.); (H.A.)
| | - Till Ittermann
- Institute for Community Medicine, Division SHIP—Clinical Epidemiological Research, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Nele Friedrich
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (N.F.); (T.W.); (M.N.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Anja Erika Lange
- Department of Neonatology and Pediatric Intensive Care, University Medicine Greifswald, 17475 Greifswald, Germany; (A.E.L.); (H.A.)
| | - Theresa Winter
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (N.F.); (T.W.); (M.N.)
| | - Claudia Kolbe
- Department of Gynecology and Obstetrics, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Heike Allenberg
- Department of Neonatology and Pediatric Intensive Care, University Medicine Greifswald, 17475 Greifswald, Germany; (A.E.L.); (H.A.)
| | - Matthias Nauck
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (N.F.); (T.W.); (M.N.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Matthias Heckmann
- Department of Neonatology and Pediatric Intensive Care, University Medicine Greifswald, 17475 Greifswald, Germany; (A.E.L.); (H.A.)
- German Centre for Child and Adolescent Health (DZKL), Partner Site Greifswald/Rostock, 17475 Greifswald, Germany
| |
Collapse
|
4
|
Mulder JW, Kusters DM, Roeters van Lennep JE, Hutten BA. Lipid metabolism during pregnancy: consequences for mother and child. Curr Opin Lipidol 2024; 35:133-140. [PMID: 38408036 PMCID: PMC11064913 DOI: 10.1097/mol.0000000000000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
PURPOSE OF REVIEW Accommodating fetal growth and development, women undergo multiple physiological changes during pregnancy. In recent years, several studies contributed to the accumulating evidence about the impact of gestational hyperlipidemia on cardiovascular risk for mother and child. This review aims to provide a comprehensive overview of the current research on lipid profile alterations during pregnancy and its associated (cardiovascular) outcomes for mother and child from a clinical perspective. RECENT FINDINGS In a normal pregnancy, total and LDL-cholesterol levels increase by approximately 30-50%, HDL-cholesterol by 20-40%, and triglycerides by 50-100%. In some women, for example, with familial hypercholesterolemia (FH), a more atherogenic lipid profile is observed. Dyslipidemia during pregnancy is found to be associated with adverse (cardiovascular) outcomes for the mother (e.g. preeclampsia, gestational diabetes, metabolic syndrome, unfavorable lipid profile) and for the child (e.g. preterm birth, large for gestational age, preatherosclerotic lesions, unfavorable lipid profile). SUMMARY The lipid profile of women during pregnancy provides a unique window of opportunity into the potential future cardiovascular risk for mother and child. Better knowledge about adverse outcomes and specific risk groups could lead to better risk assessment and earlier cardiovascular prevention. Future research should investigate implementation of gestational screening possibilities.
Collapse
Affiliation(s)
- Janneke W.C.M. Mulder
- Department of Internal Medicine, Erasmus MC Cardiovascular Institute, University Medical Center Rotterdam, Rotterdam
| | | | - Jeanine E. Roeters van Lennep
- Department of Internal Medicine, Erasmus MC Cardiovascular Institute, University Medical Center Rotterdam, Rotterdam
| | - Barbara A. Hutten
- Department of Epidemiology and Data Science, Amsterdam University Medical Center, University of Amsterdam
- Amsterdam Cardiovascular Sciences Research Institute, Diabetes & Metabolism, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Luna-Luna M, Franco M, Carreón-Torres E, Pérez-Hernández N, Fragoso JM, Bautista-Pérez R, Pérez-Méndez Ó. Total Outflow of High-Density Lipoprotein-Cholesteryl Esters from Plasma Is Decreased in a Model of 3/4 Renal Mass Reduction. Int J Mol Sci 2023; 24:17090. [PMID: 38069414 PMCID: PMC10707367 DOI: 10.3390/ijms242317090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
(1) Background: Previous studies have enriched high-density lipoproteins (HDL) using cholesteryl esters in rabbits with a three-quarter reduction in functional renal mass, suggesting that the kidneys participate in the cholesterol homeostasis of these lipoproteins. However, the possible role of the kidneys in lipoprotein metabolism is still controversial. To understand the role of the kidneys in regulating the HDL lipid content, we determined the turnover of HDL-cholesteryl esters in rabbits with a three-quarter renal mass reduction. (2) Methods: HDL subclass characterization was conducted, and the kinetics of plasma HDL-cholesteryl esters, labeled with tritium, were studied in rabbits with a 75% reduction in functional renal mass (Ntx). (3) Results: The reduced renal mass triggered the enrichment of cholesterol, specifically cholesteryl esters, in HDL subclasses. The exchange of cholesteryl esters between HDL and apo B-containing lipoproteins (VLDL/LDL) was not significantly modified in Ntx rabbits. Moreover, the cholesteryl esters of HDL and VLDL/LDL fluxes from the plasmatic compartment tended to decrease, but they only reached statistical significance when both fluxes were added to the Nxt group. Accordingly, the fractional catabolic rate (FCR) of the HDL-cholesteryl esters was lower in Ntx rabbits, concomitantly with its accumulation in HDL subclasses, probably because of the reduced mass of renal cells requiring this lipid from lipoproteins.
Collapse
Affiliation(s)
- María Luna-Luna
- Department of Molecular Biology, Instituto Nacional de Cardiologia “Ignacio Chavez”, Mexico City 14080, Mexico; (M.L.-L.); (E.C.-T.); (N.P.-H.); (J.M.F.); (R.B.-P.)
| | - Martha Franco
- Department of Nephrology, Instituto Nacional de Cardiologia “Ignacio Chavez”, Mexico City 14080, Mexico;
| | - Elizabeth Carreón-Torres
- Department of Molecular Biology, Instituto Nacional de Cardiologia “Ignacio Chavez”, Mexico City 14080, Mexico; (M.L.-L.); (E.C.-T.); (N.P.-H.); (J.M.F.); (R.B.-P.)
| | - Nonanzit Pérez-Hernández
- Department of Molecular Biology, Instituto Nacional de Cardiologia “Ignacio Chavez”, Mexico City 14080, Mexico; (M.L.-L.); (E.C.-T.); (N.P.-H.); (J.M.F.); (R.B.-P.)
| | - José Manuel Fragoso
- Department of Molecular Biology, Instituto Nacional de Cardiologia “Ignacio Chavez”, Mexico City 14080, Mexico; (M.L.-L.); (E.C.-T.); (N.P.-H.); (J.M.F.); (R.B.-P.)
| | - Rocío Bautista-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiologia “Ignacio Chavez”, Mexico City 14080, Mexico; (M.L.-L.); (E.C.-T.); (N.P.-H.); (J.M.F.); (R.B.-P.)
| | - Óscar Pérez-Méndez
- Department of Molecular Biology, Instituto Nacional de Cardiologia “Ignacio Chavez”, Mexico City 14080, Mexico; (M.L.-L.); (E.C.-T.); (N.P.-H.); (J.M.F.); (R.B.-P.)
- Tecnologico de Monterrey, Campus Ciudad de Mexico, Mexico City 14380, Mexico
| |
Collapse
|
6
|
Mietus-Snyder M, Perak AM, Cheng S, Hayman LL, Haynes N, Meikle PJ, Shah SH, Suglia SF. Next Generation, Modifiable Cardiometabolic Biomarkers: Mitochondrial Adaptation and Metabolic Resilience: A Scientific Statement From the American Heart Association. Circulation 2023; 148:1827-1845. [PMID: 37902008 DOI: 10.1161/cir.0000000000001185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Cardiometabolic risk is increasing in prevalence across the life span with disproportionate ramifications for youth at socioeconomic disadvantage. Established risk factors and associated disease progression are harder to reverse as they become entrenched over time; if current trends are unchecked, the consequences for individual and societal wellness will become untenable. Interrelated root causes of ectopic adiposity and insulin resistance are understood but identified late in the trajectory of systemic metabolic dysregulation when traditional cardiometabolic risk factors cross current diagnostic thresholds of disease. Thus, children at cardiometabolic risk are often exposed to suboptimal metabolism over years before they present with clinical symptoms, at which point life-long reliance on pharmacotherapy may only mitigate but not reverse the risk. Leading-edge indicators are needed to detect the earliest departure from healthy metabolism, so that targeted, primordial, and primary prevention of cardiometabolic risk is possible. Better understanding of biomarkers that reflect the earliest transitions to dysmetabolism, beginning in utero, ideally biomarkers that are also mechanistic/causal and modifiable, is critically needed. This scientific statement explores emerging biomarkers of cardiometabolic risk across rapidly evolving and interrelated "omic" fields of research (the epigenome, microbiome, metabolome, lipidome, and inflammasome). Connections in each domain to mitochondrial function are identified that may mediate the favorable responses of each of the omic biomarkers featured to a heart-healthy lifestyle, notably to nutritional interventions. Fuller implementation of evidence-based nutrition must address environmental and socioeconomic disparities that can either facilitate or impede response to therapy.
Collapse
|
7
|
Taageby Nielsen S, Mohr Lytsen R, Strandkjær N, Juul Rasmussen I, Sillesen AS, Vøgg ROB, Axelsson Raja A, Nordestgaard BG, Kamstrup PR, Iversen K, Bundgaard H, Tybjærg-Hansen A, Frikke-Schmidt R. Significance of lipids, lipoproteins, and apolipoproteins during the first 14-16 months of life. Eur Heart J 2023; 44:4408-4418. [PMID: 37632410 PMCID: PMC10635670 DOI: 10.1093/eurheartj/ehad547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND AND AIMS The aims of this study were to investigate lipid parameters during the first 14-16 months of life, to identify influential factors, and to test whether high concentrations at birth predict high concentrations at 2- and 14-16 months. METHODS The Copenhagen Baby Heart Study, including 13,354 umbilical cord blood samples and parallel venous blood samples from children and parents at birth (n = 444), 2 months (n = 364), and 14-16 months (n = 168), was used. RESULTS Concentrations of lipids, lipoproteins, and apolipoproteins in umbilical cord blood samples correlated highly with venous blood samples from newborns. Concentrations of low-density lipoprotein (LDL) cholesterol, non-high-density lipoprotein (HDL) cholesterol, apolipoprotein B, and lipoprotein(a) increased stepwise from birth to 2 months to 14-16 months. Linear mixed models showed that concentrations of LDL cholesterol, non-HDL cholesterol, and lipoprotein(a) above the 80th percentile at birth were associated with significantly higher concentrations at 2 and 14-16 months. Finally, lipid concentrations differed according to sex, gestational age, birth weight, breastfeeding, and parental lipid concentrations. CONCLUSIONS Lipid parameters changed during the first 14-16 months of life, and sex, gestational age, birth weight, breastfeeding, and high parental concentrations influenced concentrations. Children with high concentrations of atherogenic lipid traits at birth had higher concentrations at 2 and 14-16 months. These findings increase our knowledge of how lipid traits develop over the first 14-16 months of life and may help in deciding the optimal child age for universal familial hypercholesterolaemia screening.
Collapse
Affiliation(s)
- Sofie Taageby Nielsen
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Rikke Mohr Lytsen
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Nina Strandkjær
- Department of Cardiology, Copenhagen University Hospital—Herlev-Gentofte Hospital, Denmark
| | - Ida Juul Rasmussen
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital—Herlev-Gentofte Hospital, Denmark
| | - Anne-Sophie Sillesen
- Department of Cardiology, Copenhagen University Hospital—Herlev-Gentofte Hospital, Denmark
| | - R Ottilia B Vøgg
- Department of Cardiology, Copenhagen University Hospital—Herlev-Gentofte Hospital, Denmark
| | - Anna Axelsson Raja
- Department of Cardiology, Copenhagen University Hospital—Rigshospitalet, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital—Herlev-Gentofte Hospital, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Pia R Kamstrup
- Department of Clinical Biochemistry, Copenhagen University Hospital—Herlev-Gentofte Hospital, Denmark
| | - Kasper Iversen
- Department of Cardiology, Copenhagen University Hospital—Herlev-Gentofte Hospital, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Copenhagen University Hospital—Rigshospitalet, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
8
|
Nargis T, Lin X, Giordano E, Ijaz L, Suhail S, Gurzenda EM, Kiefer D, Quadro L, Hanna N, Hussain MM. Characterization of lipoproteins in human placenta and fetal circulation as well as gestational changes in lipoprotein assembly and secretion in human and mouse placentas. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159357. [PMID: 37315736 PMCID: PMC10529644 DOI: 10.1016/j.bbalip.2023.159357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/28/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
In the maternal circulation, apoB-containing low-density lipoproteins (LDL) and apoA1-containing high-density lipoproteins (HDL) transport lipids. The production of lipoproteins in the placenta has been suggested, but the directionality of release has not been resolved. We compared apolipoprotein concentrations and size-exclusion chromatography elution profiles of lipoproteins in maternal/fetal circulations, and in umbilical arteries/veins; identified placental lipoprotein-producing cells; and studied temporal induction of lipoprotein-synthesizing machinery during pregnancy. We observed that maternal and fetal lipoproteins are different with respect to concentrations and elution profiles. Surprisingly, concentrations and elution profiles of lipoproteins in umbilical arteries and veins were similar indicating their homeostatic control. Human placental cultures synthesized apoB100-containing LDL-sized and apoA1-containing HDL-sized particles. Immunolocalization techniques revealed that ApoA1 was present mainly in syncytiotrophoblasts. MTP, a critical protein for lipoprotein assembly, was in these trophoblasts. ApoB was in the placental stroma indicating that trophoblasts secrete apoB-containing lipoproteins into the stroma. ApoB and MTP expressions increased in placentas from the 2nd trimester to term, whereas apoA1 expression was unchanged. Thus, our studies provide new information regarding the timing of lipoprotein gene induction during gestation, the cells involved in lipoprotein assembly and the gel filtration profiles of human placental lipoproteins. Next, we observed that mouse placenta produces MTP, apoB100, apoB48 and apoA1. The expression of genes gradually increased and peaked in late gestation. This information may be useful in identifying transcription factors regulating the induction of these genes in gestation and the importance of placental lipoprotein assembly in fetal development.
Collapse
Affiliation(s)
- Titli Nargis
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY, USA
| | - Xinhua Lin
- Department of Pediatrics, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Elena Giordano
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Laraib Ijaz
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY, USA
| | - Sarah Suhail
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY, USA
| | - Ellen M Gurzenda
- Department of Pediatrics, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Daniel Kiefer
- Department of Obstetrics and Gynecology, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Loredana Quadro
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Nazeeh Hanna
- Department of Pediatrics, NYU Long Island School of Medicine, Mineola, New York, USA
| | - M Mahmood Hussain
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY, USA.
| |
Collapse
|
9
|
Zafaranieh S, Stadler JT, Pammer A, Marsche G, van Poppel MNM, Desoye G. The Association of Physical Activity and Sedentary Behavior with Maternal and Cord Blood Anti-Oxidative Capacity and HDL Functionality: Findings of DALI Study. Antioxidants (Basel) 2023; 12:antiox12040827. [PMID: 37107203 PMCID: PMC10135087 DOI: 10.3390/antiox12040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Obesity is one of the most common health issues in pregnancy with short and long-term consequences for both mother and her offspring. Promoting moderate to vigorous physical activity (MVPA) and decreasing sedentary time (ST) could have a positive impact on weight and obesity management, and therefore adiposity-induced oxidative stress, inflammation, and atherogenesis. However, the effects of MVPA and ST on anti-oxidative and anti-atherogenic markers in pregnancy have not been studied to date. This study aimed to assess the association of longitudinally and objectively measured MVPA and ST in 122 overweight/obese women (BMI ≥ 29 kg/m2) with maternal and cord blood markers of oxidative stress measured by advanced oxidation protein products (AOPP), anti-oxidative capacity, as well as high-density lipoproteins (HDL) related paraoxonase-1 (PON-1) activity and cholesterol efflux. Linear regression models showed no associations of MVPA and ST with outcomes in maternal blood. In contrast, MVPA at <20 weeks and 24–28 weeks of gestation were positively associated with anti-oxidative capacity, as well as PON-1 activity of HDL in cord blood. MVPA at 35–37 weeks correlated with higher AOPP, as well as higher anti-oxidative capacity. ST <20 weeks was also positively associated with inhibition of oxidation in cord blood. We speculate that increasing MVPA of overweight/obese women during pregnancy attenuates the oxidative stress state in the new-born.
Collapse
|
10
|
Stadler JT, Scharnagl H, Wadsack C, Marsche G. Preeclampsia Affects Lipid Metabolism and HDL Function in Mothers and Their Offspring. Antioxidants (Basel) 2023; 12:antiox12040795. [PMID: 37107170 PMCID: PMC10135112 DOI: 10.3390/antiox12040795] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Preeclampsia (PE) is linked to an overall increased cardiovascular risk for both the mother and child. Functional impairment of high-density lipoproteins (HDL) may contribute to the excess cardiovascular risk associated with PE. In this study, we investigated the effects of PE on maternal and neonatal lipid metabolism, and the parameters of HDL composition and function. The study cohort included 32 normotensive pregnant women, 18 women diagnosed with early-onset PE, and 14 women with late-onset PE. In mothers, early- and late-onset PE was associated with atherogenic dyslipidemia, characterized by high plasma triglycerides and low HDL-cholesterol levels. We observed a shift from large HDL to smaller HDL subclasses in early-onset PE, which was associated with an increased plasma antioxidant capacity in mothers. PE was further associated with markedly increased levels of HDL-associated apolipoprotein (apo) C-II in mothers, and linked to the triglyceride content of HDL. In neonates of early-onset PE, total cholesterol levels were increased, whereas HDL cholesterol efflux capacity was markedly reduced in neonates from late-onset PE. In conclusion, early- and late-onset PE profoundly affect maternal lipid metabolism, potentially contributing to disease manifestation and increased cardiovascular risk later in life. PE is also associated with changes in neonatal HDL composition and function, demonstrating that complications of pregnancy affect neonatal lipoprotein metabolism.
Collapse
Affiliation(s)
- Julia T Stadler
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
11
|
Øyri LKL, Christensen JJ, Sebert S, Thoresen M, Michelsen TM, Ulven SM, Brekke HK, Retterstøl K, Brantsæter AL, Magnus P, Bogsrud MP, Holven KB. Maternal prenatal cholesterol levels predict offspring weight trajectories during childhood in the Norwegian Mother, Father and Child Cohort Study. BMC Med 2023; 21:43. [PMID: 36747215 PMCID: PMC9903496 DOI: 10.1186/s12916-023-02742-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Numerous intrauterine factors may affect the offspring's growth during childhood. We aimed to explore if maternal and paternal prenatal lipid, apolipoprotein (apo)B and apoA1 levels are associated with offspring weight, length, and body mass index from 6 weeks to eight years of age. This has previously been studied to a limited extent. METHODS This parental negative control study is based on the Norwegian Mother, Father and Child Cohort Study and uses data from the Medical Birth Registry of Norway. We included 713 mothers and fathers with or without self-reported hypercholesterolemia and their offspring. Seven parental metabolites were measured by nuclear magnetic resonance spectroscopy, and offspring weight and length were measured at 12 time points. Data were analyzed by linear spline mixed models, and the results are presented as the interaction between parental metabolite levels and offspring spline (age). RESULTS Higher maternal total cholesterol (TC) level was associated with a larger increase in offspring body weight up to 8 years of age (0.03 ≤ Pinteraction ≤ 0.04). Paternal TC level was not associated with change in offspring body weight (0.17 ≤ Pinteraction ≤ 0.25). Higher maternal high-density lipoprotein cholesterol (HDL-C) and apoA1 levels were associated with a lower increase in offspring body weight up to 8 years of age (0.001 ≤ Pinteraction ≤ 0.005). Higher paternal HDL-C and apoA1 levels were associated with a lower increase in offspring body weight up to 5 years of age but a larger increase in offspring body weight from 5 to 8 years of age (0.01 ≤ Pinteraction ≤ 0.03). Parental metabolites were not associated with change in offspring height or body mass index up to 8 years of age (0.07 ≤ Pinteraction ≤ 0.99). CONCLUSIONS Maternal compared to paternal TC, HDL-C, and apoA1 levels were more strongly and consistently associated with offspring body weight during childhood, supporting a direct intrauterine effect.
Collapse
Affiliation(s)
- Linn K L Øyri
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, PO Box 1046, Blindern, 0317, Oslo, Norway
| | - Jacob J Christensen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, PO Box 1046, Blindern, 0317, Oslo, Norway
| | - Sylvain Sebert
- Research Unit of Population Health, Faculty of Medicine, PO Box 5000, FI-90014 University of Oulu, Oulu, Finland
| | - Magne Thoresen
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, PO Box 1122, Blindern, 0317, Oslo, Norway
| | - Trond M Michelsen
- Department of Obstetrics, Oslo University Hospital Rikshospitalet, PO Box 4956, Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, PO Box 1171, Blindern, 0318, Oslo, Norway
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, PO Box 1046, Blindern, 0317, Oslo, Norway
| | - Hilde K Brekke
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, PO Box 1046, Blindern, 0317, Oslo, Norway
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, PO Box 1046, Blindern, 0317, Oslo, Norway.,The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Aker, PO Box 4959, Nydalen, 0424, Oslo, Norway
| | - Anne Lise Brantsæter
- Division of Climate and Environmental Health, Department of Food Safety, Norwegian Institute of Public Health, PO Box 222, Skøyen, 0213, Oslo, Norway
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, 0213, Oslo, Norway
| | - Martin P Bogsrud
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital Ullevål, PO Box 4956, Nydalen, 0424, Oslo, Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, PO Box 1046, Blindern, 0317, Oslo, Norway. .,Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Aker, PO Box 4959, Nydalen, 0424, Oslo, Norway.
| |
Collapse
|
12
|
Stadler JT, van Poppel MNM, Wadsack C, Holzer M, Pammer A, Simmons D, Hill D, Desoye G, Marsche G. Obesity Affects Maternal and Neonatal HDL Metabolism and Function. Antioxidants (Basel) 2023; 12:antiox12010199. [PMID: 36671061 PMCID: PMC9854613 DOI: 10.3390/antiox12010199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Pregravid obesity is one of the major risk factors for pregnancy complications such as gestational diabetes mellitus (GDM) and an increased risk of cardiovascular events in children of affected mothers. However, the biological mechanisms that underpin these adverse outcomes are not well understood. High-density lipoproteins (HDLs) are antiatherogenic by promoting the efflux of cholesterol from macrophages and by suppression of inflammation. Functional impairment of HDLs in obese and GDM-complicated pregnancies may have long-term effects on maternal and offspring health. In the present study, we assessed metrics of HDL function in sera of pregnant women with overweight/obesity of the DALI lifestyle trial (prepregnancy BMI ≥ 29 kg/m2) and women with normal weight (prepregnancy BMI < 25 kg/m2), as well as HDL functionalities in cord blood at delivery. We observed that pregravid obesity was associated with impaired serum antioxidative capacity and lecithin−cholesterol acyltransferase activity in both mothers and offspring, whereas maternal HDL cholesterol efflux capacity was increased. Interestingly, functionalities of maternal and fetal HDL correlated robustly. GDM did not significantly further alter the parameters of HDL function and metabolism in women with obesity, so obesity itself appears to have a major impact on HDL functionality in mothers and their offspring.
Collapse
Affiliation(s)
- Julia T. Stadler
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, 8010 Graz, Austria
| | - Mireille N. M. van Poppel
- Institute of Human Movement Science, Sport and Health, University of Graz, 8010 Graz, Austria
- Correspondence: (M.N.M.v.P.); (G.M.); Tel.: +43-(0)-316-380-2335 (M.N.M.v.P.); +43-316-385-74128 (G.M.)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Michael Holzer
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, 8010 Graz, Austria
| | - Anja Pammer
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, 8010 Graz, Austria
| | - David Simmons
- Macarthur Clinical School, Western Sydney University, Sydney, NSW 2560, Australia
| | - David Hill
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, 8010 Graz, Austria
- Correspondence: (M.N.M.v.P.); (G.M.); Tel.: +43-(0)-316-380-2335 (M.N.M.v.P.); +43-316-385-74128 (G.M.)
| | | |
Collapse
|
13
|
Gil-Acevedo LA, Ceballos G, Torres-Ramos YD. Foetal lipoprotein oxidation and preeclampsia. Lipids Health Dis 2022; 21:51. [PMID: 35658865 PMCID: PMC9166364 DOI: 10.1186/s12944-022-01663-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Preeclampsia (PE) is a multisystemic syndrome specific to pregnancy. Although PE is the leading cause of death from complications associated with pregnancy, its aetiology is still unknown. In PE, lipid metabolism is altered. When lipids are damaged, both the mother and the foetus may be at risk. Lipoproteins contain apolipoproteins, triacylglycerols, free and esterified cholesterol, and phospholipids, all of which are susceptible to oxidative stress when high levels of oxygen and nitrogen free radicals are present. Lipoperoxidation can occur in three stages: mild, moderate, and severe. In severe lipid damage, highly toxic products such as malondialdehyde (MDA) can be generated; under these conditions, low-density lipoprotein (LDL) proteins can be oxidized (oxLDL). oxLDL is a biomolecule that can affect the production of nitric oxide (NO), the main vasodilator derived from the endothelium. oxLDL can interfere with the transduction of the signals responsible for triggering the activation of endothelial nitric oxide synthase (eNOS), causing reduced vasodilation and endothelial dysfunction, which are the main characteristics of preeclampsia. The objective of the review was to analyse the information the current information about exists about the impact generated by the oxidation of LDL and HDL lipoproteins in neonates of women with preeclampsia and how these alterations can predispose the neonate to develop diseases in adulthood. PE can cause foetal loss, intrauterine growth restriction, or developmental complications. Neonates of mothers with PE have a high risk of cardiovascular diseases, stroke, mental retardation, sensory deficiencies and an increased risk of developing metabolic diseases. PE not only affects the foetus, generating complications during pregnancy but also predisposes them to chronic diseases in adulthood.
Collapse
Affiliation(s)
- L A Gil-Acevedo
- Laboratorio Central, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Secretaría de Salud, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico.,Escuela Superior de Medicina, unidad de posgrado, Instituto Politécnico Nacional, Salvador Díaz Mirón, Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, 11340, Ciudad de México, México
| | - Guillermo Ceballos
- Laboratorio de Investigación Integral Cardiometabólica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón, Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, 11340, Ciudad de México, México
| | - Y D Torres-Ramos
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Secretaría de Salud. Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, México.
| |
Collapse
|
14
|
HDL as Bidirectional Lipid Vectors: Time for New Paradigms. Biomedicines 2022; 10:biomedicines10051180. [PMID: 35625916 PMCID: PMC9138557 DOI: 10.3390/biomedicines10051180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
The anti-atherogenic properties of high-density lipoproteins (HDL) have been explained mainly by reverse cholesterol transport (RCT) from peripheral tissues to the liver. The RCT seems to agree with most of the negative epidemiological correlations between HDL cholesterol levels and coronary artery disease. However, therapies designed to increase HDL cholesterol failed to reduce cardiovascular risk, despite their capacity to improve cholesterol efflux, the first stage of RCT. Therefore, the cardioprotective role of HDL may not be explained by RCT, and it is time for new paradigms about the physiological function of these lipoproteins. It should be considered that the main HDL apolipoprotein, apo AI, has been highly conserved throughout evolution. Consequently, these lipoproteins play an essential physiological role beyond their capacity to protect against atherosclerosis. We propose HDL as bidirectional lipid vectors carrying lipids from and to tissues according to their local context. Lipid influx mediated by HDL appears to be particularly important for tissue repair right on site where the damage occurs, including arteries during the first stages of atherosclerosis. In contrast, the HDL-lipid efflux is relevant for secretory cells where the fusion of intracellular vesicles drastically enlarges the cytoplasmic membrane with the potential consequence of impairment of cell function. In such circumstances, HDL could deliver some functional lipids and pick up not only cholesterol but an integral part of the membrane in excess, restoring the viability of the secretory cells. This hypothesis is congruent with the beneficial effects of HDL against atherosclerosis as well as with their capacity to induce insulin secretion and merits experimental exploration.
Collapse
|
15
|
Tao JH, Wang XT, Yuan W, Chen JN, Wang ZJ, Ma YB, Zhao FQ, Zhang LY, Ma J, Liu Q. Reduced serum high-density lipoprotein cholesterol levels and aberrantly expressed cholesterol metabolism genes in colorectal cancer. World J Clin Cases 2022; 10:4446-4459. [PMID: 35663062 PMCID: PMC9125299 DOI: 10.12998/wjcc.v10.i14.4446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/27/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common malignant tumor of the gastrointestinal tract. Lipid metabolism, as an important part of material and energy circulation, is well known to play a crucial role in CRC.
AIM To explore the relationship between serum lipids and CRC development and identify aberrantly expressed cholesterol metabolism genes in CRC.
METHODS We retrospectively collected 843 patients who had confirmed CRC and received surgical resection from 2013 to 2015 at the Cancer Hospital of the Chinese Academy of Medical Sciences as our research subjects. The levels of serum total cholesterol (TC), triglycerides, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), LDL-C/HDL-C and clinical features were collected and statistically analyzed by SPSS. Then, we used the data from Oncomine to screen the differentially expressed genes (DEGs) of the cholesterol metabolism pathway in CRC and used Gene Expression Profiling Interactive Analysis to confirm the candidate DEGs. PrognoScan was used to analyze the prognostic value of the DEGs, and Search Tool for the Retrieval of Interacting Genes was used to construct the protein–protein interaction network of DEGs.
RESULTS The serum HDL-C level in CRC patients was significantly correlated with tumor size, and patients whose tumor size was more than 5 cm had a lower serum HDL-C level (1.18 ± 0.41 mmol/L vs 1.25 ± 0.35 mmol/L, P < 0.01) than their counterparts. In addition, TC/HDL (4.19 ± 1.33 vs 3.93 ± 1.26, P < 0.01) and LDL-C/HDL-C (2.83 ± 1.10 vs 2.61 ± 0.96, P < 0.01) were higher in patients with larger tumors. The levels of HDL-C (P < 0.05), TC/HDL-C (P < 0.01) and LDL-C/HDL-C (P < 0.05) varied in different stages of CRC patients, and the differences were significant. We screened 14 differentially expressed genes (DEGs) of the cholesterol metabolism pathway in CRC and confirmed that lipoprotein receptor-related protein 8 (LRP8), PCSK9, low-density lipoprotein receptor (LDLR), MBTPS2 and FDXR are upregulated, while ABCA1 and OSBPL1A are downregulated in cancer tissue. Higher expression of LDLR (HR = 3.12, 95%CI: 1.77-5.49, P < 0.001), ABCA1 (HR = 1.66, 95%CI: 1.11-2.48, P = 0.012) and OSBPL1A (HR = 1.38, 95%CI: 1.01-1.89, P = 0.041) all yielded significantly poorer DFS outcomes. Higher expression of FDXR (HR = 0.7, 95%CI: 0.47-1.05, P = 0.002) was correlated with longer DFS. LDLR, ABCA1, OSBPL1A and FDXR were involved in many important cellular function pathways.
CONCLUSION Serum HDL-C levels are associated with tumor size and stage in CRC patients. LRP8, PCSK9, LDLR, MBTPS2 and FDXR are upregulated, while ABCA1 and OSBPL1A are downregulated in CRC. Among them, LDLR, ABCA1, OSBPL1A and FDXR were valuable prognostic factors of DFS and were involved in important cellular function pathways.
Collapse
Affiliation(s)
- Jin-Hua Tao
- Department of Colorectal Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiao-Tong Wang
- State Key Laboratory of Molecular Oncology, Clinical Immunology Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wei Yuan
- State Key Laboratory of Molecular Oncology, Clinical Immunology Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jia-Nan Chen
- Department of Colorectal Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhi-Jie Wang
- Department of Colorectal Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yun-Bin Ma
- Department of Abodominal Surgery, Beijing Sanhuan Cancer Hospital, Beijing 100122, China
| | - Fu-Qiang Zhao
- Department of Colorectal Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Liu-Yuan Zhang
- State Key Laboratory of Molecular Oncology, Clinical Immunology Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jie Ma
- State Key Laboratory of Molecular Oncology, Clinical Immunology Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qian Liu
- Department of Colorectal Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
16
|
High-Density Lipoproteins and Cardiovascular Disease: The Good, the Bad, and the Future II. Biomedicines 2022; 10:biomedicines10030620. [PMID: 35327422 PMCID: PMC8945336 DOI: 10.3390/biomedicines10030620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
|