1
|
Hu KF, Shu CW, Chen CF, Lee CH, Kung HC, Chou YH, Chen CL, Liu PF. Regulation of Exosomal miR-320d/FAM49B Axis by Guanylate Binding Protein 5 Promotes Cell Growth and Tumor Progression in Oral Squamous Cell Carcinoma. J Oral Pathol Med 2025. [PMID: 40097332 DOI: 10.1111/jop.13624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/28/2024] [Accepted: 12/10/2024] [Indexed: 03/19/2025]
Abstract
BACKGROUND Guanylate binding protein 5 (GBP5) and exosomal miRNAs are involved in tumor progression. While several studies reveal the connection between GBP5 and exosomes for immune response and infection, this relationship in cancer, particularly in oral squamous cell carcinoma (OSCC), remains unexplored. METHODS The exosomal miRNA extracted from the cells was analyzed using next-generation sequencing. Bioinformatic tools were used to predict exosomal miRNA target genes. OSCC cell growth was verified by colony formation, cell viability, and cell cycle analysis. The Cancer Genome Atlas database was used to inspect the prognosis of OSCC patients. RESULTS Our results showed that OSCC cells treated with exosomes from GBP5-silenced OSCC cells reduced colony formation. Also, 56 differentially expressed exosomal miRNAs were found in GBP5-silenced OSCC cells compared to scrambled OSCC cells. Among them, exosomal miR-320d exhibited the highest negative correlation with GBP5 in OSCC patients. High GBP5/low miR-320d co-expression was linked to reduced disease-free survival (DFS) in patients with OSCC. Interestingly, the inhibitory effect of GBP5-silenced exosomes on OSCC cell growth was reversed by miR-320d inhibitors. Moreover, five miR-320d target genes were predicted, and only Family with Sequence Similarity 49, Member B (FAM49B) showed a negative correlation with miR-320d. A decreased level of FAM49B was found in OSCC cells treated with exosomes derived from GBP5-silenced OSCC cells, while the decreased level of FAM49B was reversed by miR-320d inhibitors. Silencing FAM49B and GBP5-silenced exosomes enhanced the cytotoxicity of paclitaxel. FAM49B was abundantly expressed in tumor tissues, and high FAM49B/low miR-320d and high GBP5/high FAM49B co-expression were linked to reduced DFS of OSCC patients. CONCLUSION Our study suggests that GBP5 downregulated exosomal miR-320d may trigger FAM49B expression and facilitate OSCC tumor growth and progression.
Collapse
Affiliation(s)
- Kai-Fang Hu
- Department of Dentistry, Division of Periodontics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Innovation Center for Drug Development and Optimization, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Feng Chen
- Department of Stomatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Cheng-Hsin Lee
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang-Chien Kung
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hsiang Chou
- Department of Dentistry, Division of Periodontics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Lin Chen
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Kumaresan V, Hung CY, Hermann BP, Seshu J. Role of Dual Specificity Phosphatase 1 (DUSP1) in influencing inflammatory pathways in macrophages modulated by Borrelia burgdorferi lipoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624562. [PMID: 39605372 PMCID: PMC11601599 DOI: 10.1101/2024.11.20.624562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Borrelia burgdorferi (Bb), the spirochetal agent of Lyme disease, has a large array of lipoproteins that play a significant role in mediating host-pathogen interactions within ticks and vertebrates. Although there is substantial information on the effects of B. burgdorferi lipoproteins (BbLP) on immune modulatory pathways, the application of multi-omics methodologies to decode the transcriptional and proteomic patterns associated with host cell responses induced by lipoproteins in murine bone marrow-derived macrophages (BMDMs) has identified additional effectors and pathways. Single-cell RNA-Seq (scRNA-Seq) performed on BMDMs treated with various concentrations of borrelial lipoproteins revealed macrophage subsets within the BMDMs. Differential expression analysis showed that genes encoding various receptors, type I IFN-stimulated genes, signaling chemokines, and mitochondrial genes are altered in BMDMs in response to lipoproteins. Unbiased proteomics analysis of lysates of BMDMs treated with lipoproteins corroborated several of these findings. Notably, dual specificity phosphatase 1 (Dusp1) gene was upregulated during the early stages of BMDM exposure to BbLP. Pre-treatment with benzylidene-3-cyclohexylamino-1-indanone hydrochloride (BCI), an inhibitor of both DUSP1 and 6 prior to exposure to BbLP, demonstrated that DUSP1 negatively regulates NLRP3-mediated pro-inflammatory signaling and positively regulates the expression of interferon-stimulated genes and those encoding Ccl5, Il1b, and Cd274. Moreover, DUSP1, IkB kinase complex and MyD88 also modulate mitochondrial changes in BMDMs treated with borrelial lipoproteins. These findings advance the potential for exploiting DUSP1 as a therapeutic target to regulate host responses in reservoir hosts to limit survival of B. burgdorferi during its infectious cycle between ticks and mammalian hosts.
Collapse
Affiliation(s)
- Venkatesh Kumaresan
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX-78249
| | - Chiung-Yu Hung
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX-78249
| | - Brian P. Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX-78249
| | - J. Seshu
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX-78249
| |
Collapse
|
3
|
Wang X, Han T, Wang Y, Yang R, Yang Q, Li J. Integrative analysis of the immunological significances of guanylate binding protein family genes in microsatellite stability colorectal cancer. Heliyon 2024; 10:e37741. [PMID: 39315131 PMCID: PMC11417218 DOI: 10.1016/j.heliyon.2024.e37741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Background Microsatellite stability (MSS) colorectal cancer (CRC) has poor sensitivity to immunotherapy and its underlying mechanisms are still unclear. Guanylate binding proteins (GBPs) are a family of GTPase involving innate immune responses by providing defense against invading microbes and pathogens. However, the immunological significances of GBPs in MSS CRC remain unknown. Methods We utilized bioinformatic tools to comprehensively analysis the expression pattern, clinical relevance, prognostic value, biological function, and immunoregulation effect of distinct GBP members in MSS CRC. Results The expression of all seven GBPs in MSS samples are remarkably decreased compared to microsatellite instability-high (MSI-H) samples. Among them, GBP1/2/4/5 are obviously correlated with distant metastasis status. High expression of GBP1/4/5/6 was remarkably related to favorable overall survival (OS) and progression-free survival (PFS) in CRC patients with MSS tumor. Subsequent enrichment analysis revealed that Interferon-gamma (IFN-γ) and NOD-like receptor signaling are the most relevant functions. Besides, the expression patterns of GBPs are remarkably associated with several tumor infiltrated immune cells (e.g. regulatory T cells, CD4+ T cells, and macrophages) and diverse immunoregulatory molecules (e.g. immune checkpoint biomarkers (ICBs) and major histocompatibility complex (MHC) molecules). Moreover, high GBP1/2/4/5 expression predicted better immunotherapy responsiveness in immunotherapy cohorts. Conclusion These findings might provide novel insights for the identification of therapeutic targets and potential prognostic biomarkers of GBP family in CRC with MSS samples.
Collapse
Affiliation(s)
| | | | - Yinchun Wang
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, PR China
| | - Rui Yang
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, PR China
| | - Qingqiang Yang
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, PR China
| | - Jianxin Li
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, PR China
| |
Collapse
|
4
|
Tasiheng Y, Lin X, Wang X, Zou X, Chen Y, Yan Y, Ma M, Dai Z, Wang X, Yu X, Cheng H, Liu C. DNA hypo-methylation and expression of GBP4 induces T cell exhaustion in pancreatic cancer. Cancer Immunol Immunother 2024; 73:208. [PMID: 39110249 PMCID: PMC11306721 DOI: 10.1007/s00262-024-03786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Immunotherapy for pancreatic ductal carcinoma (PDAC) remains disappointing due to the repressive tumor microenvironment and T cell exhaustion, in which the roles of interferon-stimulated genes were largely unknown. Here, we focused on a typical interferon-stimulated gene, GBP4, and investigated its potential diagnostic and therapeutic value in pancreatic cancer. Expression analysis on both local samples and public databases indicated that GBP4 was one of the most dominant GBP family members present in the PDAC microenvironment, and the expression level of GBP4 was negatively associated with patient survival. We then identified DNA hypo-methylation in regulatory regions of GBP4 in PDAC, and validated its regulatory role on GBP4 expression via performing targeted methylation using dCas9-SunTag-DNMAT3A-sgRNA-targeted methylation system on selected DNA locus. After that, we investigated the downstream functions of GBP4, and chemotaxis assays indicated that GBP4 overexpression significantly improved the infiltration of CD8+T cells, but also induced upregulation of immune checkpoint genes and T cell exhaustion. Lastly, in vitro T cell killing assays using primary organoids suggested that the PDAC samples with high level of GBP4 expression displayed significantly higher sensitivity to anti-PD-1 treatment. Taken together, our studies revealed the expression patterns and epigenetic regulatory mechanisms of GBP4 in pancreatic cancer and clarified the effects of GBP4 on T cell exhaustion and antitumor immunology.
Collapse
Affiliation(s)
- Yesiboli Tasiheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
| | - Xuan Lin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
| | - Xu Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China.
- Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Cancer Research Institute, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China.
| | - Xuan Zou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
| | - Yusheng Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
| | - Yu Yan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
| | - Mingjian Ma
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
| | - Zhengjie Dai
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
| | - Xu Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China.
| | - He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China.
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, No.270 Dong An Road, Shanghai, 200032, Xu-Hui District, China.
| |
Collapse
|
5
|
Hasegawa M, Amano Y, Kihara A, Matsubara D, Fukushima N, Takahashi H, Chikamatsu K, Nishino H, Mori Y, Yoshida N, Niki T. Guanylate binding protein 5 is an immune-related biomarker of oral squamous cell carcinoma: A retrospective prognostic study with bioinformatic analysis. Cancer Med 2024; 13:e7431. [PMID: 38978333 PMCID: PMC11231040 DOI: 10.1002/cam4.7431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/02/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Cancer utilizes immunosuppressive mechanisms to create a tumor microenvironment favorable for its progression. The purpose of this study is to histologically characterize the immunological properties of the tumor microenvironment of oral squamous cell carcinoma (OSCC) and identify key molecules involved in the immunological microenvironment and patient prognosis. METHODS First, overlapping differentially expressed genes (DEGs) were screened from OSCC transcriptome data in public databases. Correlation analysis of DEGs with known immune-related genes identified genes involved in the immune microenvironment of OSCC. Next, stromal patterns of tumor were classified and immunohistochemical staining was performed for immune cell markers (CD3, CD4, Foxp3, CD8, CD20, CD68, and CD163), programmed death-ligand 1 (PD-L1), and guanylate binding protein 5 (GBP5) in resected specimens obtained from 110 patients with OSCC who underwent resection. Correlations between each factor and their prognostic impact were analyzed. RESULTS Among the novel OSCC-specific immune-related genes screened (including ADAMDEC1, CXCL9, CXCL13, DPT, GBP5, IDO1, and PLA2G7), GBP5 was selected as the target gene. Histopathologic analysis showed that multiple T-cell subsets and CD20-positive cells were less common in the advanced stages, whereas CD163-positive cells were more common in advanced stages. The immature type in the stromal pattern category was associated with less immune cell infiltration, lower expression of PD-L1 in immune cells, lower expression of GBP5 in the stroma, and shorter overall survival and recurrence-free survival. Expression of GBP5 in the tumor and stroma correlated with immune cell infiltration of tumors and PD-L1 expression in tumor and immune cells. Patients with low tumor GBP5 expression and high stromal expression had significantly longer overall survival and recurrence-free survival. CONCLUSIONS The stromal pattern category may reflect both invasive and immunomodulatory potentials of cancer-associated fibroblasts in OSCC. GBP5 has been suggested as a potential biomarker to predict the prognosis and therapeutic efficacy of immune checkpoint inhibitors.
Collapse
MESH Headings
- Adult
- Aged
- Female
- Humans
- Male
- Middle Aged
- B7-H1 Antigen/metabolism
- B7-H1 Antigen/genetics
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/metabolism
- Computational Biology/methods
- Gene Expression Regulation, Neoplastic
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/immunology
- GTP-Binding Proteins/metabolism
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Mouth Neoplasms/immunology
- Mouth Neoplasms/pathology
- Mouth Neoplasms/genetics
- Mouth Neoplasms/mortality
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/surgery
- Prognosis
- Retrospective Studies
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Masayo Hasegawa
- Department of Integrative PathologyJichi Medical UniversityShimotsukeTochigiJapan
- Department of Otolaryngology‐Head and Neck SurgeryJichi Medical University Saitama Medical CenterSaitamaJapan
| | - Yusuke Amano
- Department of Integrative PathologyJichi Medical UniversityShimotsukeTochigiJapan
| | - Atsushi Kihara
- Department of Integrative PathologyJichi Medical UniversityShimotsukeTochigiJapan
| | - Daisuke Matsubara
- Department of Integrative PathologyJichi Medical UniversityShimotsukeTochigiJapan
- Department of Pathology, Faculty of medicineUniversity of TsukubaTsukubaIbarakiJapan
| | - Noriyoshi Fukushima
- Department of Integrative PathologyJichi Medical UniversityShimotsukeTochigiJapan
| | - Hideyuki Takahashi
- Department of Otolaryngology‐Head and Neck SurgeryGunma University Graduate School of MedicineMaebashiGunmaJapan
| | - Kazuaki Chikamatsu
- Department of Otolaryngology‐Head and Neck SurgeryGunma University Graduate School of MedicineMaebashiGunmaJapan
| | - Hiroshi Nishino
- Department of Otolaryngology‐Head and Neck SurgeryJichi Medical UniversityShimotsukeTochigiJapan
| | - Yoshiyuki Mori
- Department of Dentistry, Oral and Maxillofacial SurgeryJichi Medical University Saitama Medical CenterSaitamaJapan
| | - Naohiro Yoshida
- Department of Otolaryngology‐Head and Neck SurgeryJichi Medical University Saitama Medical CenterSaitamaJapan
| | - Toshiro Niki
- Department of Integrative PathologyJichi Medical UniversityShimotsukeTochigiJapan
| |
Collapse
|
6
|
Chiu HW, Lin CH, Lee HH, Lu HW, Lin YHK, Lin YF, Lee HL. Guanylate binding protein 5 triggers NF-κB activation to foster radioresistance, metastatic progression and PD-L1 expression in oral squamous cell carcinoma. Clin Immunol 2024; 259:109892. [PMID: 38185269 DOI: 10.1016/j.clim.2024.109892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/09/2024]
Abstract
Radioresistance and metastasis are critical issues in managing oral squamous cell carcinoma (OSCC). Although immune checkpoint inhibitors (ICIs) has been recommended to treat OSCC, lacking useful biomarkers limited their anti-cancer effectiveness. We found that guanylate binding protein 5 (GBP5) is upregulated in primary tumors and associates with radioresistance in OSCC. GBP5 expression causally associated with cellular radioresistance and migration ability in the OSCC cell variants. GBP5 upregulation was examined to be correlated with NF-κB activation and programmed cell death-ligand 1 (PD-L1) elevation in OSCC samples. GBP5 knockdown was mitigated, but overexpression enhanced, NF-κB activity and PD-L1 expression in the OSCC cells. NF-κB inhibition by SN50 dramatically suppressed the GBP5-forested irradiation resistance, cellular migration ability and PD-L1 expression in OSCC cells. Importantly, GBP5 upregulation predicted a favorable outcome in cancer patients received ICI treatment. Our findings provide GBP5 as a useful biomarker to predict the anti-OSCC effectiveness of irradiation and ICIs.
Collapse
Affiliation(s)
- Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
| | - Che-Hsuan Lin
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Otolaryngology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsun-Hua Lee
- Department of Neurology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Neurology, Vertigo and Balance Impairment Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Hsiao-Wei Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Otolaryngology Head and Neck Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Yu-Hsien Kent Lin
- Department of Obstetrics and Gynaecology, North Shore Private Hospital, Sydney, NSW, Australia; Department of Gynecology, Ryde Hospital, Northern Sydney Local Health District, Sydney, Australia; Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, NSW, Australia
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Hsin-Lun Lee
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| |
Collapse
|
7
|
Tong Q, Li D, Yin Y, Cheng L, Ouyang S. GBP5 Expression Predicted Prognosis of Immune Checkpoint Inhibitors in Small Cell Lung Cancer and Correlated with Tumor Immune Microenvironment. J Inflamm Res 2023; 16:4153-4164. [PMID: 37750170 PMCID: PMC10518156 DOI: 10.2147/jir.s401430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/10/2023] [Indexed: 09/27/2023] Open
Abstract
Background The discovery and development of immune checkpoint inhibitors (ICIs) has significantly enhanced the arsenal of immunotherapy treatments available for cancer patients. The identification of biomarkers that are indicative of an individual's sensitivity to treatment with ICIs is useful for screening SCLC patients prior to commencement of any ICIs based immunotherapy. However, the relationship between GBP5 and the prognosis of SCLC immunotherapy is still unclear and requires further study. Methods We downloaded two SCLC datasets, namely the George-SCLC and Jiang-SCLC cohorts. We used the TIDE algorithm to predict the efficacy of immunotherapy for SCLC patients. The QuanTIseq, MCPcounter, and EPIC algorithms are used to calculate the proportions of immune cells in SCLC patients. Additionally, we retrospectively collected 35 SCLC samples from the first affiliated hospital of the Hengyang Medical school. Results Patients in each cohort were devided into two groups with high (GBP5-High) and low (GBP5-Low) expression of GBP5. In both cohorts, the GBP5-High population had a higher proportion of patients that responded well to immunotherapy (responders) (p < 0.05). In addition, both GBP5-High subgroups had significantly increased cytotoxicity, chemokines, antigen presenting, and TNF family related genes. We also determined that GBP5 was related to high-level infiltration of B cells, CD4+T cells, CD8+T cells and NK cells. Conclusion In this study, we found that GBP5 has the potential to be used as a biomarker of ICIs efficacy for SCLC patients. GBP5 is related to the quantity of inflammatory molecules, a high level of immune infiltration, and a highly activated immune response pathway.
Collapse
Affiliation(s)
- Qin Tong
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, People’s Republic of China
| | - Deyu Li
- Department of Medical Oncology, Provincial Clinical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People’s Republic of China
| | - Yan Yin
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, People’s Republic of China
| | - Lifang Cheng
- Department of Hematology, Shenzhen Samii Medical Center, Shenzhen, People’s Republic of China
| | - Shuming Ouyang
- Gynecology & Obstetrics and Reproductive Medical Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, People’s Republic of China
| |
Collapse
|
8
|
Fan H, Shi Y, Wang H, Li Y, Mei J, Xu J, Liu C. GBP5 Identifies Immuno-Hot Tumors and Predicts the Therapeutic Response to Immunotherapy in NSCLC. Int J Gen Med 2023; 16:1757-1769. [PMID: 37193249 PMCID: PMC10183185 DOI: 10.2147/ijgm.s408900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 05/18/2023] Open
Abstract
Background Immunotherapy drugs, immune checkpoint inhibitors (ICIs), have been approved for first- and second-line treatment of non-small cell lung cancer (NSCLC), but only a portion of patients respond to ICIs. It is crucial to screen the beneficiaries of immunotherapy through biomarkers accurately. Methods Several datasets were used to explore the predictive value for immunotherapy and immune relevance of guanylate binding protein 5 (GBP5) in NSCLC, including the GSE126044 dataset, The Cancer Genome Atlas (TCGA) dataset, Clinical Proteomic Tumor Analysis Consortium (CPTAC) dataset, the Kaplan-Meier plotter dataset, the HLuA150CS02 cohort, and the HLugS120CS01 cohort. Results GBP5 was upregulated in tumor tissues but associated with a good prognosis in NSCLC. Moreover, our findings demonstrated that GBP5 was strongly correlated with the expression of many immune-related genes, TIIC levels, and PD-L1 expression based on RNA-seq data onto online databases and validation of the NSCLC tissue microarray using IHC staining. Moreover, pan-cancer analysis has shown that GBP5 was a factor in identifying immuno-hot tumors, except for a few tumor types. Conclusion In summary, our current research suggests that GBP5 expression is a potential biomarker for predicting the outcome of NSCLC patients treated with ICIs. More research with large-scale samples is needed to determine their value as biomarkers of ICIs benefit.
Collapse
Affiliation(s)
- Honghong Fan
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Yuxin Shi
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Huiyu Wang
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Yuting Li
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Jie Mei
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Junying Xu
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Chaoying Liu
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| |
Collapse
|
9
|
Yeh ES. Special Issue: Cancer Metastasis and Therapeutic Resistance. Biomedicines 2023; 11:biomedicines11051347. [PMID: 37239018 DOI: 10.3390/biomedicines11051347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Metastasis and resistance to cancer therapeutics are critical barriers to curing cancer. This special issue entitled "Cancer Metastasis and Therapeutic Resistance" contains nine original contributions. The articles span a variety of human cancers, including breast, lung, brain, prostate, and skin and touch upon significant areas of interest such as cancer stem cell function, cancer immunology, and glycosylation.
Collapse
Affiliation(s)
- Elizabeth S Yeh
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
10
|
Ye S, Li S, Qin L, Zheng W, Liu B, Li X, Ren Z, Zhao H, Hu X, Ye N, Li G. GBP2 promotes clear cell renal cell carcinoma progression through immune infiltration and regulation of PD‑L1 expression via STAT1 signaling. Oncol Rep 2023; 49:49. [PMID: 36660930 PMCID: PMC9887463 DOI: 10.3892/or.2023.8486] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
Guanylate‑binding protein 2 (GBP2) has been widely studied in cancer, however, its potential role in clear cell renal cell carcinoma (ccRCC) is not fully elucidated. The present study aimed to explore the effect of GBP2 on tumor progression and its possible underlying molecular mechanisms in ccRCC. The Cancer Genome Atlas, Gene Expression Omnibus, Cancer Cell Line Encyclopedia databases, and several bioinformatics analysis tools, such as Gene Expression Profiling Interactive Analysis 2, Kaplan‑Meier plotter, UALCAN, LinkedOmics, Metascape, GeneMANIA and Tumor Immune Estimation Resource, were used to characterize the functional relationship between GBP2 and ccRCC. Focusing on the association between GBP2 and programmed death ligand 1 (PD‑L1) in vitro, the regulatory mechanism was investigated by knockdown and overexpression of GBP2 in Caki‑1 and 786‑O cells using reverse transcription‑quantitative PCR, western blotting and co‑immunoprecipitation techniques. The results indicated that GBP2 was commonly upregulated in ccRCC, correlating with worse prognosis. In addition, GBP2 expression levels were positively associated with different patterns of immune cell infiltration, suggesting that the GBP2 gene regulates PD‑L1 expression via the signal transducer and activator of transcription 1 (STAT1) pathway. The present study suggested that GBP2 regulates tumor immune infiltration and promotes tumor immune escape through PD‑L1 expression, revealing a potential immunotherapeutic target for ccRCC.
Collapse
Affiliation(s)
- Shujiang Ye
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China
| | - Siyu Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China
| | - Lei Qin
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China
| | - Wei Zheng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China
| | - Bin Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China
| | - Xiaohui Li
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhenhua Ren
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Huaiming Zhao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China
| | - Xudong Hu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China
| | - Nan Ye
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China
| | - Guangyuan Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, P.R. China,Anhui Public Health Clinical Center, Hefei, Anhui 230012, P.R. China,The Lu'an Hospital Affiliated to Anhui Medical University, Lu'an, Anhui 237005, P.R. China,The Lu'an People's Hospital, Lu'an, Anhui 237005, P.R. China,Correspondence to: Dr Guangyuan Li, Department of Urology, The First Affiliated Hospital of Anhui Medical University, 100 Huaihai Avenue, Hefei, Anhui 230012, P.R. China, E-mail:
| |
Collapse
|
11
|
Mechanisms and Strategies to Overcome PD-1/PD-L1 Blockade Resistance in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 15:cancers15010104. [PMID: 36612100 PMCID: PMC9817764 DOI: 10.3390/cancers15010104] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by a high rate of systemic metastasis, insensitivity to conventional treatment and susceptibility to drug resistance, resulting in a poor patient prognosis. The immune checkpoint inhibitors (ICIs) represented by antibodies of programmed death receptor 1 (PD-1) and programmed death receptor ligand 1 (PD-L1) have provided new therapeutic options for TNBC. However, the efficacy of PD-1/PD-L1 blockade monotherapy is suboptimal immune response, which may be caused by reduced antigen presentation, immunosuppressive tumor microenvironment, interplay with other immune checkpoints and aberrant activation of oncological signaling in tumor cells. Therefore, to improve the sensitivity of TNBC to ICIs, suitable patients are selected based on reliable predictive markers and treated with a combination of ICIs with other therapies such as chemotherapy, radiotherapy, targeted therapy, oncologic virus and neoantigen-based therapies. This review discusses the current mechanisms underlying the resistance of TNBC to PD-1/PD-L1 inhibitors, the potential biomarkers for predicting the efficacy of anti-PD-1/PD-L1 immunotherapy and recent advances in the combination therapies to increase response rates, the depth of remission and the durability of the benefit of TNBC to ICIs.
Collapse
|
12
|
Li X, Song D, Su S, He X, Cao F, Yang C, Li K, Huang S, Li C, Wang C, Zhang A, Pang P, Zheng Y. Critical role of guanylate binding protein 5 in tumor immune microenvironment and predictive value of immunotherapy response. Front Genet 2022; 13:984615. [PMID: 36246628 PMCID: PMC9561824 DOI: 10.3389/fgene.2022.984615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The guanylate-binding proteins (GBPs) are the latest potential targets of immunotherapy. However, the role of GBP5 in pan-cancer, including colorectal cancer (CRC), remains unclear. This study aims to explore the effect of GBP5 on immunity in pan-cancer. Methods: Based on the RNA sequencing data of 33 cancers obtained from The Cancer Genome Atlas, we analyzed the clinical significance of GBPs and focused on the correlation between GBP5 and tumor microenvironment (TME). Immunotherapy cohort IMvigor210 was used to explore the relationship between treatment response and GBPs. Then, we further analyzed the expression of GBP5 in immune cells using single-cell transcriptome cohort GSE146771 and GSE132465 from the Gene Expression Omnibus database. Finally, a prognostic model based on GBP5 expression was established and validated. Results: We found that the expression of GBP3/4/5 is higher in colorectal cancer than in normal tissues, and GBP5 is a better predictor of good treatment response to immune checkpoint blockade than other GBPs. In most other cancers, GBP5 is also elevated in tumors compared with normal tissues and is associated with a better prognosis. As for TME, GBP5 is generally positively correlated with immune score, the level of tumor-infiltrating immune cells and immune-related genes. Single-cell analysis showed that GBP5 was mainly expressed in myeloid cells and T cells. The GBP5-related prognostic model we constructed in CRC can predict the survival of patients and propose some genes for subsequent research. Conclusion: This study revealed a strong correlation between GBP5 and immunity in generalized cancer and provided evidence that CRC may be a suitable cancer type for anti-GBP5 therapy.
Collapse
Affiliation(s)
- Xiang Li
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dan Song
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song Su
- The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaobo He
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fengyu Cao
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chao Yang
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kai Li
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuoyang Huang
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Changhua Li
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chenhong Wang
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Aikang Zhang
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pengcheng Pang
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yongbin Zheng
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yongbin Zheng,
| |
Collapse
|
13
|
Shi Z, Gu J, Yao Y, Wu Z. Identification of a predictive gene signature related to pyroptosis for the prognosis of cutaneous melanoma. Medicine (Baltimore) 2022; 101:e30564. [PMID: 36086707 PMCID: PMC10980462 DOI: 10.1097/md.0000000000030564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
Pyroptosis is a form of inflammatory programmed cell death. However, because of no specific molecular biomarker, pyroptosis has not been considered as a novel therapeutic method to treat cutaneous melanoma (CM). Here, we identified pyroptosis genes that associate with the prognosis of CM patients and constructed an effective model for the prognostic prediction of CM patients. To identify genes related to pyroptosis that are differentially expressed in CM, we obtained gene expression data of CM patients and normal skin tissues from the Cancer Genome Atlas and the Genotype-Tissue Expression databases, and used another cohort obtained from Gene Expression Omnibus database for validation. Three genes (BST2, GBP5, and AIM2) that were associated with prognosis were found and incorporated into our prognostic model. Furthermore, we divided the patients into 2 groups: a high-risk group and a low-risk group. Functional analyses indicated that our model was correlated with patient survival and cancer growth. Multivariate and univariate Cox regressions revealed that the constructed model could serve as an independent prognostic factor for CM patients. Meanwhile, compared with other clinical characteristics, our model significantly improved the diagnostic accuracy. Gene function analysis revealed that pyroptosis genes BST2, GBP5, and AIM2 were differentially expressed in CM patients and positively associated with patient prognosis. Finally, a risk score was used to generate nomograms that displayed favorable discriminatory abilities for CM. In summary, our model could significantly predict the prognosis of CM patients and be used for the development of CM therapy.
Collapse
Affiliation(s)
- Zhaoyang Shi
- Department of Hand Plastic Surgery, The First People’s Hospital of Linping District, Hangzhou, China
| | - Jiaying Gu
- Department of Laboratory, Integrated Traditional Chinese and Western Medicine Hospital of Linping District, Hangzhou, China
| | - Yi Yao
- Department of Hand Plastic Surgery, The First People’s Hospital of Linping District, Hangzhou, China
| | - Zhengyuan Wu
- Department of Hand Plastic Surgery, The First People’s Hospital of Linping District, Hangzhou, China
| |
Collapse
|
14
|
Hunt EN, Kopacz JP, Vestal DJ. Unraveling the Role of Guanylate-Binding Proteins (GBPs) in Breast Cancer: A Comprehensive Literature Review and New Data on Prognosis in Breast Cancer Subtypes. Cancers (Basel) 2022; 14:cancers14112794. [PMID: 35681772 PMCID: PMC9179834 DOI: 10.3390/cancers14112794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/19/2022] Open
Abstract
At least one member of the Guanylate-Binding Protein (GBP) family of large interferon-induced GTPases has been classified as both a marker of good prognosis and as a potential drug target to treat breast cancers. However, the activity of individual GBPs appears to not just be tumor cell type–specific but dependent on the growth factor and/or cytokine environment in which the tumor cells reside. To clarify what we do and do not know about GBPs in breast cancer, the current literature on GBP-1, GBP-2, and GBP-5 in breast cancer has been assembled. In addition, we have analyzed the role of each of these GBPs in predicting recurrence-free survival (RFS), overall survival (OS), and distance metastasis-free survival (DMFS) as single gene products in different subtypes of breast cancers. When a large cohort of breast cancers of all types and stages were examined, GBP-1 correlated with poor RFS. However, it was the only GBP to do so. When smaller cohorts of breast cancer subtypes grouped into ER+, ER+/Her2-, and HER2+ tumors were analyzed, none of the GBPs influenced RFS, OS, or DMSF as single agents. The exception is GBP-5, which correlated with improved RFS in Her2+ breast cancers. All three GBPs individually predicted improved RFS, OS, and DMSF in ER- breast cancers, regardless of the PR or HER2 status, and TNBCs.
Collapse
|
15
|
Jiang Y, Lin L, Lv H, Zhang H, Jiang L, Ma F, Wang Q, Ma X, Yu S. Immune cell infiltration and immunotherapy in hepatocellular carcinoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:7178-7200. [PMID: 35730302 DOI: 10.3934/mbe.2022339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hepatocellular carcinoma is a highly malignant tumor and patients yield limited benefits from the existing treatments. The application of immune checkpoint inhibitors is promising but the results described in the literature are not favorable. It is therefore urgent to systematically analyze the immune microenvironment of HCC and screen the population best suited for the application of immune checkpoint inhibitors to provide a basis for clinical treatment. In this study, we collected The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC)-related data sets to evaluate the immune microenvironment and immune cell infiltration (ICI) in HCC. Three independent ICI subtypes showing significant differences in survival were identified. Further, TCGA-LIHC immunophenoscore (IPS) was used to identify the differentially expressed genes between high- and low-IPS in HCC, so as to identify the immune gene subtypes in HCC tumors. The ICI score model for HCC was constructed, whereby we divided HCC samples into high- and low-score groups based on the median ICI score. The differences between these groups in genomic mutation load and immunotherapy benefit in HCC were examined in detail to provide theoretical support for accurate immunotherapy strategy in HCC. Finally, four genes were screened, which could accurately predict the subtype based on the tumor immune infiltration score. The findings may provide a basis and simplify the process for screening clinical drugs suitable for relevant subgroups.
Collapse
Affiliation(s)
- Yu Jiang
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| | - Lijuan Lin
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| | - Huiming Lv
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| | - He Zhang
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| | - Lili Jiang
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| | - Fenfen Ma
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| | - Qiuyue Wang
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| | - Xue Ma
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| | - Shengjin Yu
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong 118000, China
| |
Collapse
|
16
|
Pradhan RK, Ramakrishna W. Transposons: Unexpected players in cancer. Gene 2022; 808:145975. [PMID: 34592349 DOI: 10.1016/j.gene.2021.145975] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022]
Abstract
Transposons are repetitive DNA sequences encompassing about half of the human genome. They play a vital role in genome stability maintenance and contribute to genomic diversity and evolution. Their activity is regulated by various mechanisms considering the deleterious effects of these mobile elements. Various genetic risk factors and environmental stress conditions affect the regulatory pathways causing alteration of transposon expression. Our knowledge of the biological role of transposons is limited especially in various types of cancers. Retrotransposons of different types (LTR-retrotransposons, LINEs and SINEs) regulate a plethora of genes that have a role in cell reprogramming, tumor suppression, cell cycle, apoptosis, cell adhesion and migration, and DNA repair. The regulatory mechanisms of transposons, their deregulation and different mechanisms underlying transposon-mediated carcinogenesis in humans focusing on the three most prevalent types, lung, breast and colorectal cancers, were reviewed. The modes of regulation employed include alternative splicing, deletion, insertion, duplication in genes and promoters resulting in upregulation, downregulation or silencing of genes.
Collapse
|