1
|
Weng X, Gonzalez M, Angelia J, Piroozmand S, Jamehdor S, Behrooz AB, Latifi-Navid H, Ahmadi M, Pecic S. Lipidomics-driven drug discovery and delivery strategies in glioblastoma. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167637. [PMID: 39722408 DOI: 10.1016/j.bbadis.2024.167637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
With few viable treatment options, glioblastoma (GBM) is still one of the most aggressive and deadly types of brain cancer. Recent developments in lipidomics have demonstrated the potential of lipid metabolism as a therapeutic target in GBM. The thorough examination of lipids in biological systems, or lipidomics, is essential to comprehending the changed lipid profiles found in GBM, which are linked to the tumor's ability to grow, survive, and resist treatment. The use of lipidomics in drug delivery and discovery is examined in this study, focusing on how it may be used to find new biomarkers, create multi-target directed ligands, and improve drug delivery systems. We also cover the use of FDA-approved medications, clinical trials that use lipid-targeted medicines, and the integration of lipidomics with other omics technologies. This study emphasizes lipidomics as a possible tool in developing more effective treatment methods for GBM by exploring various lipid-centric techniques.
Collapse
Affiliation(s)
- Xiaohui Weng
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Michael Gonzalez
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Jeannes Angelia
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Somayeh Piroozmand
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Saleh Jamehdor
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States.
| |
Collapse
|
2
|
Wang Z, Zhu H, Xiong W. Metabolism and metabolomics in senescence, aging, and age-related diseases: a multiscale perspective. Front Med 2025:10.1007/s11684-024-1116-0. [PMID: 39821730 DOI: 10.1007/s11684-024-1116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025]
Abstract
The pursuit of healthy aging has long rendered aging and senescence captivating. Age-related ailments, such as cardiovascular diseases, diabetes, and neurodegenerative disorders, pose significant threats to individuals. Recent studies have shed light on the intricate mechanisms encompassing genetics, epigenetics, transcriptomics, and metabolomics in the processes of senescence and aging, as well as the establishment of age-related pathologies. Amidst these underlying mechanisms governing aging and related pathology metabolism assumes a pivotal role that holds promise for intervention and therapeutics. The advancements in metabolomics techniques and analysis methods have significantly propelled the study of senescence and aging, particularly with the aid of multiscale metabolomics which has facilitated the discovery of metabolic markers and therapeutic potentials. This review provides an overview of senescence and aging, emphasizing the crucial role metabolism plays in the aging process as well as age-related diseases.
Collapse
Affiliation(s)
- Ziyi Wang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hongying Zhu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.
- CAS Key Laboratory of Brain Function and Disease, Hefei, 230026, China.
- Anhui Province Key Laboratory of Biomedical Aging Research, Hefei, 230026, China.
| | - Wei Xiong
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.
- CAS Key Laboratory of Brain Function and Disease, Hefei, 230026, China.
- Anhui Province Key Laboratory of Biomedical Aging Research, Hefei, 230026, China.
| |
Collapse
|
3
|
Talavera Andújar B, Pereira SL, Busi SB, Usnich T, Borsche M, Ertan S, Bauer P, Rolfs A, Hezzaz S, Ghelfi J, Brüggemann N, Antony P, Wilmes P, Klein C, Grünewald A, Schymanski EL. Exploring environmental modifiers of LRRK2-associated Parkinson's disease penetrance: An exposomics and metagenomics pilot study on household dust. ENVIRONMENT INTERNATIONAL 2024; 194:109151. [PMID: 39571299 DOI: 10.1016/j.envint.2024.109151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/22/2024]
Abstract
Pathogenic variants in the Leucine-rich repeat kinase 2 (LRRK2) gene are a primary monogenic cause of Parkinson's disease (PD). However, the likelihood of developing PD with inherited LRRK2 pathogenic variants differs (a phenomenon known as "reduced penetrance"), with factors including age and geographic region, highlighting a potential role for lifestyle and environmental factors in disease onset. To investigate this, household dust samples from four different groups of individuals were analyzed using metabolomics/exposomics and metagenomics approaches: PD+/LRRK2+ (PD patients with pathogenic LRRK2 variants; n = 11), PD-/LRRK2+ (individuals with pathogenic LRRK2 variants but without PD diagnosis; n = 8), iPD (PD of unknown cause; n = 11), and a matched, healthy control group (n = 11). The dust was complemented with metabolomics and lipidomics of matched serum samples, where available. A total of 1,003 chemicals and 163 metagenomic operational taxonomic units (mOTUs) were identified in the dust samples, of which ninety chemicals and ten mOTUs were statistically significant (ANOVA p-value < 0.05). Reduced levels of 2-benzothiazolesulfonic acid (BThSO3) were found in the PD-/LRRK2+ group compared to the PD+/LRRK2+ . Among the significant chemicals tentatively identified in dust, two are hazardous chemical replacements: Bisphenol S (BPS), and perfluorobutane sulfonic acid (PFBuS). Furthermore, various lipids were found altered in serum including different lysophosphatidylethanolamines (LPEs), and lysophosphatidylcholines (LPCs), some with higher levels in the PD+/LRRK2+ group compared to the control group. A cellular study on isogenic neurons generated from a PD+/LRRK2+ patient demonstrated that BPS negatively impacts mitochondrial function, which is implicated in PD pathogenesis. This pilot study demonstrates how non-target metabolomics/exposomics analysis of indoor dust samples complemented with metagenomics can prioritize relevant chemicals that may be potential modifiers of LRRK2 penetrance.
Collapse
Affiliation(s)
- Begoña Talavera Andújar
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg.
| | - Sandro L Pereira
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Susheel Bhanu Busi
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg; UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire, United Kingdom
| | - Tatiana Usnich
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Max Borsche
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany; Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Sibel Ertan
- School of Medicine, Department of Neurology, Koc University, Istanbul, Turkey
| | | | | | - Soraya Hezzaz
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Jenny Ghelfi
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany; Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Paul Antony
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg; Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Emma L Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg.
| |
Collapse
|
4
|
Ahanger IA, Dar TA. Small molecule modulators of alpha-synuclein aggregation and toxicity: Pioneering an emerging arsenal against Parkinson's disease. Ageing Res Rev 2024; 101:102538. [PMID: 39389237 DOI: 10.1016/j.arr.2024.102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Parkinson's disease (PD) is primarily characterized by loss of dopaminergic neurons in the substantia nigra pars compacta region of the brain and accumulation of aggregated forms of alpha-synuclein (α-Syn), an intrinsically disordered protein, in the form of Lewy Bodies and Lewy Neurites. Substantial evidences point to the aggregated/fibrillar forms of α-Syn as a central event in PD pathogenesis, underscoring the modulation of α-Syn aggregation as a promising strategy for PD treatment. Consequently, numerous anti-aggregation agents, spanning from small molecules to polymers, have been scrutinized for their potential to mitigate α-Syn aggregation and its associated toxicity. Among these, small molecule modulators like osmoprotectants, polyphenols, cellular metabolites, metals, and peptides have emerged as promising candidates with significant potential in PD management. This article offers a comprehensive overview of the effects of these small molecule modulators on the aggregation propensity and associated toxicity of α-Syn and its PD-associated mutants. It serves as a valuable resource for identifying and developing potent, non-invasive, non-toxic, and highly specific small molecule-based therapeutic arsenal for combating PD. Additionally, it raises pertinent questions aimed at guiding future research endeavours in the field of α-Syn aggregation remodelling.
Collapse
Affiliation(s)
- Ishfaq Ahmad Ahanger
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| | - Tanveer Ali Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| |
Collapse
|
5
|
Gu L, Shu H, Wang Y, Li H, Wang P. Association of lipid levels with motor and cognitive function and decline in Parkinson's disease. Psychogeriatrics 2024; 24:802-810. [PMID: 38567766 DOI: 10.1111/psyg.13122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Most studies have focused on comparing blood lipid biomarkers between Parkinson's disease (PD) and normal controls (NC). However, further research is necessary to explore the impact of blood lipid levels on motor and cognitive function, as well as the progression of motor dysfunction and cognitive decline over time. Thus, the aim of this study is to investigate the relationship between blood lipid biomarkers and these indicators in individuals with PD. METHODS The cohort study enrolled 157 PD patients and 146 NC from the Tianjin Huanhu Hospital from September 2017 to September 2019. Serum lipid fractions were detected in fasting serum samples. PD patients were followed up at 2 ± 0.6 years for clinical assessment. RESULTS PD patients exhibited lower serum triglyceride (TG) levels as compared to NC (P = 0.008). PD male patients exhibited lower serum lipoprotein cholesterol(LDL-C) and total cholesterol (TC) levels than female patients (LDL-C: P = 0.034; TC: P = 0.019). Serum TG levels correlated significantly with Unified PD Rating Scale III, Hoehn and Yahr stage and Montreal Cognitive Assessment scores in PD patients. Additionally, serum TG levels were associated with follow-up motor function decline and cognitive decline in adjusted regression models in PD patients. CONCLUSIONS To summarise, the study findings suggest that decreased serum TG levels are significantly associated with greater motor dysfunction, cognitive dysfunction and the greater deterioration of the two indicators.
Collapse
Affiliation(s)
- Lihua Gu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Hao Shu
- Department of Neurology, the Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanjuan Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Haonan Li
- Department of Neurosurgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
6
|
Luo X, Liu Y, Balck A, Klein C, Fleming RMT. Identification of metabolites reproducibly associated with Parkinson's Disease via meta-analysis and computational modelling. NPJ Parkinsons Dis 2024; 10:126. [PMID: 38951523 PMCID: PMC11217404 DOI: 10.1038/s41531-024-00732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/30/2024] [Indexed: 07/03/2024] Open
Abstract
Many studies have reported metabolomic analysis of different bio-specimens from Parkinson's disease (PD) patients. However, inconsistencies in reported metabolite concentration changes make it difficult to draw conclusions as to the role of metabolism in the occurrence or development of Parkinson's disease. We reviewed the literature on metabolomic analysis of PD patients. From 74 studies that passed quality control metrics, 928 metabolites were identified with significant changes in PD patients, but only 190 were replicated with the same changes in more than one study. Of these metabolites, 60 exclusively increased, such as 3-methoxytyrosine and glycine, 54 exclusively decreased, such as pantothenic acid and caffeine, and 76 inconsistently changed in concentration in PD versus control subjects, such as ornithine and tyrosine. A genome-scale metabolic model of PD and corresponding metabolic map linking most of the replicated metabolites enabled a better understanding of the dysfunctional pathways of PD and the prediction of additional potential metabolic markers from pathways with consistent metabolite changes to target in future studies.
Collapse
Affiliation(s)
- Xi Luo
- School of Medicine, University of Galway, University Rd, Galway, Ireland
| | - Yanjun Liu
- School of Medicine, University of Galway, University Rd, Galway, Ireland
| | - Alexander Balck
- Institute of Neurogenetics and Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Christine Klein
- Institute of Neurogenetics and Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Ronan M T Fleming
- School of Medicine, University of Galway, University Rd, Galway, Ireland.
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands.
| |
Collapse
|
7
|
Zeng Y, Guo R, Cao S, Liu C, Yang H. CSF N-acylethanolamine acid amidase level and Parkinson's disease risk: A mendelian randomization study. Parkinsonism Relat Disord 2024; 123:106953. [PMID: 38579440 DOI: 10.1016/j.parkreldis.2024.106953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/11/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Neuroinflammation is involved in the progression of Parkinson's disease (PD), and N-acylethanolamine acid amidase (NAAA) is involved in regulating inflammation by hydrolyzing bioactive lipid mediators called N-acylethanolamines (NAEs). However, the causal relationship between cerebrospinal fluid (CSF) NAAA protein levels and the risk of PD remains unclear. This study aimed to explore the causal effect of CSF NAAA levels on PD risk through Mendelian randomization (MR) analysis. METHOD Genome-wide association study (GWAS) summary statistics for CSF NAAA protein quantitative trait loci (pQTL) and GWAS summary statistics for PD were obtained from publicly available databases. Inverse-variance weighted (IVW) was the main causal estimation method for MR analysis. In addition, the maximum likelihood, MR Egger regression, and weighted median were used to supplement the IVW results. Finally, various sensitivity tests were performed to verify the reliability of the MR findings. RESULTS In the initial MR analysis, the IVW showed that CSF NAAA protein levels significantly increased PD risk (odds ratio [OR] = 1.17, 95% confidence interval [CI]: 1.01-1.35, P = 0.031). This finding was further validated in a replicate MR analysis (OR = 1.20, 95% CI: 1.02-1.41, P = 0.027). Sensitivity analysis showed that MR results were stable and not affected by heterogeneity and horizontal pleiotropy. CONCLUSION The present MR study supports a causal relationship between elevated CSF NAAA protein levels and increased PD risk.
Collapse
Affiliation(s)
- Youjie Zeng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Ren Guo
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Si Cao
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410205, Hunan, China
| | - Chunxia Liu
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Heng Yang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
8
|
Sarkar S, Roy D, Chatterjee B, Ghosh R. Clinical advances in analytical profiling of signature lipids: implications for severe non-communicable and neurodegenerative diseases. Metabolomics 2024; 20:37. [PMID: 38459207 DOI: 10.1007/s11306-024-02100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Lipids play key roles in numerous biological processes, including energy storage, cell membrane structure, signaling, immune responses, and homeostasis, making lipidomics a vital branch of metabolomics that analyzes and characterizes a wide range of lipid classes. Addressing the complex etiology, age-related risk, progression, inflammation, and research overlap in conditions like Alzheimer's Disease, Parkinson's Disease, Cardiovascular Diseases, and Cancer poses significant challenges in the quest for effective therapeutic targets, improved diagnostic markers, and advanced treatments. Mass spectrometry is an indispensable tool in clinical lipidomics, delivering quantitative and structural lipid data, and its integration with technologies like Liquid Chromatography (LC), Magnetic Resonance Imaging (MRI), and few emerging Matrix-Assisted Laser Desorption Ionization- Imaging Mass Spectrometry (MALDI-IMS) along with its incorporation into Tissue Microarray (TMA) represents current advances. These innovations enhance lipidomics assessment, bolster accuracy, and offer insights into lipid subcellular localization, dynamics, and functional roles in disease contexts. AIM OF THE REVIEW The review article summarizes recent advancements in lipidomic methodologies from 2019 to 2023 for diagnosing major neurodegenerative diseases, Alzheimer's and Parkinson's, serious non-communicable cardiovascular diseases and cancer, emphasizing the role of lipid level variations, and highlighting the potential of lipidomics data integration with genomics and proteomics to improve disease understanding and innovative prognostic, diagnostic and therapeutic strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW Clinical lipidomic studies are a promising approach to track and analyze lipid profiles, revealing their crucial roles in various diseases. This lipid-focused research provides insights into disease mechanisms, biomarker identification, and potential therapeutic targets, advancing our understanding and management of conditions such as Alzheimer's Disease, Parkinson's Disease, Cardiovascular Diseases, and specific cancers.
Collapse
Affiliation(s)
- Sutanu Sarkar
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Deotima Roy
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Bhaskar Chatterjee
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Rajgourab Ghosh
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
9
|
Usenko TS, Senkevich KA, Basharova KS, Bezrukova AI, Baydakova GV, Tyurin AA, Beletskaya MV, Kulabukhova DG, Grunina MN, Emelyanov AK, Miliukhina IV, Timofeeva AA, Zakharova EY, Pchelina SN. LRRK2 exonic variants are associated with lysosomal hydrolase activities and lysosphingolipid alterations in Parkinson's disease. Gene 2023; 882:147639. [PMID: 37473971 DOI: 10.1016/j.gene.2023.147639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Last data demonstrated that exonic variants of LRRK2 (p.G2019S, p.M1646T) may affect the catalytic activity of lysosomal enzyme glucocerebrosidase (GCase) probably through the phosphorylation of Rab10 protein. We aimed to evaluate an association of LRRK2 exonic variants previously associated with alteration of phosphorylation levels for Rab10Thr73 with PD risk in Russian population and analyze an impact of p.G2019S mutation and selected LRRK2 variants on lysosomal hydrolase activities. LRRK2 variants were determined by full sequencing of LRRK2 in 508 PD patients and 470 controls from Russian population. Activity of lysosomal enzymes (glucocerebrosidase (GCase), alpha-galactosidase A (GLA), acid sphingomyelinase (ASMase) and concentrations of their corresponded substrates (hexosylsphingosine (HexSph), globotriaosylsphingosine (LysoGb3), lysosphingomyelin (LysoSM), respectively) were estimated in 211 PD patients and 179 controls by liquid chromatography with tandem mass spectrometry (LC-MS-MS) in dry blood spots. p.M1646T and p.N2081D were associated with PD (OR = 2.33, CI 95%: 1.1215 to 4.8253, p = 0.023; OR = 1.89, 95%CI: 1.0727 to 3.3313, p = 0.028, respectively) in Russian population. An increased LysoGb3 concentration was found in p.G2019S and p.N2081D LRRK2 carriers among PD patients compared to both PD patients and controls (p.G2019S: p = 0.00086, p = 0.0004, respectively; p.N2081D: p = 0.012, p = 0.0076, respectively). A decreased ASMase activity in p.G2019S LRRK2 carriers among PD patients (p = 0.014) was demonstrated as well. Our study supported possible involvement of LRRK2 dysfunction in an alteration of sphingolipid metabolism in PD.
Collapse
Affiliation(s)
- T S Usenko
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia; Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia.
| | - K A Senkevich
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia; The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, QC, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, QC, Canada
| | - K S Basharova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia
| | - A I Bezrukova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia; Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - G V Baydakova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia; Research Center for Medical Genetics, Moscow, Russia
| | - A A Tyurin
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - M V Beletskaya
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - D G Kulabukhova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia; Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - M N Grunina
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia
| | - A K Emelyanov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia; Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - I V Miliukhina
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia; Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia; Institute of the Human Brain of RAS, Saint-Petersburg, Russia
| | - A A Timofeeva
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| | - E Y Zakharova
- Research Center for Medical Genetics, Moscow, Russia
| | - S N Pchelina
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Gatchina, Russia; Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russia
| |
Collapse
|
10
|
Qiu J, Peng G, Tang Y, Li S, Liu Z, Zheng J, Wang Y, Liu H, Wei L, Su Y, Lin Y, Dai W, Zhang Z, Chen X, Ding L, Guo W, Zhu X, Xu P, Mo M. Lipid profiles in the cerebrospinal fluid of rats with 6-hydroxydopamine-induced lesions as a model of Parkinson's disease. Front Aging Neurosci 2023; 14:1077738. [PMID: 36742201 PMCID: PMC9895836 DOI: 10.3389/fnagi.2022.1077738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
Background Parkinson's disease (PD) is a progressive neurodegenerative disease with characteristic pathological abnormalities, including the loss of dopaminergic (DA) neurons, a dopamine-depleted striatum, and microglial activation. Lipid accumulation exhibits a close relationship with these pathologies in PD. Methods Here, 6-hydroxydopamine (6-OHDA) was used to construct a rat model of PD, and the lipid profile in cerebrospinal fluid (CSF) obtained from model rats was analyzed using lipidomic approaches. Results Establishment of this PD model was confirmed by apomorphine-induced rotation behaviors, loss of DA neurons, depletion of dopamine in the striatum, and microglial activation after 6-OHDA-induced lesion generation. Unsupervised and supervised methods were employed for lipid analysis. A total of 172 lipid species were identified in CSF and subsequently classified into 18 lipid families. Lipid families, including eicosanoids, triglyceride (TG), cholesterol ester (CE), and free fatty acid (FFA), and 11 lipid species exhibited significantly altered profiles 2 weeks after 6-OHDA administration, and significant changes in eicosanoids, TG, CE, CAR, and three lipid species were noted 5 weeks after 6-OHDA administration. During the period of 6-OHDA-induced lesion formation, the lipid families and species showed concentration fluctuations related to the recovery of behavior and nigrostriatal abnormalities. Correlation analysis showed that the levels of eicosanoids, CE, TG families, and TG (16:0_20:0_18:1) exhibited positive relationships with apomorphine-induced rotation behaviors and negative relationships with tyrosine hydroxylase (TH) expression in the midbrain. Conclusion These results revealed that non-progressive nigrostriatal degeneration induced by 6-OHDA promotes the expression of an impairment-related lipidomic signature in CSF, and the level of eicosanoids, CE, TG families, and TG (16:0_20:0_18:1) in CSF may reveal pathological changes in the midbrain after 6-OHDA insult.
Collapse
Affiliation(s)
- Jiewen Qiu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guoyou Peng
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuting Tang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shiyin Li
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zengfu Liu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiayun Zheng
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunxin Wang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hanqun Liu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijian Wei
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yilin Su
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuwan Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Dai
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiling Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liuyan Ding
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoqin Zhu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Internal Medicine, Huilai People’s Hospital, Jieyang, China
| |
Collapse
|
11
|
D’Ascenzo N, Antonecchia E, Angiolillo A, Bender V, Camerlenghi M, Xie Q, Di Costanzo A. Metabolomics of blood reveals age-dependent pathways in Parkinson’s Disease. Cell Biosci 2022; 12:102. [PMID: 35794650 PMCID: PMC9258166 DOI: 10.1186/s13578-022-00831-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/08/2022] [Indexed: 01/01/2023] Open
Abstract
Background Parkinson’s Disease (PD) is the second most frequent degenerative disorder, the risk of which increases with age. A preclinical PD diagnostic test does not exist. We identify PD blood metabolites and metabolic pathways significantly correlated with age to develop personalized age-dependent PD blood biomarkers. Results We found 33 metabolites producing a receiver operating characteristic (ROC) area under the curve (AUC) value of 97%. PCA revealed that they belong to three pathways with distinct age-dependent behavior: glycine, threonine and serine metabolism correlates with age only in PD patients; unsaturated fatty acids biosynthesis correlates with age only in a healthy control group; and, finally, tryptophan metabolism characterizes PD but does not correlate with age. Conclusions The targeted analysis of the blood metabolome proposed in this paper allowed to find specific age-related metabolites and metabolic pathways. The model offers a promising set of blood biomarkers for a personalized age-dependent approach to the early PD diagnosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00831-5.
Collapse
|
12
|
Yoon JH, Seo Y, Jo YS, Lee S, Cho E, Cazenave-Gassiot A, Shin YS, Moon MH, An HJ, Wenk MR, Suh PG. Brain lipidomics: From functional landscape to clinical significance. SCIENCE ADVANCES 2022; 8:eadc9317. [PMID: 36112688 PMCID: PMC9481132 DOI: 10.1126/sciadv.adc9317] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/01/2022] [Indexed: 05/23/2023]
Abstract
Lipids are crucial components of cellular function owing to their role in membrane formation, intercellular signaling, energy storage, and homeostasis maintenance. In the brain, lipid dysregulations have been associated with the etiology and progression of neurodegeneration and other neurological pathologies. Hence, brain lipids are emerging as important potential targets for the early diagnosis and prognosis of neurological diseases. This review aims to highlight the significance and usefulness of lipidomics in diagnosing and treating brain diseases. We explored lipid alterations associated with brain diseases, paying attention to organ-specific characteristics and the functions of brain lipids. As the recent advances in brain lipidomics would have been impossible without advances in analytical techniques, we provide up-to-date information on mass spectrometric approaches and integrative analysis with other omic approaches. Last, we present the potential applications of lipidomics combined with artificial intelligence techniques and interdisciplinary collaborative research for treating brain diseases with clinical heterogeneities.
Collapse
Affiliation(s)
- Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Youngsuk Seo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Yeon Suk Jo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
- Department of Brain Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Seulah Lee
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Eunji Cho
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Yong-Seung Shin
- Laboratory Solutions Sales, Agilent Technologies Korea Ltd., Seoul, 06621, Republic of Korea
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Markus R. Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu 41062, Republic of Korea
| |
Collapse
|
13
|
Ma M, Moulton MJ, Lu S, Bellen HJ. 'Fly-ing' from rare to common neurodegenerative disease mechanisms. Trends Genet 2022; 38:972-984. [PMID: 35484057 PMCID: PMC9378361 DOI: 10.1016/j.tig.2022.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022]
Abstract
Advances in genome sequencing have enabled researchers and clinicians to probe vast numbers of human variants to distinguish pathogenic from benign variants. Model organisms have been crucial in variant assessment and in delineating the molecular mechanisms of some of the diseases caused by these variants. The fruit fly, Drosophila melanogaster, has played a valuable role in this endeavor, taking advantage of its genetic technologies and established biological knowledge. We highlight the utility of the fly in studying the function of genes associated with rare neurological diseases that have led to a better understanding of common disease mechanisms. We emphasize that shared themes emerge among disease mechanisms, including the importance of lipids, in two prominent neurodegenerative diseases: Alzheimer's disease (AD) and Parkinson's disease (PD).
Collapse
Affiliation(s)
- Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Matthew J Moulton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Cukier HN, Kim H, Griswold AJ, Codreanu SG, Prince LM, Sherrod SD, McLean JA, Dykxhoorn DM, Ess KC, Hedera P, Bowman AB, Neely MD. Genomic, transcriptomic, and metabolomic profiles of hiPSC-derived dopamine neurons from clinically discordant brothers with identical PRKN deletions. NPJ Parkinsons Dis 2022; 8:84. [PMID: 35768426 PMCID: PMC9243035 DOI: 10.1038/s41531-022-00346-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
We previously reported on two brothers who carry identical compound heterozygous PRKN mutations yet present with significantly different Parkinson's Disease (PD) clinical phenotypes. Juvenile cases demonstrate that PD is not necessarily an aging-associated disease. Indeed, evidence for a developmental component to PD pathogenesis is accumulating. Thus, we hypothesized that the presence of additional genetic modifiers, including genetic loci relevant to mesencephalic dopamine neuron development, could potentially contribute to the different clinical manifestations of the two brothers. We differentiated human-induced pluripotent stem cells (hiPSCs) derived from the two brothers into mesencephalic neural precursor cells and early postmitotic dopaminergic neurons and performed wholeexome sequencing and transcriptomic and metabolomic analyses. No significant differences in the expression of canonical dopamine neuron differentiation markers were observed. Yet our transcriptomic analysis revealed a significant downregulation of the expression of three neurodevelopmentally relevant cell adhesion molecules, CNTN6, CNTN4 and CHL1, in the cultures of the more severely affected brother. In addition, several HLA genes, known to play a role in neurodevelopment, were differentially regulated. The expression of EN2, a transcription factor crucial for mesencephalic dopamine neuron development, was also differentially regulated. We further identified differences in cellular processes relevant to dopamine metabolism. Lastly, wholeexome sequencing, transcriptomics and metabolomics data all revealed differences in glutathione (GSH) homeostasis, the dysregulation of which has been previously associated with PD. In summary, we identified genetic differences which could potentially, at least partially, contribute to the discordant clinical PD presentation of the two brothers.
Collapse
Affiliation(s)
- Holly N Cukier
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hyunjin Kim
- School of Health Sciences, Purdue University, West Lafayette, Indiana, IN, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Simona G Codreanu
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Lisa M Prince
- School of Health Sciences, Purdue University, West Lafayette, Indiana, IN, USA
| | - Stacy D Sherrod
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kevin C Ess
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter Hedera
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, University of Louisville, Louisville, KY, USA
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, Indiana, IN, USA.
| | - M Diana Neely
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
15
|
Lipidomics of Bioactive Lipids in Alzheimer's and Parkinson's Diseases: Where Are We? Int J Mol Sci 2022; 23:ijms23116235. [PMID: 35682914 PMCID: PMC9181703 DOI: 10.3390/ijms23116235] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/16/2022] Open
Abstract
Lipids are not only constituents of cellular membranes, but they are also key signaling mediators, thus acting as “bioactive lipids”. Among the prominent roles exerted by bioactive lipids are immune regulation, inflammation, and maintenance of homeostasis. Accumulated evidence indicates the existence of a bidirectional relationship between the immune and nervous systems, and lipids can interact particularly with the aggregation and propagation of many pathogenic proteins that are well-renowned hallmarks of several neurodegenerative disorders, including Alzheimer’s (AD) and Parkinson’s (PD) diseases. In this review, we summarize the current knowledge about the presence and quantification of the main classes of endogenous bioactive lipids, namely glycerophospholipids/sphingolipids, classical eicosanoids, pro-resolving lipid mediators, and endocannabinoids, in AD and PD patients, as well as their most-used animal models, by means of lipidomic analyses, advocating for these lipid mediators as powerful biomarkers of pathology, diagnosis, and progression, as well as predictors of response or activity to different current therapies for these neurodegenerative diseases.
Collapse
|
16
|
Esfandiary A, Finkelstein DI, Voelcker NH, Rudd D. Clinical Sphingolipids Pathway in Parkinson’s Disease: From GCase to Integrated-Biomarker Discovery. Cells 2022; 11:cells11081353. [PMID: 35456032 PMCID: PMC9028315 DOI: 10.3390/cells11081353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
Alterations in the sphingolipid metabolism of Parkinson’s Disease (PD) could be a potential diagnostic feature. Only around 10–15% of PD cases can be diagnosed through genetic alterations, while the remaining population, idiopathic PD (iPD), manifest without validated and specific biomarkers either before or after motor symptoms appear. Therefore, clinical diagnosis is reliant on the skills of the clinician, which can lead to misdiagnosis. IPD cases present with a spectrum of non-specific symptoms (e.g., constipation and loss of the sense of smell) that can occur up to 20 years before motor function loss (prodromal stage) and formal clinical diagnosis. Prodromal alterations in metabolites and proteins from the pathways underlying these symptoms could act as biomarkers if they could be differentiated from the broad values seen in a healthy age-matched control population. Additionally, these shifts in metabolites could be integrated with other emerging biomarkers/diagnostic tests to give a PD-specific signature. Here we provide an up-to-date review of the diagnostic value of the alterations in sphingolipids pathway in PD by focusing on the changes in definitive PD (postmortem confirmed brain data) and their representation in “probable PD” cerebrospinal fluid (CSF) and blood. We conclude that the trend of holistic changes in the sphingolipid pathway in the PD brain seems partly consistent in CSF and blood, and could be one of the most promising pathways in differentiating PD cases from healthy controls, with the potential to improve early-stage iPD diagnosis and distinguish iPD from other Parkinsonism when combined with other pathological markers.
Collapse
Affiliation(s)
- Ali Esfandiary
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, VIC 3052, Australia; (A.E.); (N.H.V.)
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
| | | | - Nicolas Hans Voelcker
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, VIC 3052, Australia; (A.E.); (N.H.V.)
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC 3168, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC 3168, Australia
| | - David Rudd
- Drug Delivery, Disposition and Dynamics, Monash University, Parkville, VIC 3052, Australia; (A.E.); (N.H.V.)
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
- Correspondence: ; Tel.: +61-3-9903-9581
| |
Collapse
|
17
|
Multiomics implicate gut microbiota in altered lipid and energy metabolism in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:39. [PMID: 35411052 PMCID: PMC9001728 DOI: 10.1038/s41531-022-00300-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
We aimed to investigate the link between serum metabolites, gut bacterial community composition, and clinical variables in Parkinson’s disease (PD) and healthy control subjects (HC). A total of 124 subjects were part of the study (63 PD patients and 61 HC subjects). 139 metabolite features were found to be predictive between the PD and Control groups. No associations were found between metabolite features and within-PD clinical variables. The results suggest alterations in serum metabolite profiles in PD, and the results of correlation analysis between metabolite features and microbiota suggest that several bacterial taxa are associated with altered lipid and energy metabolism in PD.
Collapse
|
18
|
Mutoh T, Niimi Y, Sakai S, Watanabe H, Ueda A, Shima S, Igarashi Y. Species-specific accumulation of ceramides in cerebrospinal fluid from encephalomyeloradiculoneurpathy patients associated with peripheral complement activation: A pilot study. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159092. [PMID: 34942380 DOI: 10.1016/j.bbalip.2021.159092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022]
Abstract
Glycolipids are now known to be rapidly converted to mediators for inflammatory reactions or to signaling molecules that control inflammatory events in the nervous system. The present study aimed to explore whether disturbed glycolipids metabolism in the nervous system is present in patients with a neuroinflammatory disorder, encephalo-myelo-radiculo-neuropathy (EMRN), because most EMRN patients have been reported to exhibit autoantibodies against neutral glycolipids. Although molecular pathogenesis of this disorder remains unknown, we tried to search the immunochemical abnormalities in this disorder. ELISA for activated peripheral C5 complement and mass spectrometry analysis of cerebrospinal fluid clearly disclosed a significant upregulation of active C5 complement, C5a levels in sera as well as a significant accumulation of species-specific ceramides but not sphingomyelin in cerebrospinal fluid from EMRN patients. Furthermore, we confirmed the occurrence of anti-neutral glycolipids antibodies in all EMRN patients. Thus, the present study might indicate the pathophysiology of this disorder is the dysregulation of glycolipids metabolism and abnormal production of autoantibodies against neutral glycolipids resulting in the abnormal complement activation, although molecular basis for these sphingolipids dysregulation and the occurrence of autoantibodies against glycolipids remains to be elucidated at present. The present study implicates a new therapeutic strategy employing anti-ceramide and/or anti-complement therapy for this disorder.
Collapse
Affiliation(s)
- Tatsuro Mutoh
- Department of Neurology and Neuroscience, Fujita Health University Hospital, Aichi, Japan.
| | - Yoshiki Niimi
- Department of Neurology and Neuroscience, Fujita Health University Hospital, Aichi, Japan
| | - Shota Sakai
- Faculty of Pharmacy, Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science and Frontier Research Center for Advanced Material and Life Science, Hokkaido University, Hokkaido, Japan
| | - Hirohisa Watanabe
- Department of Neurology and Neuroscience, Fujita Health University Hospital, Aichi, Japan
| | - Akihiro Ueda
- Department of Neurology and Neuroscience, Fujita Health University Hospital, Aichi, Japan
| | - Sayuri Shima
- Department of Neurology and Neuroscience, Fujita Health University Hospital, Aichi, Japan
| | - Yasuyuki Igarashi
- Faculty of Pharmacy, Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science and Frontier Research Center for Advanced Material and Life Science, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
19
|
Beger AW, Dudzik B, Woltjer RL, Wood PL. Human Brain Lipidomics: Pilot Analysis of the Basal Ganglia Sphingolipidome in Parkinson’s Disease and Lewy Body Disease. Metabolites 2022; 12:metabo12020187. [PMID: 35208260 PMCID: PMC8875811 DOI: 10.3390/metabo12020187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids constitute a complex class of bioactive lipids with diverse structural and functional roles in neural tissue. Lipidomic techniques continue to provide evidence for their association in neurological diseases, including Parkinson’s disease (PD) and Lewy body disease (LBD). However, prior studies have primarily focused on biological tissues outside of the basal ganglia, despite the known relevancy of this brain region in motor and cognitive dysfunction associated with PD and LBD. Therefore electrospray ionization high resolution mass spectrometry was used to analyze levels of sphingolipid species, including ceramides (Cer), dihydroceramides (DHC), hydoxyceramides (OH-Cer), phytoceramides (Phyto-Cer), phosphoethanolamine ceramides (PE-Cer), sphingomyelins (SM), and sulfatides (Sulf) in the caudate, putamen and globus pallidus of PD (n = 7) and LBD (n = 14) human subjects and were compared to healthy controls (n = 9). The most dramatic alterations were seen in the putamen, with depletion of Cer and elevation of Sulf observed in both groups, with additional depletion of OH-Cer and elevation of DHC identified in LBD subjects. Diverging levels of DHC in the caudate suggest differing roles of this lipid in PD and LBD pathogenesis. These sphingolipid alterations in PD and LBD provide evidence for biochemical involvement of the neuronal cell death that characterize these conditions.
Collapse
Affiliation(s)
- Aaron W. Beger
- Anatomy Department, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Cumberland Gap Pkwy, Harrogate, TN 37752, USA;
- Correspondence:
| | - Beatrix Dudzik
- Anatomy Department, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Cumberland Gap Pkwy, Harrogate, TN 37752, USA;
| | - Randall L. Woltjer
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Paul L. Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, Cumberland Gap Pkwy, Harrogate, TN 37752, USA;
| |
Collapse
|
20
|
Kwon DH, Hwang JS, Kim SG, Jang YE, Shin TH, Lee G. Cerebrospinal Fluid Metabolome in Parkinson's Disease and Multiple System Atrophy. Int J Mol Sci 2022; 23:ijms23031879. [PMID: 35163800 PMCID: PMC8836409 DOI: 10.3390/ijms23031879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson’s disease (PD) and multiple system atrophy (MSA) belong to the neurodegenerative group of synucleinopathies; differential diagnosis between PD and MSA is difficult, especially at early stages, owing to their clinical and biological similarities. Thus, there is a pressing need to identify metabolic biomarkers for these diseases. The metabolic profile of the cerebrospinal fluid (CSF) is reported to be altered in PD and MSA; however, the altered metabolites remain unclear. We created a single network with altered metabolites in PD and MSA based on the literature and assessed biological functions, including metabolic disorders of the nervous system, inflammation, concentration of ATP, and neurological disorder, through bioinformatics methods. Our in-silico prediction-based metabolic networks are consistent with Parkinsonism events. Although metabolomics approaches provide a more quantitative understanding of biochemical events underlying the symptoms of PD and MSA, limitations persist in covering molecules related to neurodegenerative disease pathways. Thus, omics data, such as proteomics and microRNA, help understand the altered metabolomes mechanism. In particular, integrated omics and machine learning approaches will be helpful to elucidate the pathological mechanisms of PD and MSA. This review discusses the altered metabolites between PD and MSA in the CSF and omics approaches to discover diagnostic biomarkers.
Collapse
Affiliation(s)
- Do Hyeon Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (D.H.K.); (J.S.H.); (S.G.K.); (Y.E.J.)
| | - Ji Su Hwang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (D.H.K.); (J.S.H.); (S.G.K.); (Y.E.J.)
| | - Seok Gi Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (D.H.K.); (J.S.H.); (S.G.K.); (Y.E.J.)
| | - Yong Eun Jang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (D.H.K.); (J.S.H.); (S.G.K.); (Y.E.J.)
| | - Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea
- Correspondence: (T.H.S.); (G.L.)
| | - Gwang Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (D.H.K.); (J.S.H.); (S.G.K.); (Y.E.J.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea
- Correspondence: (T.H.S.); (G.L.)
| |
Collapse
|
21
|
Hong X, Guo W, Li S. Lower Blood Lipid Level Is Associated with the Occurrence of Parkinson's Disease: A Meta-Analysis and Systematic Review. Int J Clin Pract 2022; 2022:9773038. [PMID: 35801143 PMCID: PMC9203242 DOI: 10.1155/2022/9773038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The changes of blood lipid levels in patients with Parkinson's disease (PD) and its clinical relevance remain unclear. We aimed to evaluate the potential association of blood lipid and the occurrence of PD, to provide evidence to the clinical treatment and nursing care of PD. METHODS We searched PubMed, Medline, Web of Science, Cochrane Library, Wanfang Database, Weipu Database, and China National Knowledge Infrastructure for studies related to the blood lipid levels and PD until November 30, 2021. Two researchers independently screened the literature and extricated the data including the levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). Newcastle-Ottawa Scale (NOS) was used to evaluate the quality of included studies. RevMan5.3 and Stata 12.0 software were used for statistical processing and analysis. RESULTS A total of 15 cohort studies with 9740 participants involving 2032 PD patients and 7708 controls were included. Meta-analysis indicated that TC (SMD = -0.29, 95% CI -0.55∼-0.03, P=0.04), TG (SMD = -16.83, 95% CI -20.71∼-12.95, P < 0.001), HDL-C (SMD = -0.14, 95% CI -0.26∼-0.02, P < 0.001) and LDL-C (SMD = -0.26, 95% CI -0.50∼-0.01, P=0.04) level in the PD patients was significantly lower than that of health controls. Sensitivity analysis indicated that the results were stable. No significant publication bias was found between the synthesized outcomes. CONCLUSIONS Lower blood TC, TG, HDL-C, and LDL-C level are associated with the occurrence of PD. Limited by sample size and study population, further high-quality, large-sample clinical trials in different areas are needed to further determine the relationship between blood lipids and PD in the future.
Collapse
Affiliation(s)
- Xue Hong
- General Medical Department, Changshou Community Healthcare Center of Putuo District, Shanghai 200060, China
| | - Wenting Guo
- General Medical Department, West Nanjing Road Community Healthcare Center of Jingan District, Shanghai 200041, China
| | - Shanshan Li
- Emergency Department, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China
| |
Collapse
|
22
|
Milenkovic I, Blumenreich S, Futerman AH. GBA mutations, glucosylceramide and Parkinson's disease. Curr Opin Neurobiol 2021; 72:148-154. [PMID: 34883387 DOI: 10.1016/j.conb.2021.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022]
Abstract
Mutations in GBA, which encodes the lysosomal enzyme glucocerebrosidase, are the highest genetic risk factor for Parkinson's disease (PD), although the mechanistic link between GBA mutations and PD is unknown. An attractive hypothesis is that the lipid substrate of glucocerebrosidase, glucosylceramide, accumulates in patients with PD with a GBA mutation (PD-GBA). Despite the availability of new and accurate methods to quantitatively measure brain glucosylceramide levels, there is little evidence that glucosylceramide, or its deacetylated derivative, glucosylsphingosine, accumulates in human PD or PD-GBA brain or cerebrospinal fluid. Thus, a straightforward association between glucosylceramide levels and the development of PD does not appear valid, necessitating the involvement of other cellular pathways to explain this association, which could involve defects in lysosomal function.
Collapse
Affiliation(s)
- Ivan Milenkovic
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Shani Blumenreich
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
23
|
Santos-Lobato BL, Gardinassi LG, Bortolanza M, Peti APF, Pimentel ÂV, Faccioli LH, Del-Bel EA, Tumas V. Metabolic Profile in Plasma AND CSF of LEVODOPA-induced Dyskinesia in Parkinson's Disease: Focus on Neuroinflammation. Mol Neurobiol 2021; 59:1140-1150. [PMID: 34855116 DOI: 10.1007/s12035-021-02625-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022]
Abstract
The existence of few biomarkers and the lack of a better understanding of the pathophysiology of levodopa-induced dyskinesia (LID) in Parkinson's disease (PD) require new approaches, as the metabolomic analysis, for discoveries. We aimed to identify a metabolic profile associated with LID in patients with PD in an original cohort and to confirm the results in an external cohort (BioFIND). In the original cohort, plasma and CSF were collected from 20 healthy controls, 23 patients with PD without LID, and 24 patients with PD with LID. LC-MS/MS and metabolomics data analysis were used to perform untargeted metabolomics. Untargeted metabolomics data from the BioFIND cohort were analyzed. We identified a metabolic profile associated with LID in PD, composed of multiple metabolic pathways. In particular, the dysregulation of the glycosphingolipid metabolic pathway was more related to LID and was strongly associated with the severity of dyskinetic movements. Furthermore, bile acid biosynthesis metabolites simultaneously found in plasma and CSF have distinguished patients with LID from other participants. Data from the BioFIND cohort confirmed dysregulation in plasma metabolites from the bile acid biosynthesis pathway. There is a distinct metabolic profile associated with LID in PD, both in plasma and CSF, which may be associated with the dysregulation of lipid metabolism and neuroinflammation.
Collapse
Affiliation(s)
- Bruno L Santos-Lobato
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, CEP: 14049-900, Brazil.,Laboratório de Neuropatologia Experimental, Federal University of Pará, Belém, PA, Brazil
| | - Luiz Gustavo Gardinassi
- Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Mariza Bortolanza
- Department of Basic and Oral Biology, Faculty of Odontology of Ribeirão Preto, University of São Paulo, Av do Café, S/N, Ribeirão Preto, São Paulo, CEP: 14049-900, Brazil
| | - Ana Paula Ferranti Peti
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ângela V Pimentel
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, CEP: 14049-900, Brazil
| | - Lúcia Helena Faccioli
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Elaine A Del-Bel
- Department of Basic and Oral Biology, Faculty of Odontology of Ribeirão Preto, University of São Paulo, Av do Café, S/N, Ribeirão Preto, São Paulo, CEP: 14049-900, Brazil.
| | - Vitor Tumas
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, CEP: 14049-900, Brazil.
| |
Collapse
|
24
|
Kurzawa-Akanbi M, Tammireddy S, Fabrik I, Gliaudelytė L, Doherty MK, Heap R, Matečko-Burmann I, Burmann BM, Trost M, Lucocq JM, Gherman AV, Fairfoul G, Singh P, Burté F, Green A, McKeith IG, Härtlova A, Whitfield PD, Morris CM. Altered ceramide metabolism is a feature in the extracellular vesicle-mediated spread of alpha-synuclein in Lewy body disorders. Acta Neuropathol 2021; 142:961-984. [PMID: 34514546 PMCID: PMC8568874 DOI: 10.1007/s00401-021-02367-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
Mutations in glucocerebrosidase (GBA) are the most prevalent genetic risk factor for Lewy body disorders (LBD)-collectively Parkinson's disease, Parkinson's disease dementia and dementia with Lewy bodies. Despite this genetic association, it remains unclear how GBA mutations increase susceptibility to develop LBD. We investigated relationships between LBD-specific glucocerebrosidase deficits, GBA-related pathways, and α-synuclein levels in brain tissue from LBD and controls, with and without GBA mutations. We show that LBD is characterised by altered sphingolipid metabolism with prominent elevation of ceramide species, regardless of GBA mutations. Since extracellular vesicles (EV) could be involved in LBD pathogenesis by spreading disease-linked lipids and proteins, we investigated EV derived from post-mortem cerebrospinal fluid (CSF) and brain tissue from GBA mutation carriers and non-carriers. EV purified from LBD CSF and frontal cortex were heavily loaded with ceramides and neurodegeneration-linked proteins including alpha-synuclein and tau. Our in vitro studies demonstrate that LBD EV constitute a "pathological package" capable of inducing aggregation of wild-type alpha-synuclein, mediated through a combination of alpha-synuclein-ceramide interaction and the presence of pathological forms of alpha-synuclein. Together, our findings indicate that abnormalities in ceramide metabolism are a feature of LBD, constituting a promising source of biomarkers, and that GBA mutations likely accelerate the pathological process occurring in sporadic LBD through endolysosomal deficiency.
Collapse
|
25
|
Solano-Aguilar GI, Lakshman S, Jang S, Gupta R, Molokin A, Schroeder SG, Gillevet PM, Urban JF. The Effects of Consuming White Button Mushroom Agaricus bisporus on the Brain and Liver Metabolome Using a Targeted Metabolomic Analysis. Metabolites 2021; 11:metabo11110779. [PMID: 34822437 PMCID: PMC8625434 DOI: 10.3390/metabo11110779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022] Open
Abstract
A targeted metabolomic analysis was performed on tissues derived from pigs fed diets supplemented with white button mushrooms (WBM) to determine the effect on the liver and brain metabolome. Thirty-one pigs were fed a grower diet alone or supplemented with either three or six servings of freeze-dried WBM for six weeks. Tissue metabolomes were analyzed using targeted liquid chromatography-mass spectrometry (LC-MS) combined with chemical similarity enrichment analysis (ChemRICH) and correlated to WBM-induced changes in fecal microbiome composition. Results indicated that WBM can differentially modulate metabolites in liver, brain cortex and hippocampus of healthy pigs. Within the glycero-phospholipids, there was an increase in alkyl-acyl-phosphatidyl-cholines (PC-O 40:3) in the hippocampus of pigs fed six servings of WBM. A broader change in glycerophospholipids and sphingolipids was detected in the liver with a reduction in several lipid species in pigs fed both WBM diets but with an increase in amino acids known as precursors of neurotransmitters in the cortex of pigs fed six servings of WBM. Metabolomic changes were positively correlated with increased abundance of Cryomorphaceae, Lachnospiraceae, Flammeovirgaceae and Ruminococcaceae in the microbiome suggesting that WBM can also positively impact tissue metabolite composition.
Collapse
Affiliation(s)
- Gloria I. Solano-Aguilar
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA; (S.L.); (S.J.); (A.M.); (J.F.U.J.)
- Correspondence: ; Tel.: +1-301-504-8068
| | - Sukla Lakshman
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA; (S.L.); (S.J.); (A.M.); (J.F.U.J.)
| | - Saebyeol Jang
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA; (S.L.); (S.J.); (A.M.); (J.F.U.J.)
| | - Richi Gupta
- Microbiome Analysis Center, George Mason University, Science & Technology Campus, Manassas, VA 20108, USA; (R.G.); (P.M.G.)
| | - Aleksey Molokin
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA; (S.L.); (S.J.); (A.M.); (J.F.U.J.)
| | - Steven G. Schroeder
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA;
| | - Patrick M. Gillevet
- Microbiome Analysis Center, George Mason University, Science & Technology Campus, Manassas, VA 20108, USA; (R.G.); (P.M.G.)
| | - Joseph F. Urban
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture Northeast Area, Beltsville, MD 20705, USA; (S.L.); (S.J.); (A.M.); (J.F.U.J.)
| |
Collapse
|
26
|
Zhang J, Liu L, Zhang L, Chen S, Chen Y, Cai C. Targeted fatty acid metabolomics to discover Parkinson's disease associated metabolic alteration. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4781. [PMID: 34523199 DOI: 10.1002/jms.4781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/31/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The pathogenesis of Parkinson's disease (PD) remains to be elucidated, and the metabolomics analysis has the potential to identify metabolic profiles that are involved in PD pathogenesis. Here we applied a target metabolomics approach to measure the plasma levels of 158 fatty acid metabolites in a discovery cohort including 42 PD patients and 54 health volunteers, and found two upregulated (arachidonic acid and 13-hydroxy-octadecatrienoic acid) and eleven down-regulated (docosahexaenoic acid, lyso-platelet-activating factor, 12-hydroxy-eicosatetraenoic acid, dihydroxy-eicosatrienoic acids, dihidroxy-octadecenoic acids, 17,18-dihydroxy-eicosatetraenoic acid, and hydroperoxy-octadecadienoic acids) metabolites as primary candidate marker of PD. A support vector machine algorithm with primary candidate marker was used in an independent validation cohort to identify PD. Arachidonic acid and 13-hydroxy-octadecatrienoic acid were evaluated as an effective tool in that area under the receiver operating characteristic curve reached 0.995 and 0.912 in the validation set for diagnosing PD from healthy volunteers. Besides, the sensitivity and specificity of arachidonic acid as diagnostic factor of PD in validation set were 100% and 94.10%. Similarly, the sensitivity and specificity of 13-hydroxy-octadecatrienoic acid were 100% and 82.40% for identifying PD. This target fatty acid metabolomics demonstrated a series of plasma fatty acid metabolite as PD candidate marker with high efficiency and provided insights into the understanding of PD metabolic regulation.
Collapse
Affiliation(s)
- Junjie Zhang
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Lulu Liu
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Lijiang Zhang
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Simei Chen
- Neurology Department, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Yusen Chen
- Neurology Department, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Chun Cai
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
27
|
Sarchione A, Marchand A, Taymans JM, Chartier-Harlin MC. Alpha-Synuclein and Lipids: The Elephant in the Room? Cells 2021; 10:2452. [PMID: 34572099 PMCID: PMC8467310 DOI: 10.3390/cells10092452] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/17/2022] Open
Abstract
Since the initial identification of alpha-synuclein (α-syn) at the synapse, numerous studies demonstrated that α-syn is a key player in the etiology of Parkinson's disease (PD) and other synucleinopathies. Recent advances underline interactions between α-syn and lipids that also participate in α-syn misfolding and aggregation. In addition, increasing evidence demonstrates that α-syn plays a major role in different steps of synaptic exocytosis. Thus, we reviewed literature showing (1) the interplay among α-syn, lipids, and lipid membranes; (2) advances of α-syn synaptic functions in exocytosis. These data underscore a fundamental role of α-syn/lipid interplay that also contributes to synaptic defects in PD. The importance of lipids in PD is further highlighted by data showing the impact of α-syn on lipid metabolism, modulation of α-syn levels by lipids, as well as the identification of genetic determinants involved in lipid homeostasis associated with α-syn pathologies. While questions still remain, these recent developments open the way to new therapeutic strategies for PD and related disorders including some based on modulating synaptic functions.
Collapse
Affiliation(s)
| | | | | | - Marie-Christine Chartier-Harlin
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172—LilNCog—Lille Neuroscience and Cognition, F-59000 Lille, France; (A.S.); (A.M.); (J.-M.T.)
| |
Collapse
|
28
|
Signorelli P, Conte C, Albi E. The Multiple Roles of Sphingomyelin in Parkinson's Disease. Biomolecules 2021; 11:biom11091311. [PMID: 34572524 PMCID: PMC8469734 DOI: 10.3390/biom11091311] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 01/07/2023] Open
Abstract
Advances over the past decade have improved our understanding of the role of sphingolipid in the onset and progression of Parkinson's disease. Much attention has been paid to ceramide derived molecules, especially glucocerebroside, and little on sphingomyelin, a critical molecule for brain physiopathology. Sphingomyelin has been proposed to be involved in PD due to its presence in the myelin sheath and for its role in nerve impulse transmission, in presynaptic plasticity, and in neurotransmitter receptor localization. The analysis of sphingomyelin-metabolizing enzymes, the development of specific inhibitors, and advanced mass spectrometry have all provided insight into the signaling mechanisms of sphingomyelin and its implications in Parkinson's disease. This review describes in vitro and in vivo studies with often conflicting results. We focus on the synthesis and degradation enzymes of sphingomyelin, highlighting the genetic risks and the molecular alterations associated with Parkinson's disease.
Collapse
Affiliation(s)
- Paola Signorelli
- Biochemistry and Molecular Biology Laboratory, Health Sciences Department, University of Milan, 20142 Milan, Italy;
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy;
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy;
- Correspondence:
| |
Collapse
|
29
|
Garcia Corrales AV, Haidar M, Bogie JFJ, Hendriks JJA. Fatty Acid Synthesis in Glial Cells of the CNS. Int J Mol Sci 2021; 22:ijms22158159. [PMID: 34360931 PMCID: PMC8348209 DOI: 10.3390/ijms22158159] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Fatty acids (FAs) are of crucial importance for brain homeostasis and neural function. Glia cells support the high demand of FAs that the central nervous system (CNS) needs for its proper functioning. Additionally, FAs can modulate inflammation and direct CNS repair, thereby contributing to brain pathologies such Alzheimer’s disease or multiple sclerosis. Intervention strategies targeting FA synthesis in glia represents a potential therapeutic opportunity for several CNS diseases.
Collapse
Affiliation(s)
- Aida V Garcia Corrales
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Mansour Haidar
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| |
Collapse
|
30
|
Custodia A, Aramburu-Núñez M, Correa-Paz C, Posado-Fernández A, Gómez-Larrauri A, Castillo J, Gómez-Muñoz A, Sobrino T, Ouro A. Ceramide Metabolism and Parkinson's Disease-Therapeutic Targets. Biomolecules 2021; 11:945. [PMID: 34202192 PMCID: PMC8301871 DOI: 10.3390/biom11070945] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Ceramide is a bioactive sphingolipid involved in numerous cellular processes. In addition to being the precursor of complex sphingolipids, ceramides can act as second messengers, especially when they are generated at the plasma membrane of cells. Its metabolic dysfunction may lead to or be a consequence of an underlying disease. Recent reports on transcriptomics and electrospray ionization mass spectrometry analysis have demonstrated the variation of specific levels of sphingolipids and enzymes involved in their metabolism in different neurodegenerative diseases. In the present review, we highlight the most relevant discoveries related to ceramide and neurodegeneration, with a special focus on Parkinson's disease.
Collapse
Affiliation(s)
- Antía Custodia
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Marta Aramburu-Núñez
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Clara Correa-Paz
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Adrián Posado-Fernández
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Ana Gómez-Larrauri
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48980 Bilbao, Spain; (A.G.-L.); (A.G.-M.)
- Respiratory Department, Cruces University Hospital, Barakaldo, 48903 Bizkaia, Spain
| | - José Castillo
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Antonio Gómez-Muñoz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48980 Bilbao, Spain; (A.G.-L.); (A.G.-M.)
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| | - Alberto Ouro
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain; (A.C.); (M.A.-N.); (C.C.-P.); (A.P.-F.); (J.C.)
| |
Collapse
|