1
|
Biswas S, Mondal M, Pakhira S, Ghosh R, Samanta P, Basu J, Bhowmik A, Hajra S, Saha P. Attenuation of paclitaxel-induced toxicities by polyphenolic natural compound rutin through inhibition of apoptosis and activation of NRF2/ARE signaling pathways. Food Chem Toxicol 2025; 200:115408. [PMID: 40154830 DOI: 10.1016/j.fct.2025.115408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Paclitaxel is the first microtubule-stabilizing drug widely used as an antineoplastic agent. Hepatotoxicity, nephrotoxicity and myeloid suppression may lead to secondary malignancy which is an important adverse effect of paclitaxel-therapy. In this study, we have evaluated the potential protective role of natural flavonoid rutin against paclitaxel-induced toxicities in BALB/cmice. Paclitaxel was administered intraperitoneally (in alternate days at a dose of 8.5 mg/kg b. w.) and rutin was given every day by oral gavages (20 mg/kg b. w.) in BALB/c mice. Results showed that administration of paclitaxel significantly (P < 0.05) increased the generation of ROS and NO in bone marrow, liver and kidney tissues. In contrast, co-administration of rutin and paclitaxel significantly (p < 0.05) reduced the intracellular ROS and NO levels, reversed the toxic effects of paclitaxel through NRF2-mediated activation of antioxidant response element (ARE) pathway and upregulated activity of several phase-II antioxidant enzymes. Furthermore, rutin treatment inhibited apoptosis by downregulated expression of Bax, caspase-3 and cPARP in bone marrow, liver and kidney tissues. Additionally, the chemoprotective potential of rutin was confirmed by histopathological analysis. Thus, our results suggest that co-administration of rutin may serve as a promising preventive strategy against paclitaxel induced toxicities and indicate its future use as an adjuvant in chemotherapy.
Collapse
Affiliation(s)
- Souradeep Biswas
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, West Bengal, India.
| | - Mrinmoyee Mondal
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, West Bengal, India
| | - Shampa Pakhira
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, West Bengal, India
| | - Rituparna Ghosh
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, West Bengal, India
| | - Priya Samanta
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, West Bengal, India
| | - Jhinuk Basu
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, West Bengal, India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, West Bengal, India
| | - Subhadip Hajra
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, West Bengal, India
| | - Prosenjit Saha
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, West Bengal, India.
| |
Collapse
|
2
|
Song S, Wang J, Ouyang X, Huang R, Wang F, Xie J, Chen Q, Hu D. Therapeutic connections between pyroptosis and paclitaxel in anti-tumor effects: an updated review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04036-8. [PMID: 40257490 DOI: 10.1007/s00210-025-04036-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/06/2025] [Indexed: 04/22/2025]
Abstract
As a form of inflammation-associated cell death, pyroptosis has gained widespread attention in recent years. Accumulating evidence indicates that pyroptosis regulates tumor growth and is associated with autoimmune disorders and inflammatory response. Paclitaxel, a traditional Chinese medicine, usually induces death of cancer cells as a chemotherapeutic agent. Previous studies have revealed that paclitaxel can exert an anti-tumor effect through a variety of cell death mechanisms, of which pyroptosis plays a pivotal role in inhibiting tumor growth and enhancing anti-tumor immunity. In this review, we summarize the current advances in therapeutic connections between pyroptosis and paclitaxel in anti-tumor effects.
Collapse
Affiliation(s)
- Shuxin Song
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingbo Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Renyin Huang
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Wang
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junke Xie
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qianyun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- China-Russia Medical Research Center for Stress Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
3
|
Kang D, Sung JY, Hwang HJ, Baek Y, Kim MJ, Lim GE, Kim YN, Cha JH, Lee JS. Splicing factor SF3B4 acts as a switch in cancer cell senescence by regulating p21 mRNA stability. Cancer Lett 2025; 615:217530. [PMID: 39961431 DOI: 10.1016/j.canlet.2025.217530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/22/2025]
Abstract
SF3B4, a splicing factor known to regulate mRNA expression and function, is upregulated in various cancers. Despite its potential significance, the mechanisms through which SF3B4 regulates nonsense-mediated mRNA decay (NMD) and cancer cell senescence remain poorly understood. This study explores the underlying mechanisms by which SF3B4 modulates mRNA stability through the NMD pathway and elucidates its role in switching cancer cells between growth and senescence. We demonstrate that SF3B4 deficiency leads to decreased cancer cell proliferation, increased senescence-associated β-galactosidase (SA-β-Gal) activity, p53-independent upregulation of p21 expression, and ultimate induction of cell senescence. We further show that SF3B4 recruits essential NMD factors, including UPF1, MAGOH, and RNPS1, which facilitate mRNA decay of the crucial senescence regulator, p21. Conversely, SF3B4 depletion results in the dissociation of these factors from the 3'UTR of p21 mRNA, thereby enhancing its stability. Collectively, our results suggest that SF3B4 critically regulates p21 expression at the post-transcriptional level, providing insights into the novel role of SF3B4 in regulating p21 mRNA stability, interacting with key NMD factors, and modulating cancer cell senescence.
Collapse
Affiliation(s)
- Donghee Kang
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, South Korea; Program in Biomedical Science & Engineering, Graduate School, Inha University, Incheon, 22212, South Korea; Department of Molecular Medicine, College of Medicine, Inha University, Incheon, 22212, South Korea
| | - Jee Young Sung
- Cancer metastasis Branch, Division of Cancer Biology, National Cancer Center, Goyang, 10408, South Korea
| | - Hyun Jung Hwang
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, South Korea; Department of Molecular Medicine, College of Medicine, Inha University, Incheon, 22212, South Korea
| | - Yurim Baek
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, South Korea; Program in Biomedical Science & Engineering, Graduate School, Inha University, Incheon, 22212, South Korea; Department of Molecular Medicine, College of Medicine, Inha University, Incheon, 22212, South Korea
| | - Min-Ji Kim
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, South Korea; Program in Biomedical Science & Engineering, Graduate School, Inha University, Incheon, 22212, South Korea; Department of Molecular Medicine, College of Medicine, Inha University, Incheon, 22212, South Korea
| | - Ga-Eun Lim
- Cancer metastasis Branch, Division of Cancer Biology, National Cancer Center, Goyang, 10408, South Korea
| | - Yong-Nyun Kim
- Cancer metastasis Branch, Division of Cancer Biology, National Cancer Center, Goyang, 10408, South Korea
| | - Jong-Ho Cha
- Program in Biomedical Science & Engineering, Graduate School, Inha University, Incheon, 22212, South Korea; Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, 22212, South Korea
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon, 22212, South Korea; Program in Biomedical Science & Engineering, Graduate School, Inha University, Incheon, 22212, South Korea; Department of Molecular Medicine, College of Medicine, Inha University, Incheon, 22212, South Korea.
| |
Collapse
|
4
|
Patra S, Jyotirmayee, Kumar K, Pareek D, Gupta PS, Mourya AR, Das T, Wasnik K, Verma M, Chawla R, Batra T, Paik P. Organ-targeted drug delivery systems (OTDDS) of poly[( N-acryloylglycine)- co-( N-acryloyl-L-phenylalanine methyl ester)] copolymer library and effective treatment of triple-negative breast cancer. J Mater Chem B 2025; 13:3876-3894. [PMID: 39996447 DOI: 10.1039/d4tb02445a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Organ-targeted drug delivery systems (OTDDS) are essential for the effective treatment of complicated diseases. Triple-negative breast cancer (TNBC) is an aggressive cancer with high mortality and requires targeted therapeutics. This work was aimed at designing a library of polymeric OTDDS with N-acryloyl-glycine (NAG) and N-acryloyl-L-phenylalanine methyl ester (NAPA) [p(NAG-co-NAPA)(x:y)] and screening its in vivo organ-targeting specificity. Among this library, the best p(NAG-co-NAPA)(x:y) NPs with an x : y ratio of 1 : 4 and size of 160-210 nm targeted breasts to a high extent compared to other organs and thus were optimized for TNBC treatment. A network pharmacology study was performed, which revealed that 14 genes were responsible for TNBC, and a combination of DHA (targets 6 genes) and piperine (targets 8 genes) drugs was used to optimize the formulation, achieving the maximum therapeutic efficiency against TNBC with an IC50 value of 350 μg mL-1. The designed organ-specific polymeric nanoparticle (NP) library, identification of target genes and proteins responsible for TNBC, and the optimized formulation for effective combination therapy established an effective therapeutic option for TNBC. The findings of this work further demonstrate that this polymeric library of NPs shows exciting therapeutic potential for treating TNBC and presents innovative treatment options for critical diseases of the liver, heart, lungs and kidney.
Collapse
Affiliation(s)
- Sukanya Patra
- School of Biomedical Engineering, Indian Institute of Technology, (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India.
| | - Jyotirmayee
- School of Biotechnology, Institute of Science, (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India
| | - Krishan Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India
| | - Divya Pareek
- School of Biomedical Engineering, Indian Institute of Technology, (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India.
| | - Prem Shankar Gupta
- School of Biomedical Engineering, Indian Institute of Technology, (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India.
| | - Anjali Ramsabad Mourya
- School of Biomedical Engineering, Indian Institute of Technology, (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India.
| | - Taniya Das
- School of Biomedical Engineering, Indian Institute of Technology, (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India.
| | - Kirti Wasnik
- School of Biomedical Engineering, Indian Institute of Technology, (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India.
| | - Malkhey Verma
- School of Biotechnology, Institute of Science, (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India
| | - Ruchi Chawla
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India
| | - Tarun Batra
- Department of Oncology, Institute of Medical Sciences (IMS), Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India
| | - Pradip Paik
- School of Biomedical Engineering, Indian Institute of Technology, (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India.
| |
Collapse
|
5
|
Velhal K, Sah PM, Naik HS, Raut R, Patil S, Yamgar R, Lakkakula J, Uddin I. Synergistic Nanoformulation: Streamlined One-Pot Synthesis Enhances Paclitaxel Functionalization Gold Nanoparticles for Potent Anticancer Activity. Cell Biochem Biophys 2025:10.1007/s12013-025-01701-w. [PMID: 40011315 DOI: 10.1007/s12013-025-01701-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
The development of innovative, eco-friendly methods for synthesizing functional nanoparticles is crucial in advancing cancer therapeutics. This study highlights a one-pot in situ synthesis of paclitaxel-functionalized gold nanoparticles (PTX-AuNPs), with paclitaxel serving as both the reducing and stabilizing agent. The synthesis process was validated using UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and high-resolution transmission electron microscopy (FEG-TEM). High-performance liquid chromatography (HPLC) confirmed the purity and structural integrity of paclitaxel before and after synthesis. The resulting PTX-AuNPs exhibited potent anticancer activity against human cervical cancer (SiHa) and human colon cancer (HT-29) cell lines, with a significantly stronger effect on the HT-29 cell line. A concentration-dependent reduction in HT-29 cell growth was observed as nanoparticle concentrations increased from 10 µg/mL-20 µg/mL. Molecular docking studies further demonstrated paclitaxel's strong binding affinity (-8.5 kcal/mol) to β-Tubulin, elucidating its anticancer mechanism. This cost-effective and environmentally friendly approach offers significant promise for enhancing cancer treatment strategies.
Collapse
Affiliation(s)
- Kamini Velhal
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Mumbai, Maharashtra, 410206, India
| | - Parvindar M Sah
- Department of Botany, The Institute of Science, Dr. Homi Bhabha State University, 15, Madam Cama Road, Mumbai, Maharashtra, 400032, India
| | - Harshala S Naik
- Department of Botany, The Institute of Science, Dr. Homi Bhabha State University, 15, Madam Cama Road, Mumbai, Maharashtra, 400032, India
| | - Rajesh Raut
- Department of Botany, The Institute of Science, Dr. Homi Bhabha State University, 15, Madam Cama Road, Mumbai, Maharashtra, 400032, India
| | - Smitali Patil
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Mumbai, Maharashtra, 410206, India
| | - Ramesh Yamgar
- Department of Chemistry, Chikitsak Samuha's Patkar-Varde College Goregaon (W), Mumbai, Maharashtra, 400104, India
| | - Jaya Lakkakula
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Mumbai, Maharashtra, 410206, India.
- Centre for Computational Biology and Translational Research, Amity University Maharashtra, Mumbai - Pune Expressway, Bhatan, Post- Somathne, Panvel, Mumbai, Maharashtra, 410206, India.
| | - Imran Uddin
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India.
| |
Collapse
|
6
|
Worley J, Noh H, You D, Turunen MM, Ding H, Paull E, Griffin AT, Grunn A, Zhang M, Guillan K, Bush EC, Brosius SJ, Hibshoosh H, Mundi PS, Sims P, Dalerba P, Dela Cruz FS, Kung AL, Califano A. Identification and Pharmacological Targeting of Treatment-Resistant, Stem-like Breast Cancer Cells for Combination Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.11.08.562798. [PMID: 38798673 PMCID: PMC11118419 DOI: 10.1101/2023.11.08.562798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tumors frequently harbor isogenic yet epigenetically distinct subpopulations of multi-potent cells with high tumor-initiating potential-often called Cancer Stem-Like Cells (CSLCs). These can display preferential resistance to standard-of-care chemotherapy. Single-cell analyses can help elucidate Master Regulator (MR) proteins responsible for governing the transcriptional state of these cells, thus revealing complementary dependencies that may be leveraged via combination therapy. Interrogation of single-cell RNA sequencing profiles from seven metastatic breast cancer patients, using perturbational profiles of clinically relevant drugs, identified drugs predicted to invert the activity of MR proteins governing the transcriptional state of chemoresistant CSLCs, which were then validated by CROP-seq assays. The top drug, the anthelmintic albendazole, depleted this subpopulation in vivo without noticeable cytotoxicity. Moreover, sequential cycles of albendazole and paclitaxel-a commonly used chemotherapeutic -displayed significant synergy in a patient-derived xenograft (PDX) from a TNBC patient, suggesting that network-based approaches can help develop mechanism-based combinatorial therapies targeting complementary subpopulations. Statement of significance Network-based approaches, as shown in a study on metastatic breast cancer, can develop effective combinatorial therapies targeting complementary subpopulations. By analyzing scRNA-seq data and using clinically relevant drugs, researchers identified and depleted chemoresistant Cancer Stem-Like Cells, enhancing the efficacy of standard chemotherapies.
Collapse
Affiliation(s)
- Jeremy Worley
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY USA 10032
| | - Heeju Noh
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Daoqi You
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mikko M Turunen
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Hongxu Ding
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Pharmacy Practice & Science, College of Pharmacy, University of Arizona, Tucson, Arizona, USA 85721
| | - Evan Paull
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Aaron T Griffin
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Adina Grunn
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Mingxuan Zhang
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Kristina Guillan
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Erin C Bush
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Samantha J Brosius
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hanina Hibshoosh
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, USA 10032
| | - Prabhjot S Mundi
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
| | - Peter Sims
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Piero Dalerba
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, USA 10032
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, USA 10032
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
| | - Filemon S Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew L Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrea Califano
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, USA 10032
- Department of Biochemistry & Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY USA 10032
| |
Collapse
|
7
|
Zheng Y, Xu R, Chen T, Wang Y, Chen X, Chen H, Gao Y. Four-pronged reversal of chemotherapy resistance by mangiferin amphiphile. J Control Release 2025; 378:776-790. [PMID: 39724947 DOI: 10.1016/j.jconrel.2024.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/03/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Despite significant advances in diverse cancer treatment methods, chemotherapy remains the primary approach, and the development of chemoresistance is still a persistent problem during treatment. Here, we developed a derivative of the natural product mangiferin as a carrier for delivering chemotherapeutic drug, aiming to overcome drug resistance through a distinctive four-pronged strategy, including modulation of inflammatory tumor microenvironment (TME), induction of ferroptosis, deep tumor penetration, and the combinatory anticancer effects. After clarifying the promotion effects of the cancer associated fibroblasts (CAFs) in chemoresistance, and leveraging our previous elucidation of the anti-inflammatory and ferroptosis-inducing ability of mangiferin, we synthesized mangiferin amphiphile (MMF) and developed a self-assembled carrier-free nanomedicine, named MP, through the self-assembly of MMF and the representative chemotherapeutic drug paclitaxel (PTX). MP possessed a particle size of approximately 68 nm with compact filamentous nanostructures. MP demonstrated efficient tumor-targeting and deep tumor penetration abilities. Furthermore, MP effectively suppressed glutathione peroxidase 4 (GPX4) expression to induce ferroptosis, mitigated the activation of IL-6/STAT3 pathway to deactivate CAFs within the inflammatory TME, and exhibited robust anti-cancer effects against PTX-resistant breast cancer both in vitro and in vivo. This mangiferin derivative represents a promising "all-in-one" nanocarrier for delivering chemotherapeutic drugs, offering a green, safe, and convenient self-assembled carrier-free nanomedicine to effectively overcome drug resistance.
Collapse
Affiliation(s)
- Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ruofei Xu
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Tingyan Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ya Wang
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xiaoye Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
8
|
Ansari MM, Yadav V, Dighe S, Kuche K, Kanika, Khan R, Jain S. Co-Delivery of Glycyrrhizin and Paclitaxel via Gelatin-Based Core-Shell Nanoparticles Ameliorates 1,2-Dimethylhydrazine-Induced Precancerous Lesions in Colon. ACS Biomater Sci Eng 2025; 11:942-957. [PMID: 39865570 DOI: 10.1021/acsbiomaterials.4c02220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Colorectal cancer is a lethal malignancy that begins from acquired/inherent premalignant lesions. Thus, targeting these lesions at an early stage of the disease could impede the oncogenesis and maximize the efficacy. The present work underscores a combinatorial therapy of paclitaxel (PTX) and glycyrrhizin (GL) delivered via gelatin-derived core-shell nanoparticles [AC-PCL(GL + PTX)-GNPs] for effective management of precancerous lesions. The desolvation method was adopted to prepare GL-loaded gelatin nanoparticles (GL-GNPs), which were coated with PTX and AC-PCL. The prepared NPs exhibited optimal physical attributes and had spherical morphology, as analyzed by transmission electron microscopy and field-emission scanning electron microscopy. In vitro release studies revealed sustained release for ∼96 h. Cell culture studies in HTC 116, and HT-29 cells showed synergistic action with CI < 0.9 and DRI > 1. Moreover, AC-PCL(GL + PTX)-GNPs exhibited amplified intracellular uptake and thus significantly reduced IC50. Pharmacokinetic studies revealed substantiated pharmacokinetic parameters (AUC0-∞, Cmax, etc.). In vivo studies in a 1,2-dimethyl hydrazine-induced model revealed a decrease in the number of lesions, mucin depletion, and subside infiltrations. An immunohistochemical study revealed elevated expression of caspase-9 and suppressed expression of VEGF and Ki-67. Toxicity studies showed insignificant changes in systemic biomarkers along with no alterations in organ morphology and hemocompatibility. In essence, AC-PCL(GL + PTX)-GNPs render a competent and safer tactic to regulate early-stage precancerous lesions.
Collapse
Affiliation(s)
- Md Meraj Ansari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar, Mohali, Punjab 160062, India
| | - Vivek Yadav
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar, Mohali, Punjab 160062, India
| | - Sayali Dighe
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar, Mohali, Punjab 160062, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar, Mohali, Punjab 160062, India
| | - Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S Nagar, Mohali, Punjab 160062, India
| |
Collapse
|
9
|
Zhang Y, Zhang N, Gong SP, Chen ZS, Cao HL. Nanozyme-based synergistic therapeutic strategies against tumors. Drug Discov Today 2025; 30:104292. [PMID: 39805540 DOI: 10.1016/j.drudis.2025.104292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Cancer remains a global health threat, with traditional treatments limited by adverse effects and drug resistance. Nanozyme-based catalytic therapy with high stability and controllable activity provides targeted and specific in situ tumor treatment to address these challenges. More intriguingly, the tremendous advances in nanotechnology have enabled nanozymes to rival the catalytic activity of natural enzymes, presenting an exciting opportunity for innovating antitumor nanodrugs. This review systematically summarizes the latest progresses in nanozyme-based anticancer catalytic therapy, with a particular focus on various synergistic antitumor strategies, including other functional enzymes, drugs, exogenous stimuli and radiotherapy. These combinations not only enhance the efficacy of cancer treatment and reduce systemic toxicity but also offer insights into the development of potent antitumor nanodrugs.
Collapse
Affiliation(s)
- Ye Zhang
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi'an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, China
| | - Ning Zhang
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi'an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, China
| | - Shou-Ping Gong
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi'an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, China.
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St John's University NY USA.
| | - Hui-Ling Cao
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi'an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, China.
| |
Collapse
|
10
|
Komal, Nanda BP, Singh L, Bhatia R, Singh A. Paclitaxel in colon cancer management: from conventional chemotherapy to advanced nanocarrier delivery systems. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9449-9474. [PMID: 38990305 DOI: 10.1007/s00210-024-03256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/22/2024] [Indexed: 07/12/2024]
Abstract
Paclitaxel, a potent chemotherapeutic agent derived from the bark of the Pacific yew tree, has demonstrated significant efficacy in the treatment of various cancers, including colon cancer. This comprehensive review delves into the conventional treatments for colon cancer, emphasizing the crucial role of paclitaxel in contemporary management strategies. It explores the intricate process of sourcing and synthesizing paclitaxel, highlighting the importance of its structural properties in its anticancer activity. The review further elucidates the mechanism of action of paclitaxel, its pharmacological effects, and its integration into chemotherapy regimens for colon cancer. Additionally, novel drug delivery systems, such as nanocarriers, liposomes, nanoparticles, microspheres, micelles, microemulsions, and niosomes, are examined for their potential to enhance the therapeutic efficacy of paclitaxel. The discussion extends to recent clinical trials and patents, showcasing advancements in paclitaxel formulations aimed at improving treatment outcomes. The review concludes with prospects in the field underscoring the ongoing innovation and potential breakthroughs in colon cancer therapy.
Collapse
Affiliation(s)
- Komal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Bibhu Prasad Nanda
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Lovekesh Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Amandeep Singh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India.
| |
Collapse
|
11
|
Ene CD, Nicolae I, Căpușă C. Abnormalities of IL-12 Family Cytokine Pathways in Autosomal Dominant Polycystic Kidney Disease Progression. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1971. [PMID: 39768851 PMCID: PMC11677652 DOI: 10.3390/medicina60121971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Background and Objectives: Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most frequent genetic renal disease with a complex physiopathology. More and more studies sustain that inflammation plays a crucial role in ADPKD pathogenesis and progression. We evaluated IL-12 involvement in ADPKD pathophysiology by assessing the serum levels of its monomers and heterodimers. Materials and Methods: A prospective case-control study was developed and included 66 ADPKD subjects and a control group of 40 healthy subjects. The diagnosis of ADPKD was based on familial history clinical and imagistic exams. The study included subjects with eGFR > 60 mL/min/1.73 mp, with no history of hematuria or other renal disorders, with stable blood pressure in the last 6 months. We tested serum levels of monomers IL-12 p40 and IL-12 p35 and heterodimers IL-12 p70, IL-23, IL 35, assessed by ELISA method. Results: IL-12 family programming was abnormal in ADPKD patients. IL-12p70, IL-12p40, and IL-23 secretion increased, while IL-12p35 and IL-35 secretion decreased compared to control. IL-12p70, IL-12p40, and IL-23 had a progressive increase correlated with immune response amplification, a decrease of eGFR, an increase in TKV, and in albuminuria. On the other hand, IL-35 and IL-12p35 were correlated negatively with CRP and albuminuria and positively with eGFR in advanced ADPKD. Conclusions: The present study investigated IL-12 cytokine family members' involvement in ADPKD pathogenesis, enriching our understanding of inflammation in the most common renal genetic disorder.
Collapse
Affiliation(s)
- Corina-Daniela Ene
- Department of Internal Medicine and Nephrology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Nephrology Department, Dr Carol Davila Clinical Hospital of Nephrology, 010731 Bucharest, Romania
| | - Ilinca Nicolae
- Research Department, Victor Babes Clinical Hospital of Infectious Diseases, 030303 Bucharest, Romania;
| | - Cristina Căpușă
- Department of Internal Medicine and Nephrology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Nephrology Department, Dr Carol Davila Clinical Hospital of Nephrology, 010731 Bucharest, Romania
| |
Collapse
|
12
|
Alalawy AI. Key genes and molecular mechanisms related to Paclitaxel Resistance. Cancer Cell Int 2024; 24:244. [PMID: 39003454 PMCID: PMC11245874 DOI: 10.1186/s12935-024-03415-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/22/2024] [Indexed: 07/15/2024] Open
Abstract
Paclitaxel is commonly used to treat breast, ovarian, lung, esophageal, gastric, pancreatic cancer, and neck cancer cells. Cancer recurrence is observed in patients treated with paclitaxel due to paclitaxel resistance emergence. Resistant mechanisms are observed in cancer cells treated with paclitaxel, docetaxel, and cabazitaxel including changes in the target molecule β-tubulin of mitosis, molecular mechanisms that activate efflux drug out of the cells, and alterations in regulatory proteins of apoptosis. This review discusses new molecular mechanisms of taxane resistance, such as overexpression of genes like the multidrug resistance genes and EDIL3, ABCB1, MRP1, and TRAG-3/CSAG2 genes. Moreover, significant lncRNAs are detected in paclitaxel resistance, such as lncRNA H19 and cross-resistance between taxanes. This review contributed to discovering new treatment strategies for taxane resistance and increasing the responsiveness of cancer cells toward chemotherapeutic drugs.
Collapse
Affiliation(s)
- Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| |
Collapse
|
13
|
Hermansyah D, Syarifah S, Muhar AM, Putra A. Unveiling Paclitaxel-Induced Mesenchymal Stem Cells: orchestrating Nrf2 Modulation and Apoptosis in CD44+/CD24- Cancer Stem Cells. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:319-328. [PMID: 38978966 PMCID: PMC11228077 DOI: 10.2147/bctt.s457548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024]
Abstract
Background Mesenchymal Stem Cells (MSCs) and Cancer Stem Cells (CSC) play pivotal roles in cancer progression and therapeutic responses. This study aimed to explored the effect of MSCs induced by paclitaxel on CSC expressing the CD44+/CD24- phenotype, focusing on Nrf2 modulation and apoptosis induction. Methods MSCs were characterized for adherence, differentiation potential, and surface markers via standard culture, staining assays, and flow cytometry, respectively. CSCs isolated from MDA-MB-231 using MACS and were characterized based on morphology and CD44+/CD24- expression. Co-culture experiments evaluated the cytotoxic effect of Paclitaxel-induced MSCs on CSC viability using MTT assays. Flow cytometry analysis assessed apoptosis induction via annexin V-PI staining and Nrf2 and Caspase-3 gene expression were measure by qRT-PCR analysis. Results MSCs exhibited typical adherence and differentiation capabilities, confirming their mesenchymal lineage. CSCs displayed an elongated morphology and expressed CD44+/CD24-, characteristic of stem-like behavior. Paclitaxel induced dose-dependent Nrf2 gene expression in MSCs. Co-culture with Paclitaxel-induced MSCs reduced CSC viability in a dose-dependent manner, with a significant decrease observed at a 5:1 MSCs:CSC ratio. Co-culture decreased the Nrf2 gene expression and increased apoptosis in CSCs, with higher caspase-3 gene expression compared to solitary paclitaxel treatment. Conclusion Paclitaxel-induced MSCs decreased Nrf2 expression and significantly decreased CSC viability while enhancing apoptosis. This suggests a potential strategy to mitigate paclitaxel resistance in CD44+/CD24- CSCs. Leveraging Paclitaxel-induced MSCs presents a promising avenue for targeting Nrf2 and promoting apoptosis in CSCs, potentially improving the efficacy of chemotherapy and addressing resistance mechanisms in cancer treatment.
Collapse
Affiliation(s)
- Dedy Hermansyah
- Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Siti Syarifah
- Department of Pharmacology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Adi Muradi Muhar
- Department of Doctoral Degree Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Agung Putra
- Stem Cell and Cancer Research Indonesia, Semarang, Central Java, Indonesia
- Department of Pathology Anatomy, Faculty of Medicine, Universitas Islam Sultan Agung, Semarang, Central Java, Indonesia
| |
Collapse
|
14
|
Gao H, Xi Z, Dai J, Xue J, Guan X, Zhao L, Chen Z, Xing F. Drug resistance mechanisms and treatment strategies mediated by Ubiquitin-Specific Proteases (USPs) in cancers: new directions and therapeutic options. Mol Cancer 2024; 23:88. [PMID: 38702734 PMCID: PMC11067278 DOI: 10.1186/s12943-024-02005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Drug resistance represents a significant obstacle in cancer treatment, underscoring the need for the discovery of novel therapeutic targets. Ubiquitin-specific proteases (USPs), a subclass of deubiquitinating enzymes, play a pivotal role in protein deubiquitination. As scientific research advances, USPs have been recognized as key regulators of drug resistance across a spectrum of treatment modalities, including chemotherapy, targeted therapy, immunotherapy, and radiotherapy. This comprehensive review examines the complex relationship between USPs and drug resistance mechanisms, focusing on specific treatment strategies and highlighting the influence of USPs on DNA damage repair, apoptosis, characteristics of cancer stem cells, immune evasion, and other crucial biological functions. Additionally, the review highlights the potential clinical significance of USP inhibitors as a means to counter drug resistance in cancer treatment. By inhibiting particular USP, cancer cells can become more susceptible to a variety of anti-cancer drugs. The integration of USP inhibitors with current anti-cancer therapies offers a promising strategy to circumvent drug resistance. Therefore, this review emphasizes the importance of USPs as viable therapeutic targets and offers insight into fruitful directions for future research and drug development. Targeting USPs presents an effective method to combat drug resistance across various cancer types, leading to enhanced treatment strategies and better patient outcomes.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jingwei Dai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Liang Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
15
|
Wang Z, Yang L. Natural-product-based, carrier-free, noncovalent nanoparticles for tumor chemo-photodynamic combination therapy. Pharmacol Res 2024; 203:107150. [PMID: 38521285 DOI: 10.1016/j.phrs.2024.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Cancer, with its diversity, heterogeneity, and complexity, is a significant contributor to global morbidity, disability, and mortality, highlighting the necessity for transformative treatment approaches. Photodynamic therapy (PDT) has aroused continuous interest as a viable alternative to conventional cancer treatments that encounter drug resistance. Nanotechnology has brought new advances in medicine and has shown great potential in drug delivery and cancer treatment. For precise and efficient therapeutic utilization of such a tumor therapeutic approach with high spatiotemporal selectivity and minimal invasiveness, the carrier-free noncovalent nanoparticles (NPs) based on chemo-photodynamic combination therapy is essential. Utilizing natural products as the foundation for nanodrug development offers unparalleled advantages, including exceptional pharmacological activity, easy functionalization/modification, and well biocompatibility. The natural-product-based, carrier-free, noncovalent NPs revealed excellent synergistic anticancer activity in comparison with free photosensitizers and free bioactive natural products, representing an alternative and favorable combination therapeutic avenue to improve therapeutic efficacy. Herein, a comprehensive summary of current strategies and representative application examples of carrier-free noncovalent NPs in the past decade based on natural products (such as paclitaxel, 10-hydroxycamptothecin, doxorubicin, etoposide, combretastatin A4, epigallocatechin gallate, and curcumin) for tumor chemo-photodynamic combination therapy. We highlight the insightful design and synthesis of the smart carrier-free NPs that aim to enhance PDT efficacy. Meanwhile, we discuss the future challenges and potential opportunities associated with these NPs to provide new enlightenment, spur innovative ideas, and facilitate PDT-mediated clinical transformation.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China; School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China; Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
16
|
He G, Liu M, Chen TC, Huang LF, Ke YQ. SBFI-26 enhances apoptosis in docetaxel-treated triple-negative breast cancer cells by increasing ROS levels. BIOIMPACTS : BI 2024; 15:30137. [PMID: 39963566 PMCID: PMC11830146 DOI: 10.34172/bi.30137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 02/20/2025]
Abstract
Introduction Fatty acid binding protein 5 (FABP5) exhibits heightened expression levels in triple-negative breast cancer. The inhibitor of FABP5, Stony Brook fatty acid-binding protein inhibitor 26 (SBFI-26), has demonstrated the capacity to suppress cell proliferation, migration, and invasion. This study delves into the functional mechanism and impact of combining SBFI-26 with docetaxel in treating MDA-MB-231 cells of triple-negative breast cancer. Methods Various concentrations of docetaxel and SBFI-26 were chosen for individual or combined treatments. The effects of SBFI-26, docetaxel, or their combination on cell cycle arrest and apoptosis were assessed using flow cytometry. Western blotting was utilised to detect the expression of apoptosis-related proteins, namely cysteinyl aspartate-specific proteases 3 (Caspase3), B cell leukemia/lymphoma 2 (Bcl-2), and Bcl-2 associated X (Bax), while intracellular reactive oxygen species (ROS) levels were determined using a fluorescence spectrophotometer. Results The IC50 values for SBFI-26 and docetaxel in inhibiting MDA-MB-231 cells were determined to be 106.1 μM and 86.14 nM, respectively. Significantly, the combination treatment augmented the proportion of G1 phase (apoptotic) cells by 3.67-fold compared to the control group (P < 0.0001). Furthermore, the apoptosis rate in the combination group was 2.59-fold higher than that in the docetaxel group (P < 0.0001) and demonstrated a significant increase of 1.82-fold compared with the SBFI-26 group (P < 0.001). Analyses revealed a decrease in the protein expression of Bcl-2, while Bax and Caspase3 exhibited an increase in the combination group for MDA-MB-231 cells. Moreover, the combined treatment group demonstrated a 2.97-fold increase (P < 0.0001) in ROS fluorescence intensity compared to the control group, a noteworthy 1.39-fold increase (P < 0.01) compared to the SBFI-26 treatment group, and a substantial 1.70-fold increase (P < 0.0001) compared to the docetaxel treatment group. Conclusion These findings suggest that the co-administration of SBFI-26 with docetaxel effectively enhances apoptosis in triple-negative breast cancer MDA-MB-231 cells by elevating intracellular ROS levels.
Collapse
Affiliation(s)
- Gang He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Mei Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Tang cong Chen
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Li fen Huang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - You qiang Ke
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
17
|
Muniz IDAF, Araujo M, Bouassaly J, Farshadi F, Atique M, Esfahani K, Bonan PRF, Hier M, Mascarella M, Mlynarek A, Alaoui-Jamali M, da Silva SD. Therapeutic Advances and Challenges for the Management of HPV-Associated Oropharyngeal Cancer. Int J Mol Sci 2024; 25:4009. [PMID: 38612819 PMCID: PMC11012756 DOI: 10.3390/ijms25074009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The use of conventional chemotherapy in conjunction with targeted and immunotherapy drugs has emerged as an option to limit the severity of side effects in patients diagnosed with head and neck cancer (HNC), particularly oropharyngeal cancer (OPC). OPC prevalence has increased exponentially in the past 30 years due to the prevalence of human papillomavirus (HPV) infection. This study reports a comprehensive review of clinical trials registered in public databases and reported in the literature (PubMed/Medline, Scopus, and ISI web of science databases). Of the 55 clinical trials identified, the majority (83.3%) were conducted after 2015, of which 77.7% were performed in the United States alone. Eight drugs have been approved by the FDA for HNC, including both generic and commercial forms: bleomycin sulfate, cetuximab (Erbitux), docetaxel (Taxotere), hydroxyurea (Hydrea), pembrolizumab (Keytruda), loqtorzi (Toripalimab-tpzi), methotrexate sodium (Trexall), and nivolumab (Opdivo). The most common drugs to treat HPV-associated OPC under these clinical trials and implemented as well for HPV-negative HNC include cisplatin, nivolumab, cetuximab, paclitaxel, pembrolizumab, 5-fluorouracil, and docetaxel. Few studies have highlighted the necessity for new drugs specifically tailored to patients with HPV-associated OPC, where molecular mechanisms and clinical prognosis are distinct from HPV-negative tumors. In this context, we identified most mutated genes found in HPV-associated OPC that can represent potential targets for drug development. These include TP53, PIK3CA, PTEN, NOTCH1, RB1, FAT1, FBXW7, HRAS, KRAS, and CDKN2A.
Collapse
Affiliation(s)
- Isis de Araújo Ferreira Muniz
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
- Graduate Program in Dentistry, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Megan Araujo
- Division of Experimental Medicine and Oncology, Department of Medicine and Health Sciences, McGill University, Montreal, QC HC3 1E2, Canada; (M.A.); (J.B.)
| | - Jenna Bouassaly
- Division of Experimental Medicine and Oncology, Department of Medicine and Health Sciences, McGill University, Montreal, QC HC3 1E2, Canada; (M.A.); (J.B.)
| | - Fatemeh Farshadi
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
- Division of Experimental Medicine and Oncology, Department of Medicine and Health Sciences, McGill University, Montreal, QC HC3 1E2, Canada; (M.A.); (J.B.)
| | - Mai Atique
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
| | - Khashayar Esfahani
- Department of Oncology, McGill University, Montreal, QC HC3 1E2, Canada;
| | - Paulo Rogerio Ferreti Bonan
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
- Graduate Program in Dentistry, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Michael Hier
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
| | - Marco Mascarella
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
| | - Alex Mlynarek
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
| | - Moulay Alaoui-Jamali
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
| | - Sabrina Daniela da Silva
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
- Division of Experimental Medicine and Oncology, Department of Medicine and Health Sciences, McGill University, Montreal, QC HC3 1E2, Canada; (M.A.); (J.B.)
| |
Collapse
|
18
|
Shi Y, Adu-Amankwaah J, Zhao Q, Li X, Yu Q, Bushi A, Yuan J, Tan R. Long non-coding RNAs in drug resistance across the top five cancers: Update on their roles and mechanisms. Heliyon 2024; 10:e27207. [PMID: 38463803 PMCID: PMC10923722 DOI: 10.1016/j.heliyon.2024.e27207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Cancer drug resistance stands as a formidable obstacle in the relentless fight against the top five prevalent cancers: breast, lung, colorectal, prostate, and gastric cancers. These malignancies collectively account for a significant portion of cancer-related deaths worldwide. In recent years, long non-coding RNAs (lncRNAs) have emerged as pivotal players in the intricate landscape of cancer biology, and their roles in driving drug resistance are steadily coming to light. This comprehensive review seeks to underscore the paramount significance of lncRNAs in orchestrating resistance across a spectrum of different cancer drugs, including platinum drugs (DDP), tamoxifen, trastuzumab, 5-fluorouracil (5-FU), paclitaxel (PTX), and Androgen Deprivation Therapy (ADT) across the most prevalent types of cancer. It delves into the multifaceted mechanisms through which lncRNAs exert their influence on drug resistance, shedding light on their regulatory roles in various facets of cancer biology. A comprehensive understanding of these lncRNA-mediated mechanisms may pave the way for more effective and personalized treatment strategies, ultimately improving patient outcomes in these challenging malignancies.
Collapse
Affiliation(s)
- Yue Shi
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
| | - Qizhong Zhao
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| | - Xin Li
- Clinical Medical College, Jining Medical University, 272067, Jining, China
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, 272067, Jining, China
| | - Qianxue Yu
- Clinical Medical College, Jining Medical University, 272067, Jining, China
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, 272067, Jining, China
| | - Aisha Bushi
- School of International Education, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jinxiang Yuan
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, 272067, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, 272067, Jining, China
| | - Rubin Tan
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
19
|
Zhan H, Ding S, Shen R, Lv Y, Tian X, Liu G, Li C, Wang J. A Green Synthesis of Au-Ag Alloy Nanoparticles using Polydopamine Chemistry: Evaluation of their Anticancer Potency Towards Both MCF-7 Cells and their Cancer Stem Cells Subgroup. Anticancer Agents Med Chem 2024; 24:969-981. [PMID: 38616743 DOI: 10.2174/0118715206296123240331050206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/02/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Limited chemotherapy efficacy and cancer stem cells (CSCs)-induced therapeutic resistance are major difficulties for tumour treatment. Adopting more efficient therapies to eliminate bulk-sensitive cancer cells and resistant CSCs is urgently needed. METHODS Based on the potential and functional complementarity of gold and silver nanoparticles (AuNPs or AgNPs) on tumour treatment, bimetallic NPs (alloy) have been synthesized to obtain improved or even newly emerging bioactivity from a combination effect. This study reported a facile, green and economical preparation of Au-Ag alloy NPs using biocompatible polydopamine (PDA) as a reductant, capping, stabilizing and hydrophilic agent. RESULTS These alloy NPs were quasi-spherical with rough surfaces and recorded in diameters of 80 nm. In addition, these alloy NPs showed good water dispersity, stability and photothermal effect. Compared with monometallic counterparts, these alloy NPs demonstrated a dramatically enhanced cytotoxic/pro-apoptotic/necrotic effect towards bulk-sensitive MCF-7 and MDA-MB-231 cells. The underlying mechanism regarding the apoptotic action was associated with a mitochondria-mediated pathway, as evidenced by Au3+/Ag+ mediated Mitochondria damage, ROS generation, DNA fragmentation and upregulation of certain apoptotic-related genes (Bax, P53 and Caspase 3). Attractively, these Au-Ag alloy NPs showed a remarkably improved inhibitory effect on the mammosphere formation capacity of MCF-7 CSCs. CONCLUSION All the positive results were attributed to incorporated properties from Au, Ag and PDA, the combination effect of chemotherapy and photothermal therapy and the nano-scaled structure of Au-Ag alloy NPs. In addition, the high biocompatibility of Au-Ag alloy NPs supported them as a good candidate in cancer therapy.
Collapse
Affiliation(s)
- Honglei Zhan
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, P.R. China
| | - Shiyu Ding
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, P.R. China
| | - Ruiyu Shen
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, P.R. China
| | - Yulong Lv
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, P.R. China
| | - Xinran Tian
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, P.R. China
| | - Guie Liu
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, P.R. China
| | - Chaoyue Li
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, P.R. China
| | - Jihui Wang
- Department of Biopharmacy, School of Bioengineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, P.R. China
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, Guangzhou Province, P.R. China
| |
Collapse
|
20
|
Luo H, Lou KC, Xie LY, Zeng F, Zou JR. Pharmacotherapy of urethral stricture. Asian J Androl 2024; 26:1-9. [PMID: 37738151 PMCID: PMC10846832 DOI: 10.4103/aja202341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/21/2023] [Indexed: 09/24/2023] Open
Abstract
Urethral stricture is characterized by the chronic formation of fibrous tissue, leading to the narrowing of the urethral lumen. Despite the availability of various endoscopic treatments, the recurrence of urethral strictures remains a common challenge. Postsurgery pharmacotherapy targeting tissue fibrosis is a promising option for reducing recurrence rates. Although drugs cannot replace surgery, they can be used as adjuvant therapies to improve outcomes. In this regard, many drugs have been proposed based on the mechanisms underlying the pathophysiology of urethral stricture. Ongoing studies have obtained substantial progress in treating urethral strictures, highlighting the potential for improved drug effectiveness through appropriate clinical delivery methods. Therefore, this review summarizes the latest researches on the mechanisms related to the pathophysiology of urethral stricture and the drugs to provide a theoretical basis and new insights for the effective use and future advancements in drug therapy for urethral stricture.
Collapse
Affiliation(s)
- Hui Luo
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Ke-Cheng Lou
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Ling-Yu Xie
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Fei Zeng
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
| | - Jun-Rong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou 341000, China
| |
Collapse
|
21
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
22
|
Sánchez-Carranza JN, Redondo-Horcajo M, Barasoain I, Escobar-Aguilar EA, Millán-Pacheco C, Alvarez L, Salas Vidal E, Diaz JF, Gonzalez-Maya L. Tannic Acid and Ethyl Gallate Potentialize Paclitaxel Effect on Microtubule Dynamics in Hep3B Cells. Pharmaceuticals (Basel) 2023; 16:1579. [PMID: 38004444 PMCID: PMC10675698 DOI: 10.3390/ph16111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Among broad-spectrum anticancer agents, paclitaxel (PTX) has proven to be one of the most effective against solid tumors for which more specific treatments are lacking. However, drawbacks such as neurotoxicity and the development of resistance reduce its therapeutic efficacy. Therefore, there is a need for compounds able to improve its activity by synergizing with it or potentiating its effect, thus reducing the doses required. We investigated the interaction between PTX and tannins, other compounds with anticancer activity known to act as repressors of several proteins involved in oncological pathways. We found that both tannic acid (TA) and ethyl gallate (EG) strongly potentiate the toxicity of PTX in Hep3B cells, suggesting their utility in combination therapy. We also found that AT and EG promote tubulin polymerization and enhance the effect of PTX on tubulin, suggesting a direct interaction with tubulin. Biochemical experiments confirmed that TA, but not EG, binds tubulin and potentiates the apparent binding affinity of PTX for the tubulin binding site. Furthermore, the molecular docking of TA to tubulin suggests that TA can bind to two different sites on tubulin, one at the PTX site and the second at the interface of α and β-tubulin (cluster 2). The binding of TA to cluster 2 could explain the overstabilization in the tubulin + PTX combinatorial assay. Finally, we found that EG can inhibit PTX-induced expression of pAkt and pERK defensive protein kinases, which are involved in resistance to PXT, by limiting cell death (apoptosis) and favoring cell proliferation and cell cycle progression. Our results support that tannic acid and ethyl gallate are potential chemotherapeutic agents due to their potentiating effect on paclitaxel.
Collapse
Affiliation(s)
- Jessica Nayelli Sánchez-Carranza
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico; (J.N.S.-C.); (E.A.E.-A.); (C.M.-P.)
| | - Mariano Redondo-Horcajo
- Centro de Investigaciones Biológicas Margarita Salas—Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain; (M.R.-H.); (I.B.)
| | - Isabel Barasoain
- Centro de Investigaciones Biológicas Margarita Salas—Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain; (M.R.-H.); (I.B.)
| | - Ever Angel Escobar-Aguilar
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico; (J.N.S.-C.); (E.A.E.-A.); (C.M.-P.)
| | - César Millán-Pacheco
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico; (J.N.S.-C.); (E.A.E.-A.); (C.M.-P.)
| | - Laura Alvarez
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico;
| | - Enrique Salas Vidal
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62209, Morelos, Mexico;
| | - J. Fernando Diaz
- Centro de Investigaciones Biológicas Margarita Salas—Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain; (M.R.-H.); (I.B.)
| | - Leticia Gonzalez-Maya
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico; (J.N.S.-C.); (E.A.E.-A.); (C.M.-P.)
| |
Collapse
|
23
|
López L, Fernández-Vañes L, Cabal VN, García-Marín R, Suárez-Fernández L, Codina-Martínez H, Lorenzo-Guerra SL, Vivanco B, Blanco-Lorenzo V, Llorente JL, López F, Hermsen MA. Sox2 and βIII-Tubulin as Biomarkers of Drug Resistance in Poorly Differentiated Sinonasal Carcinomas. J Pers Med 2023; 13:1504. [PMID: 37888115 PMCID: PMC10608336 DOI: 10.3390/jpm13101504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Poorly differentiated sinonasal carcinomas (PDCs) are tumors that have a poor prognosis despite advances in classical treatment. Predictive and prognostic markers and new personalized treatments could improve the oncological outcomes of patients. In this study, we analyzed SOX2 and βIII-tubulin as biomarkers that could have prognostic and therapeutic impacts on these tumors. The cohort included 57 cases of PDCs: 36 sinonasal undifferentiated carcinoma (SNUC) cases, 13 olfactory neuroblastoma (ONB) cases, and 8 sinonasal neuroendocrine carcinoma (SNEC) cases. Clinical follow-up data were available for 26 of these cases. Sox2 expression was detected using immunohistochemistry in 6 (75%) SNEC cases, 19 (53%) SNUC cases, and 6 (46%) ONB cases. The absence of Sox2 staining correlated with a higher rate of recurrence (p = 0.015), especially distant recurrence. The majority of cases showed βIII-tubulin expression, with strong positivity in 85%, 75%, and 64% of SNEC, ONB, and SNUC cases, respectively. Tumors with stronger βIII-tubulin expression demonstrated longer disease-free survival than those with no expression or low expression (p = 0.049). Sox2 and βIII-tubulin expression is common in poorly differentiated sinonasal tumors and has prognostic and therapeutic utility.
Collapse
Affiliation(s)
- Luis López
- Department of Otolaryngology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (L.L.); (L.F.-V.); (J.L.L.)
| | - Laura Fernández-Vañes
- Department of Otolaryngology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (L.L.); (L.F.-V.); (J.L.L.)
| | - Virginia N. Cabal
- Department of Head and Neck Cancer, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (V.N.C.); (R.G.-M.); (L.S.-F.); (H.C.-M.); (S.L.L.-G.); (M.A.H.)
| | - Rocío García-Marín
- Department of Head and Neck Cancer, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (V.N.C.); (R.G.-M.); (L.S.-F.); (H.C.-M.); (S.L.L.-G.); (M.A.H.)
| | - Laura Suárez-Fernández
- Department of Head and Neck Cancer, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (V.N.C.); (R.G.-M.); (L.S.-F.); (H.C.-M.); (S.L.L.-G.); (M.A.H.)
| | - Helena Codina-Martínez
- Department of Head and Neck Cancer, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (V.N.C.); (R.G.-M.); (L.S.-F.); (H.C.-M.); (S.L.L.-G.); (M.A.H.)
| | - Sara L. Lorenzo-Guerra
- Department of Head and Neck Cancer, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (V.N.C.); (R.G.-M.); (L.S.-F.); (H.C.-M.); (S.L.L.-G.); (M.A.H.)
| | - Blanca Vivanco
- Department of Pathology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.V.); (V.B.-L.)
| | - Verónica Blanco-Lorenzo
- Department of Pathology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.V.); (V.B.-L.)
| | - José L. Llorente
- Department of Otolaryngology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (L.L.); (L.F.-V.); (J.L.L.)
| | - Fernando López
- Department of Otolaryngology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (L.L.); (L.F.-V.); (J.L.L.)
| | - Mario A. Hermsen
- Department of Head and Neck Cancer, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (V.N.C.); (R.G.-M.); (L.S.-F.); (H.C.-M.); (S.L.L.-G.); (M.A.H.)
| |
Collapse
|
24
|
Szwed M, Michlewska S, Kania K, Szczęch M, Marczak A, Szczepanowicz K. New SDS-Based Polyelectrolyte Multicore Nanocarriers for Paclitaxel Delivery-Synthesis, Characterization, and Activity against Breast Cancer Cells. Cells 2023; 12:2052. [PMID: 37626862 PMCID: PMC10453607 DOI: 10.3390/cells12162052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/15/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The low distribution of hydrophobic anticancer drugs in patients is one of the biggest limitations during conventional chemotherapy. SDS-based polyelectrolyte multicore nanocarriers (NCs) prepared according to the layer by layer (LbL) procedure can release paclitaxel (PTX), and selectively kill cancer cells. Our main objective was to verify the antitumor properties of PTX-loaded NCs and to examine whether the drug encapsulated in these NCs retained its cytotoxic properties. The cytotoxicity of the prepared nanosystems was tested on MCF-7 and MDA-MB-231 tumour cells and the non-cancerous HMEC-1 cell line in vitro. Confocal microscopy, spectrophotometry, spectrofluorimetry, flow cytometry, and RT PCR techniques were used to define the typical hallmarks of apoptosis. It was demonstrated that PTX encapsulated in the tested NCs exhibited similar cytotoxicity to the free drug, especially in the triple negative breast cancer model. Moreover, SDS/PLL/PTX and SDS/PLL/PGA/PTX significantly reduced DNA synthesis. In addition, PTX-loaded NCs triggered apoptosis and upregulated the transcription of Bax, AIF, cytochrome-c, and caspase-3 mRNA. Our data demonstrate that these novel polyelectrolyte multicore NCs coated with PLL or PLL/PGA are good candidates for delivering PTX. Our discoveries have prominent implications for the possible choice of newly synthesized, SDS-based polyelectrolyte multicore NCs in different anticancer therapeutic applications.
Collapse
Affiliation(s)
- Marzena Szwed
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 St, 90-236 Lodz, Poland;
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16 St, 90-237 Lodz, Poland;
| | - Katarzyna Kania
- Laboratory of Virology, Institute for Medical Biology, Polish Academy of Sciences, Lodowa 106 St, 93-232 Lodz, Poland;
| | - Marta Szczęch
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8 St, 30-239 Kraków, Poland; (M.S.); (K.S.)
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 St, 90-236 Lodz, Poland;
| | - Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8 St, 30-239 Kraków, Poland; (M.S.); (K.S.)
| |
Collapse
|
25
|
Hussein HA, Khaphi FL. The Apoptotic Activity of Curcumin Against Oral Cancer Cells Without Affecting Normal Cells in Comparison to Paclitaxel Activity. Appl Biochem Biotechnol 2023; 195:5019-5033. [PMID: 37032374 DOI: 10.1007/s12010-023-04454-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/11/2023]
Abstract
Until now, chemotherapy, which has a series of side effects, has been the most widely employed treatment for different types of cancer. However, bioactive products have been utilized as alternative medicines for tumors due to their bioactivities with low or no side effects in normal cells. This research reported for the first time that curcumin (CUR) and paclitaxel (PTX) have significant anti-cancer activity against normal human gingival fibroblast (HGF) and tongue squamous cell carcinoma fibroblast (TSCCF) cell lines. The results showed that CUR (13.85 µg mL-1) and PTX (8.17 µg mL-1) significantly inhibited TSCCF cell viability, with no significant effect on normal HGF cells. SEM showed morphological changes in cells treated with CUR and PTX, especially with TSCCF cells, compared to HGF normal cells. For TSCCF, the results showed the highest necrosis was achieved with CUR (58.8%) and PTX (39%) as compared to the control (2.99%). For normal HGF cells, the highest early and late apoptosis was achieved with PTX. Further, DCFH-DA analyses showed no significant ROS stimulation in TSCCF and HGF cell lines treated with CUR and PTX. The 1H NMR analysis results show the presence of methoxy and hydroxyl groups and aromatic hydrogens in the CUR structure. In conclusion, the results confirmed that CUR is more specific to the oral cancer cells but not normal cells by inducing apoptosis in a dose- and time-dependent manner, with decreased TSCCF cell viability, and the cytotoxicity of CUR and PTX is not through the ROS pathway.
Collapse
Affiliation(s)
- Hanaa Ali Hussein
- College of Dentistry, University of Basrah 61004, Basic Science Branch, Al-Bara'iyah Street, Al-Sadir Teaching Hospital, Basrah city, 61001, Basrah, Iraq.
| | - Fatin L Khaphi
- College of Dentistry, University of Basrah 61004, Basic Science Branch, Al-Bara'iyah Street, Al-Sadir Teaching Hospital, Basrah city, 61001, Basrah, Iraq
| |
Collapse
|
26
|
Albuquerque T, Neves AR, Paul M, Biswas S, Vuelta E, García-Tuñón I, Sánchez-Martin M, Quintela T, Costa D. A Potential Effect of Circadian Rhythm in the Delivery/Therapeutic Performance of Paclitaxel-Dendrimer Nanosystems. J Funct Biomater 2023; 14:362. [PMID: 37504857 PMCID: PMC10381694 DOI: 10.3390/jfb14070362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023] Open
Abstract
The circadian clock controls behavior and physiology. Presently, there is clear evidence of a connection between this timing system and cancer development/progression. Moreover, circadian rhythm consideration in the therapeutic action of anticancer drugs can enhance the effectiveness of cancer therapy. Nanosized drug delivery systems (DDS) have been demonstrated to be suitable engineered platforms for drug targeted/sustained release. The investigation of the chronobiology-nanotechnology relationship, i.e., timing DDS performance according to a patient's circadian rhythm, may greatly improve cancer clinical outcomes. In the present work, we synthesized nanosystems based on an octa-arginine (R8)-modified poly(amidoamine) dendrimer conjugated with the anticancer drug paclitaxel (PTX), G4-PTX-R8, and its physicochemical properties were revealed to be appropriate for in vitro delivery. The influence of the circadian rhythm on its cellular internalization efficiency and potential therapeutic effect on human cervical cancer cells (HeLa) was studied. Cell-internalized PTX and caspase activity, as a measure of induced apoptosis, were monitored for six time points. Higher levels of PTX and caspase-3/9 were detected at T8, suggesting that the internalization of G4-PTX-R8 into HeLa cells and apoptosis are time-specific/-regulated phenomena. For a deeper understanding, the clock protein Bmal1-the main regulator of rhythmic activity, was silenced by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology. Bmal1 silencing was revealed to have an impact on both PTX release and caspase activity, evidencing a potential role for circadian rhythm on drug delivery/therapeutic effect mediated by G4-PTX-R8.
Collapse
Affiliation(s)
- Tânia Albuquerque
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Raquel Neves
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Milan Paul
- Department of Pharmacy, Nanomedicine Research Laboratory, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Swati Biswas
- Department of Pharmacy, Nanomedicine Research Laboratory, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Elena Vuelta
- Servicio de Transgénesis, Nucleus, Universidad de Salamanca, 37008 Salamanca, Spain
- IBSAL, Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Ignacio García-Tuñón
- IBSAL, Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain
| | - Manuel Sánchez-Martin
- Servicio de Transgénesis, Nucleus, Universidad de Salamanca, 37008 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37008 Salamanca, Spain
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Instituto Biología Molecular y Celular del Cáncer (USAL/CSIC), 37007 Salamanca, Spain
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
- UDI-IPG-Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| | - Diana Costa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
27
|
Hosseini F, Mirzaei Chegeni M, Bidaki A, Zaer M, Abolhassani H, Seyedi SA, Nabipoorashrafi SA, Ashrafnia Menarbazari A, Moeinzadeh A, Farmani AR, Tavakkoli Yaraki M. 3D-printing-assisted synthesis of paclitaxel-loaded niosomes functionalized by cross-linked gelatin/alginate composite: Large-scale synthesis and in-vitro anti-cancer evaluation. Int J Biol Macromol 2023; 242:124697. [PMID: 37156313 DOI: 10.1016/j.ijbiomac.2023.124697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
Breast cancer is one of the most lethal cancers, especially in women. Despite many efforts, side effects of anti-cancer drugs and metastasis are still the main challenges in breast cancer treatment. Recently, advanced technologies such as 3D-printing and nanotechnology have created new horizons in cancer treatment. In this work, we report an advanced drug delivery system based on 3D-printed gelatin-alginate scaffolds containing paclitaxel-loaded niosomes (Nio-PTX@GT-AL). The morphology, drug release, degradation, cellular uptake, flow cytometry, cell cytotoxicity, migration, gene expression, and caspase activity of scaffolds, and control samples (Nio-PTX, and Free-PTX) were investigated. Results demonstrated that synthesized niosomes had spherical-like, in the range of 60-80 nm with desirable cellular uptake. Nio-PTX@GT-AL and Nio-PTX had a sustained drug release and were biodegradable. Cytotoxicity studies revealed that the designed Nio-PTX@GT-AL scaffold had <5 % cytotoxicity against non-tumorigenic breast cell line (MCF-10A) but showed 80 % cytotoxicity against breast cancer cells (MCF-7), which was considerably more than the anti-cancer effects of control samples. In migration evaluation (scratch-assay), approximately 70 % reduction of covered surface area was observed. The anticancer effect of the designed nanocarrier could be attributed to gene expression regulation, where a significant increase in the expression and activity of genes promoting apoptosis (CASP-3, CASP-8, and CASP-9) and inhibiting metastasis (Bax, and p53) and a remarkable decrease in metastasis-enhancing genes (Bcl2, MMP-2, and MMP-9) were observed. Also, flow cytometry results declared that Nio-PTX@GT-AL reduced necrosis and increased apoptosis considerably. The results of this study prove that employing 3D-printing and niosomal formulation is an effective approach in designing nanocarriers for efficient drug delivery applications.
Collapse
Affiliation(s)
- Fatemeh Hosseini
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Ali Bidaki
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Zaer
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abolhassani
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Seyed Arsalan Seyedi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran, Iran
| | - Seyed Ali Nabipoorashrafi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran, Iran
| | | | - Alaa Moeinzadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Farmani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
28
|
Milan TM, Eskenazi APE, de Oliveira LD, da Silva G, Bighetti-Trevisan RL, Freitas GP, de Almeida LO. Interplay between EZH2/β-catenin in stemness of cisplatin-resistant HNSCC and their role as therapeutic targets. Cell Signal 2023:110773. [PMID: 37331417 DOI: 10.1016/j.cellsig.2023.110773] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
The Wnt/β-catenin signaling pathway is associated with the regulation of cancer stem cells, and it can be driven by epigenetic modifications. Here, we aim to identify epigenetic modifications involved in the control of the Wnt/β-catenin signaling and investigate the role of this pathway in the accumulation of cancer stem cells (CSC) and chemoresistance of Head and Neck Squamous Cell Carcinoma (HNSCC). Quantitative-PCR, western blot, shRNA assay, viability assay, flow cytometry assay, spheres formation, xenograft model, and chromatin immunoprecipitation were employed to evaluate the Wnt/β-catenin pathway and EZH2 in wild-type and chemoresistant oral carcinoma cell lines, and in the populations of CSC and non-stem cells. We demonstrated that β-catenin and EZH2 were accumulated in cisplatin-resistant and CSC population. The upstream genes of the Wnt/β-catenin signaling (APC and GSK3β) were decreased, and the downstream gene MMP7 was increased in the chemoresistant cell lines. The inhibition of β-catenin and EZH2 combined effectively decreased the CSC population in vitro and reduced the tumor volume and CSC population in vivo. EZH2 inhibition increased APC and GSK3β, and the Wnt/β-catenin inhibition reduced MMP7 levels. In contrast, EZH2 overexpression decreased APC and GSK3β and increased MMP7. EZH2 and β-catenin inhibitors sensitized chemoresistant cells to cisplatin. EZH2 and H3K27me3 bounded the promoter of APC, leading to its repression. These results suggest that EZH2 regulates β-catenin by inhibiting the upstream gene APC contributing to the accumulation of cancer stem cells and chemoresistance. Moreover, the pharmacological inhibition of the Wnt/β-catenin combined with EZH2 can be an effective strategy for treating HNSCC.
Collapse
Affiliation(s)
- Thaís Moré Milan
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Ana Patrícia Espaladori Eskenazi
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Lucas Dias de Oliveira
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gabriel da Silva
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Rayana Longo Bighetti-Trevisan
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Gileade Pereira Freitas
- Departament of Oral and Maxillofacial Surgery, School of Dentistry, Federal University of Goiás, Goiás, Brazil.
| | - Luciana Oliveira de Almeida
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
29
|
Rao Malla R, Bhamidipati P, Adem M. Insights into the potential of Sanguinarine as a promising therapeutic option for breast cancer. Biochem Pharmacol 2023; 212:115565. [PMID: 37086811 DOI: 10.1016/j.bcp.2023.115565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023]
Abstract
Breast cancer (BC) is one of the leading causes of cancer-related deaths in women worldwide. The tumor microenvironment (TME) plays a crucial role in the progression and metastasis of BC. A significant proportion of BC is characterized by a hypoxic TME, which contributes to the development of drug resistance and cancer recurrence. Sanguinarine (SAN), an isoquinoline alkaloid found in Papaver plants, has shown promise as an anticancer agent. The present review focuses on exploring the molecular mechanisms of hypoxic TME in BC and the potential of SAN as a therapeutic option. The review presents the current understanding of the hypoxic TME, its signaling pathways, and its impact on the progression of BC. Additionally, the review elaborates on the mechanisms of action of SAN in BC, including its effects on vital cellular processes such as proliferation, migration, drug resistance, and tumor-induced immune suppression. The review highlights the importance of addressing hypoxic TME in treating BC and the potential of SAN as a promising therapeutic option.
Collapse
Affiliation(s)
- Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Priyamvada Bhamidipati
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Meghapriya Adem
- Department of Biotechnology, Sri Padmavathi Mahila Visva vidhyalayam, Tirupati-517502, Andhra Pradesh, India
| |
Collapse
|
30
|
Jin CE, Yoon MS, Jo MJ, Kim SY, Lee JM, Kang SJ, Park CW, Kim JS, Shin DH. Synergistic Encapsulation of Paclitaxel and Sorafenib by Methoxy Poly(Ethylene Glycol)- b-Poly(Caprolactone) Polymeric Micelles for Ovarian Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15041206. [PMID: 37111691 PMCID: PMC10146360 DOI: 10.3390/pharmaceutics15041206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Ovarian cancer has a high mortality rate due to difficult detection at an early stage. It is necessary to develop a novel anticancer treatment that demonstrates improved efficacy while reducing toxicity. Here, using the freeze-drying method, micelles encapsulating paclitaxel (PTX) and sorafenib (SRF) with various polymers were prepared, and the optimal polymer (mPEG-b-PCL) was selected by measuring drug loading (%), encapsulation efficiency (%), particle size, polydispersity index, and zeta potential. The final formulation was selected based on a molar ratio (PTX:SRF = 1:2.3) with synergistic effects on two ovarian cancer cell lines (SKOV3-red-fluc, HeyA8). In the in vitro release assay, PTX/SRF micelles showed a slower release than PTX and SRF single micelles. In pharmacokinetic evaluation, PTX/SRF micelles showed improved bioavailability compared to PTX/SRF solution. In in vivo toxicity assays, no significant differences were observed in body weight between the micellar formulation and the control group. The anticancer effect of PTX/SRF combination therapy was improved compared to the use of a single drug. In the xenografted BALB/c mouse model, the tumor growth inhibition rate of PTX/SRF micelles was 90.44%. Accordingly, PTX/SRF micelles showed improved anticancer effects compared to single-drug therapy in ovarian cancer (SKOV3-red-fluc).
Collapse
Affiliation(s)
- Chae Eun Jin
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Moon Sup Yoon
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Min Jeong Jo
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Seo Yeon Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jae Min Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Su Jeong Kang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Chun-Woong Park
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jin-Seok Kim
- Drug Information Research Institute (DIRI), College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| |
Collapse
|
31
|
Ramezanpour A, Ansari L, Rahimkhoei V, Sharifi S, Bigham A, Lighvan ZM, Rezaie J, Szafert S, Mahdavinia G, Akbari A, Jabbari E. Recent advances in carbohydrate-based paclitaxel delivery systems. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04759-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
32
|
Re-Sensitizing Cancer Stem Cells to Conventional Chemotherapy Agents. Int J Mol Sci 2023; 24:ijms24032122. [PMID: 36768445 PMCID: PMC9917165 DOI: 10.3390/ijms24032122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
Cancer stem cells are found in many cancer types. They comprise a distinct subpopulation of cells within the tumor that exhibit properties of stem cells. They express a number of cell surface markers, such as CD133, CD44, ALDH, and EpCAM, as well as embryonic transcription factors Oct4, Nanog, and SOX2. CSCs are more resistant to conventional chemotherapy and can potentially drive tumor relapse. Therefore, it is essential to understand the molecular mechanisms that drive chemoresistance and to target them with specific therapy effectively. Highly conserved developmental signaling pathways such as Wnt, Hedgehog, and Notch are commonly reported to play a role in CSCs chemoresistance development. Studies show that particular pathway inhibitors combined with conventional therapy may re-establish sensitivity to the conventional therapy. Another significant contributor of chemoresistance is a specific tumor microenvironment. Surrounding stroma in the form of cancer-associated fibroblasts, macrophages, endothelial cells, and extracellular matrix components produce cytokines and other factors, thus creating a favorable environment and decreasing the cytotoxic effects of chemotherapy. Anti-stromal agents may potentially help to overcome these effects. Epigenetic changes and autophagy were also among the commonly reported mechanisms of chemoresistance. This review provides an overview of signaling pathway components involved in the development of chemoresistance of CSCs and gathers evidence from experimental studies in which CSCs can be re-sensitized to conventional chemotherapy agents across different cancer types.
Collapse
|
33
|
Cai X, Fan B, Thang SH, Drummond CJ, Tran N, Zhai J. Paclitaxel-loaded cubosome lipid nanocarriers stabilised with pH and hydrogen peroxide-responsive steric stabilisers as drug delivery vehicles. J Mater Chem B 2023; 11:403-414. [PMID: 36511883 DOI: 10.1039/d2tb01530g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Responsive nanoparticle delivery systems hold great potential for next-generation chemotherapeutic treatment with reduced off-target side effects. In this work, we formulated responsive lipid-based cubosomes loaded with paclitaxel (PTX) as a model drug and stabilised by novel amphiphilic block copolymers (ABCs) containing the pH-responsive poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and/or the hydrogen peroxide (H2O2)-responsive poly(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl acrylate) (PTBA) blocks. The results showed that these cubosomes with a particle size of around 250 nm exhibited excellent PTX encapsulation efficiency of up to 60% and had the ability to control the release rate of the drug in response to pH and H2O2 changes. Specifically, compared to the physiological pH of 7.4, PTX was released faster from the cubosome carriers when exposed to pH 5.5 and/or 50 mM H2O2 conditions, which are pathological conditions found in a tumour microenvironment. In vitro cytotoxicity and cell uptake studies further investigated the cellular interactions of these cubosomes. It was found that cubosomes containing PTX had more toxic effects than the control free PTX sample. Compared to cubosomes stabilised by the non-responsive block copolymer Pluronic® F127, the ABC-stabilised cubosomes also had higher cell internalisation efficiency demonstrated by the cytoplasmic fluorescence intensities using confocal microscopy. These results demonstrated that ABCs containing responsive moieties can stabilise lipid cubosomes and enhance controlled release of poorly soluble chemotherapeutics and cellular uptake.
Collapse
Affiliation(s)
- Xudong Cai
- School of Science, STEM college, RMIT University, Melbourne, VIC 3000, Australia.
| | - Bo Fan
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - San H Thang
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Calum J Drummond
- School of Science, STEM college, RMIT University, Melbourne, VIC 3000, Australia.
| | - Nhiem Tran
- School of Science, STEM college, RMIT University, Melbourne, VIC 3000, Australia.
| | - Jiali Zhai
- School of Science, STEM college, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
34
|
Gao Y, Su Z, Wang C, Xu J, Hu S, Zhang C, Sun P, Zhou X, Wang W, Zou T, Yang B, Cheng X, Yi X, Zheng Q. Light-triggered polymeric prodrug and nano-assembly for chemo-photodynamic therapy and potentiate immune checkpoint blockade immunotherapy for hepatocellular carcinoma. MATERIALS & DESIGN 2023; 225:111457. [DOI: 10.1016/j.matdes.2022.111457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
|
35
|
Vatankhah MA, Panahizadeh R, Nejati-Koshki K, Arabzadeh M, Arabzadeh AA, Najafzadeh N. Curcumin Upregulates miR-148a to Increase the Chemosensitivity of CD44-Positive Prostate Cancer Stem Cells to Paclitaxel Through Targeting the MSK1/IRS1 axis. Drug Res (Stuttg) 2022; 72:457-465. [PMID: 35868335 DOI: 10.1055/a-1867-4805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND In men, prostate cancer (PC) is the second most common cause of cancer-related death. However, paclitaxel resistance is a major challenge in advanced PC. Curcumin, a natural antioxidant, has been demonstrated to have cytotoxic effects on cancer stem cells (CSCs). The goal of this study is to explore if curcumin can help lower chemoresistance to paclitaxel through the regulation of miR-148a-mediated apoptosis in prostate CSCs. METHODS The 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay and 4',6-diamidino-2-phenylindole (DAPi) labeling were used to determine cell survival. Immunohistochemistry was used to detect the expression of P-glycoprotein protein (P-gp) and CD44 proteins. Finally, real-time PCR was used to evaluate the regulatory effects of curcumin and paclitaxel on miR-148a and its target genes. RESULTS Curcumin and paclitaxel co-treatment significantly reduced the IC50 value in CD44+cells compared to paclitaxel alone. Additionally, combining these drugs considerably increased apoptosis in CD44+cells. We also discovered that when curcumin and paclitaxel were combined, the expression of CD44 and P-gp was significantly reduced compared to paclitaxel alone. Curcumin and paclitaxel co-treatment also increased miR-148a levels and regulated the levels of its target genes MSK1 and IRS1. CONCLUSION Curcumin may restore paclitaxel sensitivity by raising miR-148a expression and inhibiting its target genes.
Collapse
Affiliation(s)
- Mohammad Amin Vatankhah
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza Panahizadeh
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Kazem Nejati-Koshki
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahsa Arabzadeh
- Department of Surgery, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amir Ahmad Arabzadeh
- Department of Surgery, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nowruz Najafzadeh
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
36
|
Zhang YY, Feng PP, Wang HF, Zhang H, Liang T, Hao XS, Wang FZ, Fei HR. Licochalcone B induces DNA damage, cell cycle arrest, apoptosis, and enhances TRAIL sensitivity in hepatocellular carcinoma cells. Chem Biol Interact 2022; 365:110076. [DOI: 10.1016/j.cbi.2022.110076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022]
|
37
|
Zhao S, Tang Y, Wang R, Najafi M. Mechanisms of cancer cell death induction by paclitaxel: an updated review. Apoptosis 2022; 27:647-667. [PMID: 35849264 DOI: 10.1007/s10495-022-01750-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 02/07/2023]
Abstract
Chemoresistance of cancer cells is a major problem in treating cancer. Knowledge of how cancer cells may die or resist cancer drugs is critical to providing certain strategies to overcome tumour resistance to treatment. Paclitaxel is known as a chemotherapy drug that can suppress the proliferation of cancer cells by inducing cell cycle arrest and induction of mitotic catastrophe. However, today, it is well known that paclitaxel can induce multiple kinds of cell death in cancers. Besides the induction of mitotic catastrophe that occurs during mitosis, paclitaxel has been shown to induce the expression of several pro-apoptosis mediators. It also can modulate the activity of anti-apoptosis mediators. However, certain cell-killing mechanisms such as senescence and autophagy can increase resistance to paclitaxel. This review focuses on the mechanisms of cell death, including apoptosis, mitotic catastrophe, senescence, autophagic cell death, pyroptosis, etc., following paclitaxel treatment. In addition, mechanisms of resistance to cell death due to exposure to paclitaxel and the use of combinations to overcome drug resistance will be discussed.
Collapse
Affiliation(s)
- Shuang Zhao
- School of Basic Medicine, Shaoyang University, Shaoyang, 422000, Hunan, China.
| | - Yufei Tang
- College of Medical Technology, Shaoyang University, Shaoyang, 422000, Hunan, China
| | - Ruohan Wang
- School of Nursing, Shaoyang University, Shaoyang, 422000, Hunan, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
38
|
Sandström N, Carannante V, Olofsson K, Sandoz PA, Moussaud-Lamodière EL, Seashore-Ludlow B, Van Ooijen H, Verron Q, Frisk T, Takai M, Wiklund M, Östling P, Önfelt B. Miniaturized and multiplexed high-content screening of drug and immune sensitivity in a multichambered microwell chip. CELL REPORTS METHODS 2022; 2:100256. [PMID: 35880015 PMCID: PMC9308168 DOI: 10.1016/j.crmeth.2022.100256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/21/2022] [Accepted: 06/17/2022] [Indexed: 12/01/2022]
Abstract
Here, we present a methodology based on multiplexed fluorescence screening of two- or three-dimensional cell cultures in a newly designed multichambered microwell chip, allowing direct assessment of drug or immune cell cytotoxic efficacy. We establish a framework for cell culture, formation of tumor spheroids, fluorescence labeling, and imaging of fixed or live cells at various magnifications directly in the chip together with data analysis and interpretation. The methodology is demonstrated by drug cytotoxicity screening using ovarian and non-small cell lung cancer cells and by cellular cytotoxicity screening targeting tumor spheroids of renal carcinoma and ovarian carcinoma with natural killer cells from healthy donors. The miniaturized format allowing long-term cell culture, efficient screening, and high-quality imaging of small sample volumes makes this methodology promising for individualized cytotoxicity tests for precision medicine.
Collapse
Affiliation(s)
- Niklas Sandström
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| | - Valentina Carannante
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, 171 65 Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, 171 65 Solna, Sweden
| | - Karl Olofsson
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| | - Patrick A. Sandoz
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| | | | - Brinton Seashore-Ludlow
- Department of Oncology and Pathology, Science for Life Laboratory, Karolinska Institutet, 171 65 Solna, Sweden
| | - Hanna Van Ooijen
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| | - Quentin Verron
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| | - Thomas Frisk
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| | - Madoka Takai
- Department of Bioengineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan
| | - Martin Wiklund
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| | - Päivi Östling
- Department of Oncology and Pathology, Science for Life Laboratory, Karolinska Institutet, 171 65 Solna, Sweden
| | - Björn Önfelt
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, 171 65 Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, 171 65 Solna, Sweden
| |
Collapse
|
39
|
Thuy LT, Kang N, Choi M, Lee M, Choi JS. Dendrimeric micelles composed of polyamidoamine dendrimer-peptide-cholesterol conjugates as drug carriers for the treatment of melanoma and bacterial infection. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
40
|
Targeted Inhibition of O-Linked β-N-Acetylglucosamine Transferase as a Promising Therapeutic Strategy to Restore Chemosensitivity and Attenuate Aggressive Tumor Traits in Chemoresistant Urothelial Carcinoma of the Bladder. Biomedicines 2022; 10:biomedicines10051162. [PMID: 35625898 PMCID: PMC9138654 DOI: 10.3390/biomedicines10051162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Acquisition of acquired chemoresistance during treatment cycles in urothelial carcinoma of the bladder (UCB) is the major cause of death through enhancing the risk of cancer progression and metastasis. Elevated glucose flux through the abnormal upregulation of O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) controls key signaling and metabolic pathways regulating diverse cancer cell phenotypes. This study showed that OGT expression levels in two human UCB cell models with acquired resistance to gemcitabine and paclitaxel were significantly upregulated compared with those in parental cells. Reducing hyper-O-GlcNAcylation by OGT knockdown (KD) markedly facilitated chemosensitivity to the corresponding chemotherapeutics in both cells, and combination treatment with OGT-KD showed more severe growth defects in chemoresistant sublines. We subsequently verified the suppressive effects of OGT-KD monotherapy on cell migration/invasion in vitro and xenograft tumor growth in vivo in chemoresistant UCB cells. Transcriptome analysis of these cells revealed 97 upregulated genes, which were enriched in multiple oncogenic pathways. Our final choice of suspected OGT glycosylation substrate was VCAN, S1PR3, PDGFRB, and PRKCG, the knockdown of which induced cell growth defects. These findings demonstrate the vital role of dysregulated OGT activity and hyper-O-GlcNAcylation in modulating treatment failure and tumor aggression in chemoresistant UCB.
Collapse
|
41
|
Monzur S, Hassan G, Afify SM, Kumon K, Mansour H, Nawara HM, Sheta M, Abu Quora HA, Zahra MH, Xu Y, Fu X, Seno A, Wikström P, Szekeres FLM, Seno M. Diphenyleneiodonium efficiently inhibits the characteristics of a cancer stem cell model derived from induced pluripotent stem cells. Cell Biochem Funct 2022; 40:310-320. [PMID: 35285948 DOI: 10.1002/cbf.3696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/23/2021] [Accepted: 10/14/2021] [Indexed: 11/09/2022]
Abstract
Diphenyleneiodonium (DPI) has long been evaluated as an anticancer drug inhibiting NADPH oxidase, the IC50 in several cancer cell lines was reported 10 µM, which is too high for efficacy. In this study, we employed miPS-Huh7cmP cells, which we previously established as a cancer stem cell (CSC) model from induced pluripotent stem cells, to reevaluate the efficacy of DPI because CSCs are currently one of the main foci of therapeutic strategy to treat cancer, but generally considered resistant to chemotherapy. As a result, the conventional assay for the cell growth inhibition by DPI accounted for an IC50 at 712 nM that was not enough to define the effectiveness as an anticancer drug. Simultaneously, the wound-healing assay revealed an IC50 of approximately 500 nM. Comparatively, the IC50 values shown on sphere formation, colony formation, and tube formation assays were 5.52, 12, and 8.7 nM, respectively. However, these inhibitory effects were not observed by VAS2780, also a reputed NADPH oxidase inhibitor. It is noteworthy that these three assays are evaluating the characteristic of CSCs and are designed in the three-dimensional (3D) culture methods. We concluded that DPI could be a suitable candidate to target mitochondrial respiration in CSCs. We propose that the 3D culture assays are more efficient to screen anti-CSC drug candidates and better mimic tumor microenvironment when compared to the adherent monolayer of 2D culture system used for a conventional assay, such as cell growth inhibition and wound-healing assays.
Collapse
Affiliation(s)
- Sadia Monzur
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Ghmkin Hassan
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Said M Afify
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,Chemistry Department, Division of Biochemistry, Faculty of Science, Menoufia University, Shebin El Kom-Menoufia, Egypt
| | - Kazuki Kumon
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Hager Mansour
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Hend M Nawara
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Mona Sheta
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hagar A Abu Quora
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,Cytology, Histology and Histochemistry, Zoology Department, Faculty of Science, Menoufia University, Shebin El Kom-Menoufia, Egypt
| | - Maram H Zahra
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Yanning Xu
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Maternity Hospital, Tianjin, China
| | - Xiaoyin Fu
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,Department of Pathology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Akimasa Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,R&D Division, The Laboratory of Natural Food & Medicine Co., Ltd, Okayama University Incubator, Okayama, Japan
| | | | - Ferenc L M Szekeres
- Department of Health and Education, Division of Biomedicine, University of Skövde, Skövde, Sweden
| | - Masaharu Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| |
Collapse
|
42
|
Roth A, Gihring A, Bischof J, Pan L, Oswald F, Knippschild U. CK1 Is a Druggable Regulator of Microtubule Dynamics and Microtubule-Associated Processes. Cancers (Basel) 2022; 14:1345. [PMID: 35267653 PMCID: PMC8909099 DOI: 10.3390/cancers14051345] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Protein kinases of the Casein Kinase 1 family play a vital role in the regulation of numerous cellular processes. Apart from functions associated with regulation of proliferation, differentiation, or apoptosis, localization of several Casein Kinase 1 isoforms to the centrosome and microtubule asters also implicates regulatory functions in microtubule dynamic processes. Being localized to the spindle apparatus during mitosis Casein Kinase 1 directly modulates microtubule dynamics by phosphorylation of tubulin isoforms. Additionally, site-specific phosphorylation of microtubule-associated proteins can be related to the maintenance of genomic stability but also microtubule stabilization/destabilization, e.g., by hyper-phosphorylation of microtubule-associated protein 1A and RITA1. Consequently, approaches interfering with Casein Kinase 1-mediated microtubule-specific functions might be exploited as therapeutic strategies for the treatment of cancer. Currently pursued strategies include the development of Casein Kinase 1 isoform-specific small molecule inhibitors and therapeutically useful peptides specifically inhibiting kinase-substrate interactions.
Collapse
Affiliation(s)
- Aileen Roth
- University Medical Center Ulm, Department of General, and Visceral Surgery, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (A.R.); (A.G.); (J.B.)
| | - Adrian Gihring
- University Medical Center Ulm, Department of General, and Visceral Surgery, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (A.R.); (A.G.); (J.B.)
| | - Joachim Bischof
- University Medical Center Ulm, Department of General, and Visceral Surgery, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (A.R.); (A.G.); (J.B.)
| | - Leiling Pan
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany;
| | - Franz Oswald
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany;
| | - Uwe Knippschild
- University Medical Center Ulm, Department of General, and Visceral Surgery, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (A.R.); (A.G.); (J.B.)
| |
Collapse
|
43
|
Pang L, Huang X, Zhu L, Xiao H, Li M, Guan H, Gao J, Jin H. [Targeted killing of CD133 + lung cancer stem cells using paclitaxel-loaded PLGA-PEG nanoparticles with CD133 aptamers]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:26-35. [PMID: 35249867 DOI: 10.12122/j.issn.1673-4254.2022.01.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To construct a polylactic acid-glycolic acid-polyethylene glycol (PLGA-PEG) nanocarrier (N-Pac-CD133) coupled with a CD133 nucleic acid aptamer carrying paclitaxel for eliminating lung cancer stem cells (CSCs). METHODS Paclitaxel-loaded N-Pac-CD133 was prepared using the emulsion/solvent evaporation method and characterized. CD133+ lung CSCs were separated by magnetic bead separation and identified for their biological behaviors and gene expression profile. The efficiency of paclitaxel-loaded N-Pac-CD133 for targeted killing of lung cancer cells was assessed in vitro. SCID mice were inoculated with A549 cells and received injections of normal saline, empty nanocarrier linked with CD133 aptamer (N-CD133), paclitaxel, paclitaxel-loaded nanocarrier (N-Pac) or paclitaxel-loaded N-Pac-CD133 (n=8, 5 mg/kg paclitaxel) on days 10, 15 and 20, and the tumor weight and body weight of the mice were measured on day 40. RESULTS Paclitaxel-loaded N-Pac-CD133 showed a particle size of about 100 nm with a high encapsulation efficiency (>80%) and drug loading rate (>8%), and was capable of sustained drug release within 48 h. The CD133+ cell population in lung cancer cells showed the characteristic features of lung CSCs, including faster growth rate (30 days, P=0.001) and high expressions of tumor stem cell markers OV6(P < 0.001), CD133 (P=0.001), OCT3/4 (P=0.002), EpCAM (P=0.04), NANOG (P=0.005) and CD44 (P=0.02). Compared with N-Pac and free paclitaxel, paclitaxel-loaded N-Pac-CD133 showed significantly enhanced targeting ability and cytotoxicity against lung CSCs in vitro (P < 0.001) and significantly reduced the formation of tumor spheres (P < 0.001). In the tumor-bearing mice, paclitaxel-loaded N-Pac-CD133 showed the strongest effects in reducing the tumor mass among all the treatments (P < 0.001). CONCLUSION CD133 aptamer can promote targeted delivery of paclitaxel to allow targeted killing of CD133+ lung CSCs. N-Pac-CD133 loaded with paclitaxel may provide an effective treatment for lung cancer by targeting the lung cancer stem cells.
Collapse
Affiliation(s)
- L Pang
- First School of Clinical Medicine, Mudanjiang Medical University, Mudanjiang 157011, China
| | - X Huang
- Department of Respiratory and Critical Care Medicine, Wuhan First Hospital, Wuhan 430022, China
| | - L Zhu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang 157011, China
| | - H Xiao
- Research Department, Mudanjiang Medical University, Mudanjiang 157011, China
| | - M Li
- First School of Clinical Medicine, Mudanjiang Medical University, Mudanjiang 157011, China
| | | | - J Gao
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - H Jin
- Clinical Laboratory, 5Department of Hematology, Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang 157011, China
| |
Collapse
|
44
|
Yin W, Xu T, Altai M, Oroujeni M, Zhang J, Vorobyeva A, Vorontsova O, Vtorushin SV, Tolmachev V, Gräslund T, Orlova A. The Influence of Domain Permutations of an Albumin-Binding Domain-Fused HER2-Targeting Affibody-Based Drug Conjugate on Tumor Cell Proliferation and Therapy Efficacy. Pharmaceutics 2021; 13:1974. [PMID: 34834389 PMCID: PMC8617914 DOI: 10.3390/pharmaceutics13111974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a clinically validated target for breast cancer therapy. Previously, a drug-fused HER2-targeting affinity protein construct successfully extended the survival of mice bearing HER2-expressing xenografts. The aim of this study was to evaluate the influence of the number and positioning of the protein domains in the drug conjugate. Seven HER2-targeting affibody-based constructs, including one or two affibody molecules (Z) with or without an albumin-binding domain (ABD), namely Z, Z-ABD, ABD-Z, Z-Z, Z-Z-ABD, Z-ABD-Z, and ABD-Z-Z, were evaluated on their effects on cell growth, in vivo targeting, and biodistribution. The biodistribution study demonstrated that the monomeric constructs had longer blood retention and lower hepatic uptake than the dimeric ones. A dimeric construct, specifically ABD-Z-Z, could stimulate the proliferation of HER2 expressing SKOV-3 cells in vitro and the growth of tumors in vivo, whereas the monomeric construct Z-ABD could not. These two constructs demonstrated a therapeutic effect when coupled to mcDM1; however, the effect was more pronounced for the non-stimulating Z-ABD. The median survival of the mice treated with Z-ABD-mcDM1 was 63 days compared to the 37 days for those treated with ABD-Z-Z-mcDM1 or for the control animals. Domain permutation of an ABD-fused HER2-targeting affibody-based drug conjugate significantly influences tumor cell proliferation and therapy efficacy. The monomeric conjugate Z-ABD is the most promising format for targeted delivery of the cytotoxic drug DM1.
Collapse
Affiliation(s)
- Wen Yin
- Department of Protein Science, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden; (W.Y.); (J.Z.)
| | - Tianqi Xu
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden; (T.X.); (M.A.); (M.O.); (A.V.); (O.V.); (V.T.)
| | - Mohamed Altai
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden; (T.X.); (M.A.); (M.O.); (A.V.); (O.V.); (V.T.)
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 221 84 Lund, Sweden
| | - Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden; (T.X.); (M.A.); (M.O.); (A.V.); (O.V.); (V.T.)
| | - Jie Zhang
- Department of Protein Science, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden; (W.Y.); (J.Z.)
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden; (T.X.); (M.A.); (M.O.); (A.V.); (O.V.); (V.T.)
| | - Olga Vorontsova
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden; (T.X.); (M.A.); (M.O.); (A.V.); (O.V.); (V.T.)
| | - Sergey V. Vtorushin
- Pathology Department, Siberian State Medical University, 634050 Tomsk, Russia;
- General and Molecular Pathology Department, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden; (T.X.); (M.A.); (M.O.); (A.V.); (O.V.); (V.T.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Torbjörn Gräslund
- Department of Protein Science, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden; (W.Y.); (J.Z.)
| | - Anna Orlova
- Pathology Department, Siberian State Medical University, 634050 Tomsk, Russia;
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|