1
|
Attia GM, Ali LS, Eldesoqui M, Elsaed WM, Mostafa SA, Albadawi EA, Elmansy RA, Elhassan YH, Berika M, Badawy AA, El-Nabalaway M, Dawood AF, Seleem HS. Neuroprotective effects of granulocyte colony-stimulating factor against tramadol-induced cerebellar neurotoxicity. Tissue Cell 2025; 94:102832. [PMID: 40048827 DOI: 10.1016/j.tice.2025.102832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Tramadol (TRM) is a centrally acting synthetic opioid and serotonin/norepinephrine reuptake inhibitor. Despite being a potent painkiller, long-term use can induce permanent neurotoxicity. Granulocyte colony-stimulating factor (G-CSF) is a cytokine that helps to mobilize stem cells and facilitate their integration over injured neurons. AIM This work aims to study the histopathological, biochemical, and molecular alterations in the cerebellar cortex induced by TRM in comparison to the postulated protective effect of G-CSF versus TRM withdrawal. METHODS 32 adult male albino rats were equally divided into four groups: control, TRM, TRM+G-CSF-treated, and TRM withdrawal groups. The TRM group received a daily dose of 80 mg/kg body weight orally via gastric tube for 12 weeks. The TRM+G-CSF-treated group received subcutaneous injections of 100 μg/kg body weight of G-CSF for seven consecutive days, then TRM from the 8th day. The TRM withdrawal group received TRM for 12 weeks; then, the rats were left without TRM administration for a further 12 weeks. The structural, biochemical, and molecular changes of the cerebellum were measured. RESULTS The study revealed that TRM not only induced cerebellar atrophy but also triggered microgliosis, neuroinflammation, and apoptotic indicators, all while suppressing autophagy. However, G-CSF and TRM withdrawal reversed these alterations with superiority to G-CSF. CONCLUSION The current investigation shows that G-CSF may improve behavioral, neurochemical, immunohistochemical, and molecular metrics in the rat cerebellum after tramadol-induced injury. G-CSF exhibits a superior protective effect compared to tramadol withdrawal. This is achieved through its antioxidant, anti-apoptotic, and autophagic enhancement properties, as well as its ability to reduce cerebellar gliosis.
Collapse
Affiliation(s)
- Ghalia Mahfouz Attia
- Department of Medical Histology and Cell Biology, Faculty of Medicine Mansoura University, Egypt; Department of Medical Histology and Cell Biology, Faculty of Medicine Horus University, Egypt.
| | - Lashin S Ali
- Department of Basic Medical Science-Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan; Physiology Department-Mansoura Faculty of Medine-Mansoura University, Mansoura, Egypt.
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia.
| | - Wael M Elsaed
- Department of Human Anatomy and Embryology, Faculty of Medicine Mansoura University, Egypt; Basic Sciences Department, Riyadh Elm University, Riyadh, Saudi Arabia.
| | - Sally Abdallah Mostafa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Mansoura University, Egypt.
| | - Emad A Albadawi
- Department of Basic Medical Sciences, College of Medicine, Taibah University, KSA.
| | - Rasha Ahmed Elmansy
- Anatomy Unit, Department of Basic Medical Sciences, College of Medicine, Qassim University, Buraydah, Saudi Arabia; Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | | | - Mohamed Berika
- Department of Human Anatomy and Embryology, Faculty of Medicine Mansoura University, Egypt; Rehabilitation Science Department, College of Applied Medical Sciences, King Saud University, KSA.
| | - Abdelnaser A Badawy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia.
| | - Mohammad El-Nabalaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia; Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Mansoura University, Egypt.
| | - Amal Fahmy Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Hanan Said Seleem
- Department of Histology & Cell Biology, Faculty of Medicine, Menoufia University, Shebin ElKoum, Menofia, Egypt.
| |
Collapse
|
2
|
Chen R, Xu X, Yu Y, Chen Y, Lin C, Liu R. High-voltage pulsed radiofrequency improves ultrastructure of DRG and enhances spinal microglial autophagy to ameliorate neuropathic pain induced by SNI. Sci Rep 2024; 14:4497. [PMID: 38402335 PMCID: PMC10894304 DOI: 10.1038/s41598-024-55095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/20/2024] [Indexed: 02/26/2024] Open
Abstract
Neuropathic pain (NeP) is intractable for which many therapies are ineffective. High-voltage pulsed radiofrequency (HVPRF) on dorsal root ganglion (DRG) is considered an effective treatment for NeP. The aim of this study is to explore the therapeutic voltage for the optimal efficacy of PRF and the underlying mechanisms. The radiofrequency electrode was placed close to the L5 DRG of rats with spared nerve injury (SNI) and emitted current by the corresponding voltage in different groups. Four different voltages (45 V, 65 V, 85 V, and 100 V) of PRF on DRG significantly alleviated the SNI-induced NeP, reduced the levels of activating transcription factor 3 (ATF3) in DRG, improved the ultrastructure of DRG, and promoted autophagy in spinal microglia to varying degrees and partially reversed the increased expression of TNF-α and the reduced expression of IL-10 in spinal cord dorsal horn (SCDH). The beneficial effect of 85V-PRF was superior to those of other three PRF treatments. The underlying mechanisms may be related to repairing the DRG damage and improving the DRG ultrastructure while regulating spinal microglial autophagy and thereby alleviating neuroinflammation.
Collapse
Affiliation(s)
- Ri Chen
- Department of Pain Management, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Xueru Xu
- Department of Pain Management, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Youfen Yu
- Department of Pain Management, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Yanqin Chen
- Department of Anesthesiology, Women's and Children's Hospital of Xiamen University, Xiamen, China
| | - Chun Lin
- School of Basic Medical Sciences, Institute of Pain Research, Fujian Medical University, Fuzhou, Fujian, China
| | - Rongguo Liu
- Department of Pain Management, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
3
|
Xu X, Chen R, Yu Y, Yang J, Lin C, Liu R. Pulsed radiofrequency on DRG inhibits hippocampal neuroinflammation by regulating spinal GRK2/p38 expression and enhances spinal autophagy to reduce pain and depression in male rats with spared nerve injury. Int Immunopharmacol 2024; 127:111419. [PMID: 38141406 DOI: 10.1016/j.intimp.2023.111419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Evidence indicates that microglial G protein-coupled receptor kinase 2 (GRK2) is a key regulator of the transition from acute to chronic pain mediated by microglial products via the p38 mitogen-activated protein kinase (MAPK) pathway in the spinal cord dorsal horn (SCDH). Increasing studies have shown that autophagic dysfunction in the SCDH and neuroinflammation in the hippocampus underlie NeP. However, whether GRK2/p38MAPK and autophagic flux in the SCDH and hippocampal neuroinflammation are involved in NeP and depression comorbidity has not been determined. Here, we explored the effects of high-voltage pulsed radiofrequency (PRF) (85 V-PRF; HV-PRF) to the dorsal root ganglion (DRG) on pain phenotypes in Wistar male rats with spared nerve injury (SNI) and the underlying mechanisms. The exacerbation of pain phenotypes was markedly relieved by PRF-DRG. The SNI-induced reduction in GRK2 expression, elevation of p-p38 MAPK levels in the SCDH, and increase in IL-1β and TNF-α levels in the hippocampus were reversed by PRF, which was accompanied by an increase in autophagic flux in spinal microglia. The beneficial effect of 85 V-PRF was superior to that of 45 V-PRF. In addition, the improvements elicited by 85 V-PRF were reversed by intrathecal injection of GRK2 antisense oligonucleotide, and these changes were accompanied by GRK2 downregulation and p-p38 upregulation in the SCDH, increased pro-inflammatory factor levels in the hippocampus, and excessive autophagy in spinal microglia. In conclusion, our data indicate that the application of HV-PRF to the DRG could serve as an excellent therapeutic technique for regulating neuroimmunity and neuroinflammation to relieve pain phenotypes.
Collapse
Affiliation(s)
- Xueru Xu
- Department of Pain Management, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou City, Fujian Province, China
| | - Ri Chen
- Department of Pain Management, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou City, Fujian Province, China
| | - Youfen Yu
- Department of Pain Management, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou City, Fujian Province, China
| | - Jing Yang
- Department of Pain Management, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou City, Fujian Province, China
| | - Chun Lin
- Institute of Pain Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou City, Fujian Province, China
| | - Rongguo Liu
- Department of Pain Management, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou City, Fujian Province, China.
| |
Collapse
|
4
|
Morteza Bagi H, Ahmadi S, Tarighat F, Rahbarghazi R, Soleimanpour H. Interplay between exosomes and autophagy machinery in pain management: State of the art. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100095. [PMID: 35720640 PMCID: PMC9198378 DOI: 10.1016/j.ynpai.2022.100095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 05/30/2023]
Abstract
Despite recent progress regarding inexpensive medical approaches, many individuals suffer from moderate to severe pain globally. The discovery and advent of exosomes, as biological nano-sized vesicles, has revolutionized current knowledge about underlying mechanisms associated with several pathological conditions. Indeed, these particles are touted as biological bio-shuttles with the potential to carry specific signaling biomolecules to cells in proximity and remote sites, maintaining cell-to-cell communication in a paracrine manner. A piece of evidence points to an intricate relationship between exosome biogenesis and autophagy signaling pathways at different molecular levels. A close collaboration of autophagic response with exosome release can affect the body's hemostasis and physiology of different cell types. This review is a preliminary attempt to highlight the possible interface of autophagy flux and exosome biogenesis on pain management with a special focus on neuropathic pain. It is thought that this review article will help us to understand the interplay of autophagic response and exosome biogenesis in the management of pain under pathological conditions. The application of therapies targeting autophagy pathway and exosome abscission can be an alternative strategy in the regulation of pain.
Collapse
Key Words
- Autophagy
- CESC-Exo, cartilage endplate stem cell-derived Exo
- Cell Therapy
- ER, endoplasmic reticulum
- ESCRT, endosomal sorting complex required for transport
- HSPA8, heat shock protein family A member 8
- LAMP2, lysosomal‑associated membrane protein type 2
- LAT1, large amino acid transporter
- LTs, leukotrienes
- MAPK8/JNK, mitogen-activated protein kinase 8p-/c-Jun N-terminal Kinase
- MMP, matrix metalloproteinase
- MVBs, multivesicular bodies
- NFKB/NF-κB, nuclear factor of kappa light polypeptide gene enhancer in B cells
- NPCs, nucleus pulposus cells
- NPCs-Exo, NPCs-derived Exo
- Neural Exosome
- Pain Management
- SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein receptors
- TLR4, Toll-like receptor 4
- TRAF6, TNF receptor-associated factor 6
- nSMase, ceramide-generating enzyme neutral sphingomyelinases
Collapse
Affiliation(s)
- Hamidreza Morteza Bagi
- Emergency and Trauma Care Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Ahmadi
- Emergency and Trauma Care Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Tarighat
- Emergency and Trauma Care Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Soleimanpour
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Neuroimmune Mechanisms Underlying Neuropathic Pain: The Potential Role of TNF-α-Necroptosis Pathway. Int J Mol Sci 2022; 23:ijms23137191. [PMID: 35806192 PMCID: PMC9266916 DOI: 10.3390/ijms23137191] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
The neuroimmune mechanism underlying neuropathic pain has been extensively studied. Tumor necrosis factor-alpha (TNF-α), a key pro-inflammatory cytokine that drives cytokine storm and stimulates a cascade of other cytokines in pain-related pathways, induces and modulates neuropathic pain by facilitating peripheral (primary afferents) and central (spinal cord) sensitization. Functionally, TNF-α controls the balance between cell survival and death by inducing an inflammatory response and two programmed cell death mechanisms (apoptosis and necroptosis). Necroptosis, a novel form of programmed cell death, is receiving increasing attraction and may trigger neuroinflammation to promote neuropathic pain. Chronic pain is often accompanied by adverse pain-associated emotional reactions and cognitive disorders. Overproduction of TNF-α in supraspinal structures such as the anterior cingulate cortex (ACC) and hippocampus plays an important role in pain-associated emotional disorders and memory deficits and also participates in the modulation of pain transduction. At present, studies reporting on the role of the TNF-α–necroptosis pathway in pain-related disorders are lacking. This review indicates the important research prospects of this pathway in pain modulation based on its role in anxiety, depression and memory deficits associated with other neurodegenerative diseases. In addition, we have summarized studies related to the underlying mechanisms of neuropathic pain mediated by TNF-α and discussed the role of the TNF-α–necroptosis pathway in detail, which may represent an avenue for future therapeutic intervention.
Collapse
|
6
|
Shinu P, Morsy MA, Nair AB, Mouslem AKA, Venugopala KN, Goyal M, Bansal M, Jacob S, Deb PK. Novel Therapies for the Treatment of Neuropathic Pain: Potential and Pitfalls. J Clin Med 2022; 11:3002. [PMID: 35683390 PMCID: PMC9181614 DOI: 10.3390/jcm11113002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
Neuropathic pain affects more than one million people across the globe. The quality of life of people suffering from neuropathic pain has been considerably declining due to the unavailability of appropriate therapeutics. Currently, available treatment options can only treat patients symptomatically, but they are associated with severe adverse side effects and the development of tolerance over prolonged use. In the past decade, researchers were able to gain a better understanding of the mechanisms involved in neuropathic pain; thus, continuous efforts are evident, aiming to develop novel interventions with better efficacy instead of symptomatic treatment. The current review discusses the latest interventional strategies used in the treatment and management of neuropathic pain. This review also provides insights into the present scenario of pain research, particularly various interventional techniques such as spinal cord stimulation, steroid injection, neural blockade, transcranial/epidural stimulation, deep brain stimulation, percutaneous electrical nerve stimulation, neuroablative procedures, opto/chemogenetics, gene therapy, etc. In a nutshell, most of the above techniques are at preclinical stage and facing difficulty in translation to clinical studies due to the non-availability of appropriate methodologies. Therefore, continuing research on these interventional strategies may help in the development of promising novel therapies that can improve the quality of life of patients suffering from neuropathic pain.
Collapse
Affiliation(s)
- Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
| | - Abdulaziz K. Al Mouslem
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Manoj Goyal
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Monika Bansal
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
| |
Collapse
|
7
|
Liao MF, Lu KT, Hsu JL, Lee CH, Cheng MY, Ro LS. The Role of Autophagy and Apoptosis in Neuropathic Pain Formation. Int J Mol Sci 2022; 23:2685. [PMID: 35269822 PMCID: PMC8910267 DOI: 10.3390/ijms23052685] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 01/18/2023] Open
Abstract
Neuropathic pain indicates pain caused by damage to the somatosensory system and is difficult to manage and treat. A new treatment strategy urgently needs to be developed. Both autophagy and apoptosis are critical adaptive mechanisms when neurons encounter stress or damage. Recent studies have shown that, after nerve damage, both autophagic and apoptotic activities in the injured nerve, dorsal root ganglia, and spinal dorsal horn change over time. Many studies have shown that upregulated autophagic activities may help myelin clearance, promote nerve regeneration, and attenuate pain behavior. On the other hand, there is no direct evidence that the inhibition of apoptotic activities in the injured neurons can attenuate pain behavior. Most studies have only shown that agents can simultaneously attenuate pain behavior and inhibit apoptotic activities in the injured dorsal root ganglia. Autophagy and apoptosis can crosstalk with each other through various proteins and proinflammatory cytokine expressions. Proinflammatory cytokines can promote both autophagic/apoptotic activities and neuropathic pain formation, whereas autophagy can inhibit proinflammatory cytokine activities and further attenuate pain behaviors. Thus, agents that can enhance autophagic activities but suppress apoptotic activities on the injured nerve and dorsal root ganglia can treat neuropathic pain. Here, we summarized the evolving changes in apoptotic and autophagic activities in the injured nerve, dorsal root ganglia, spinal cord, and brain after nerve damage. This review may help in further understanding the treatment strategy for neuropathic pain during nerve injury by modulating apoptotic/autophagic activities and proinflammatory cytokines in the nervous system.
Collapse
Affiliation(s)
- Ming-Feng Liao
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-F.L.); (J.-L.H.); (C.-H.L.); (M.-Y.C.)
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 106, Taiwan;
| | - Kwok-Tung Lu
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 106, Taiwan;
| | - Jung-Lung Hsu
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-F.L.); (J.-L.H.); (C.-H.L.); (M.-Y.C.)
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, Chang Gung University, New Taipei City 236, Taiwan
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei 110, Taiwan
- Brain and Consciousness Research Center, Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Chih-Hong Lee
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-F.L.); (J.-L.H.); (C.-H.L.); (M.-Y.C.)
| | - Mei-Yun Cheng
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-F.L.); (J.-L.H.); (C.-H.L.); (M.-Y.C.)
| | - Long-Sun Ro
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-F.L.); (J.-L.H.); (C.-H.L.); (M.-Y.C.)
| |
Collapse
|
8
|
Mahmoud MF, Rezq S, Alsemeh AE, Abdelfattah MAO, El-Shazly AM, Daoud R, El Raey MA, Sobeh M. Potamogeton perfoliatus L. Extract Attenuates Neuroinflammation and Neuropathic Pain in Sciatic Nerve Chronic Constriction Injury-Induced Peripheral Neuropathy in Rats. Front Pharmacol 2021; 12:799444. [PMID: 34987408 PMCID: PMC8721232 DOI: 10.3389/fphar.2021.799444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022] Open
Abstract
Sciatic nerve injury is often associated with neuropathic pain and neuroinflammation in the central and peripheral nervous systems. In our previous work, Potamogeton perfoliatus L. displayed anti-inflammatory, antipyretic and analgesic properties, predominantly via the inhibition of COX-2 enzyme and attenuation of oxidative stress. Herein, we extended our investigations to study the effects of the plant's extract on pain-related behaviors, oxidative stress, apoptosis markers, GFAP, CD68 and neuro-inflammation in sciatic nerve chronic constriction injury (CCI) rat model. The levels of the pro-inflammatory marker proteins in sciatic nerve and brainstem were measured with ELISA 14 days after CCI induction. Pretreatment with the extract significantly attenuated mechanical and cold allodynia and heat hyperalgesia with better potential than the reference drug, pregabalin. In addition, CCI lead to the overexpression of prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), tumor necrosis alpha (TNFα), nuclear factor κB (NF-κB), cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), and NADPH oxidase-1 (NOX-1) and decreased the catalase level in sciatic nerve and brainstem. The observed neuro-inflammatory changes were accompanied with glial cells activation (increased GFAP and CD68 positive cells), apoptosis (increased Bax) and structural changes in both brainstem and sciatic nerve. The studied extract attenuated the CCI-induced neuro-inflammatory changes, oxidative stress, and apoptosis while it induced the expression of Bcl-2 and catalase in a dose dependent manner. It also decreased the brainstem expression of CD68 and GFAP indicating a possible neuroprotection effect. Taking together, P. perfoliatus may be considered as a novel therapy for neuropathic pain patients after performing the required clinical trials.
Collapse
Affiliation(s)
- Mona F. Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Samar Rezq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Amira E. Alsemeh
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Assem M. El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Rachid Daoud
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Mohamed A. El Raey
- Department of Phytochemistry and Plant Systematics, Pharmaceutical Division, National Research Centre, Dokki, Cairo, Egypt
| | - Mansour Sobeh
- AgroBioSciences Research, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| |
Collapse
|